aboutsummaryrefslogtreecommitdiffstats
path: root/mm/memory.c
diff options
context:
space:
mode:
authorMatthew Wilcox <matthew.r.wilcox@intel.com>2015-02-16 18:58:50 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2015-02-16 20:56:03 -0500
commit2e4cdab0584fa884e0a81c4f45b93ce875c9fcaa (patch)
treec20a4224ed2ac8d5e9416c7fcc451cc144025626 /mm/memory.c
parent283307c7607de2a06d3bfae4cfbf5a566d457090 (diff)
mm: allow page fault handlers to perform the COW
Currently COW of an XIP file is done by first bringing in a read-only mapping, then retrying the fault and copying the page. It is much more efficient to tell the fault handler that a COW is being attempted (by passing in the pre-allocated page in the vm_fault structure), and allow the handler to perform the COW operation itself. The handler cannot insert the page itself if there is already a read-only mapping at that address, so allow the handler to return VM_FAULT_LOCKED and set the fault_page to be NULL. This indicates to the MM code that the i_mmap_lock is held instead of the page lock. Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andreas Dilger <andreas.dilger@intel.com> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Jens Axboe <axboe@kernel.dk> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/memory.c')
-rw-r--r--mm/memory.c41
1 files changed, 32 insertions, 9 deletions
diff --git a/mm/memory.c b/mm/memory.c
index 1b04e13b9993..8068893697bb 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -1965,6 +1965,7 @@ static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1965 vmf.pgoff = page->index; 1965 vmf.pgoff = page->index;
1966 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 1966 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1967 vmf.page = page; 1967 vmf.page = page;
1968 vmf.cow_page = NULL;
1968 1969
1969 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 1970 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1970 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 1971 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
@@ -2639,7 +2640,8 @@ oom:
2639 * See filemap_fault() and __lock_page_retry(). 2640 * See filemap_fault() and __lock_page_retry().
2640 */ 2641 */
2641static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2642static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2642 pgoff_t pgoff, unsigned int flags, struct page **page) 2643 pgoff_t pgoff, unsigned int flags,
2644 struct page *cow_page, struct page **page)
2643{ 2645{
2644 struct vm_fault vmf; 2646 struct vm_fault vmf;
2645 int ret; 2647 int ret;
@@ -2648,10 +2650,13 @@ static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2648 vmf.pgoff = pgoff; 2650 vmf.pgoff = pgoff;
2649 vmf.flags = flags; 2651 vmf.flags = flags;
2650 vmf.page = NULL; 2652 vmf.page = NULL;
2653 vmf.cow_page = cow_page;
2651 2654
2652 ret = vma->vm_ops->fault(vma, &vmf); 2655 ret = vma->vm_ops->fault(vma, &vmf);
2653 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2654 return ret; 2657 return ret;
2658 if (!vmf.page)
2659 goto out;
2655 2660
2656 if (unlikely(PageHWPoison(vmf.page))) { 2661 if (unlikely(PageHWPoison(vmf.page))) {
2657 if (ret & VM_FAULT_LOCKED) 2662 if (ret & VM_FAULT_LOCKED)
@@ -2665,6 +2670,7 @@ static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2665 else 2670 else
2666 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2671 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2667 2672
2673 out:
2668 *page = vmf.page; 2674 *page = vmf.page;
2669 return ret; 2675 return ret;
2670} 2676}
@@ -2835,7 +2841,7 @@ static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2835 pte_unmap_unlock(pte, ptl); 2841 pte_unmap_unlock(pte, ptl);
2836 } 2842 }
2837 2843
2838 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2844 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2839 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2845 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2840 return ret; 2846 return ret;
2841 2847
@@ -2875,26 +2881,43 @@ static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2875 return VM_FAULT_OOM; 2881 return VM_FAULT_OOM;
2876 } 2882 }
2877 2883
2878 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2884 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
2879 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2885 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2880 goto uncharge_out; 2886 goto uncharge_out;
2881 2887
2882 copy_user_highpage(new_page, fault_page, address, vma); 2888 if (fault_page)
2889 copy_user_highpage(new_page, fault_page, address, vma);
2883 __SetPageUptodate(new_page); 2890 __SetPageUptodate(new_page);
2884 2891
2885 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2892 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2886 if (unlikely(!pte_same(*pte, orig_pte))) { 2893 if (unlikely(!pte_same(*pte, orig_pte))) {
2887 pte_unmap_unlock(pte, ptl); 2894 pte_unmap_unlock(pte, ptl);
2888 unlock_page(fault_page); 2895 if (fault_page) {
2889 page_cache_release(fault_page); 2896 unlock_page(fault_page);
2897 page_cache_release(fault_page);
2898 } else {
2899 /*
2900 * The fault handler has no page to lock, so it holds
2901 * i_mmap_lock for read to protect against truncate.
2902 */
2903 i_mmap_unlock_read(vma->vm_file->f_mapping);
2904 }
2890 goto uncharge_out; 2905 goto uncharge_out;
2891 } 2906 }
2892 do_set_pte(vma, address, new_page, pte, true, true); 2907 do_set_pte(vma, address, new_page, pte, true, true);
2893 mem_cgroup_commit_charge(new_page, memcg, false); 2908 mem_cgroup_commit_charge(new_page, memcg, false);
2894 lru_cache_add_active_or_unevictable(new_page, vma); 2909 lru_cache_add_active_or_unevictable(new_page, vma);
2895 pte_unmap_unlock(pte, ptl); 2910 pte_unmap_unlock(pte, ptl);
2896 unlock_page(fault_page); 2911 if (fault_page) {
2897 page_cache_release(fault_page); 2912 unlock_page(fault_page);
2913 page_cache_release(fault_page);
2914 } else {
2915 /*
2916 * The fault handler has no page to lock, so it holds
2917 * i_mmap_lock for read to protect against truncate.
2918 */
2919 i_mmap_unlock_read(vma->vm_file->f_mapping);
2920 }
2898 return ret; 2921 return ret;
2899uncharge_out: 2922uncharge_out:
2900 mem_cgroup_cancel_charge(new_page, memcg); 2923 mem_cgroup_cancel_charge(new_page, memcg);
@@ -2913,7 +2936,7 @@ static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2913 int dirtied = 0; 2936 int dirtied = 0;
2914 int ret, tmp; 2937 int ret, tmp;
2915 2938
2916 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2939 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2917 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2940 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2918 return ret; 2941 return ret;
2919 2942