diff options
| author | Jiri Kosina <jkosina@suse.cz> | 2017-05-02 05:02:41 -0400 | 
|---|---|---|
| committer | Jiri Kosina <jkosina@suse.cz> | 2017-05-02 05:02:41 -0400 | 
| commit | 4d6ca227c768b50b05cf183974b40abe444e9d0c (patch) | |
| tree | bf953d8e895281053548b9967a2c4b58d641df00 /lib/prime_numbers.c | |
| parent | 800f3eef8ebc1264e9c135bfa892c8ae41fa4792 (diff) | |
| parent | af22a610bc38508d5ea760507d31be6b6983dfa8 (diff) | |
Merge branch 'for-4.12/asus' into for-linus
Diffstat (limited to 'lib/prime_numbers.c')
| -rw-r--r-- | lib/prime_numbers.c | 315 | 
1 files changed, 315 insertions, 0 deletions
| diff --git a/lib/prime_numbers.c b/lib/prime_numbers.c new file mode 100644 index 000000000000..550eec457c2e --- /dev/null +++ b/lib/prime_numbers.c | |||
| @@ -0,0 +1,315 @@ | |||
| 1 | #define pr_fmt(fmt) "prime numbers: " fmt "\n" | ||
| 2 | |||
| 3 | #include <linux/module.h> | ||
| 4 | #include <linux/mutex.h> | ||
| 5 | #include <linux/prime_numbers.h> | ||
| 6 | #include <linux/slab.h> | ||
| 7 | |||
| 8 | #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) | ||
| 9 | |||
| 10 | struct primes { | ||
| 11 | struct rcu_head rcu; | ||
| 12 | unsigned long last, sz; | ||
| 13 | unsigned long primes[]; | ||
| 14 | }; | ||
| 15 | |||
| 16 | #if BITS_PER_LONG == 64 | ||
| 17 | static const struct primes small_primes = { | ||
| 18 | .last = 61, | ||
| 19 | .sz = 64, | ||
| 20 | .primes = { | ||
| 21 | BIT(2) | | ||
| 22 | BIT(3) | | ||
| 23 | BIT(5) | | ||
| 24 | BIT(7) | | ||
| 25 | BIT(11) | | ||
| 26 | BIT(13) | | ||
| 27 | BIT(17) | | ||
| 28 | BIT(19) | | ||
| 29 | BIT(23) | | ||
| 30 | BIT(29) | | ||
| 31 | BIT(31) | | ||
| 32 | BIT(37) | | ||
| 33 | BIT(41) | | ||
| 34 | BIT(43) | | ||
| 35 | BIT(47) | | ||
| 36 | BIT(53) | | ||
| 37 | BIT(59) | | ||
| 38 | BIT(61) | ||
| 39 | } | ||
| 40 | }; | ||
| 41 | #elif BITS_PER_LONG == 32 | ||
| 42 | static const struct primes small_primes = { | ||
| 43 | .last = 31, | ||
| 44 | .sz = 32, | ||
| 45 | .primes = { | ||
| 46 | BIT(2) | | ||
| 47 | BIT(3) | | ||
| 48 | BIT(5) | | ||
| 49 | BIT(7) | | ||
| 50 | BIT(11) | | ||
| 51 | BIT(13) | | ||
| 52 | BIT(17) | | ||
| 53 | BIT(19) | | ||
| 54 | BIT(23) | | ||
| 55 | BIT(29) | | ||
| 56 | BIT(31) | ||
| 57 | } | ||
| 58 | }; | ||
| 59 | #else | ||
| 60 | #error "unhandled BITS_PER_LONG" | ||
| 61 | #endif | ||
| 62 | |||
| 63 | static DEFINE_MUTEX(lock); | ||
| 64 | static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); | ||
| 65 | |||
| 66 | static unsigned long selftest_max; | ||
| 67 | |||
| 68 | static bool slow_is_prime_number(unsigned long x) | ||
| 69 | { | ||
| 70 | unsigned long y = int_sqrt(x); | ||
| 71 | |||
| 72 | while (y > 1) { | ||
| 73 | if ((x % y) == 0) | ||
| 74 | break; | ||
| 75 | y--; | ||
| 76 | } | ||
| 77 | |||
| 78 | return y == 1; | ||
| 79 | } | ||
| 80 | |||
| 81 | static unsigned long slow_next_prime_number(unsigned long x) | ||
| 82 | { | ||
| 83 | while (x < ULONG_MAX && !slow_is_prime_number(++x)) | ||
| 84 | ; | ||
| 85 | |||
| 86 | return x; | ||
| 87 | } | ||
| 88 | |||
| 89 | static unsigned long clear_multiples(unsigned long x, | ||
| 90 | unsigned long *p, | ||
| 91 | unsigned long start, | ||
| 92 | unsigned long end) | ||
| 93 | { | ||
| 94 | unsigned long m; | ||
| 95 | |||
| 96 | m = 2 * x; | ||
| 97 | if (m < start) | ||
| 98 | m = roundup(start, x); | ||
| 99 | |||
| 100 | while (m < end) { | ||
| 101 | __clear_bit(m, p); | ||
| 102 | m += x; | ||
| 103 | } | ||
| 104 | |||
| 105 | return x; | ||
| 106 | } | ||
| 107 | |||
| 108 | static bool expand_to_next_prime(unsigned long x) | ||
| 109 | { | ||
| 110 | const struct primes *p; | ||
| 111 | struct primes *new; | ||
| 112 | unsigned long sz, y; | ||
| 113 | |||
| 114 | /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, | ||
| 115 | * there is always at least one prime p between n and 2n - 2. | ||
| 116 | * Equivalently, if n > 1, then there is always at least one prime p | ||
| 117 | * such that n < p < 2n. | ||
| 118 | * | ||
| 119 | * http://mathworld.wolfram.com/BertrandsPostulate.html | ||
| 120 | * https://en.wikipedia.org/wiki/Bertrand's_postulate | ||
| 121 | */ | ||
| 122 | sz = 2 * x; | ||
| 123 | if (sz < x) | ||
| 124 | return false; | ||
| 125 | |||
| 126 | sz = round_up(sz, BITS_PER_LONG); | ||
| 127 | new = kmalloc(sizeof(*new) + bitmap_size(sz), | ||
| 128 | GFP_KERNEL | __GFP_NOWARN); | ||
| 129 | if (!new) | ||
| 130 | return false; | ||
| 131 | |||
| 132 | mutex_lock(&lock); | ||
| 133 | p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | ||
| 134 | if (x < p->last) { | ||
| 135 | kfree(new); | ||
| 136 | goto unlock; | ||
| 137 | } | ||
| 138 | |||
| 139 | /* Where memory permits, track the primes using the | ||
| 140 | * Sieve of Eratosthenes. The sieve is to remove all multiples of known | ||
| 141 | * primes from the set, what remains in the set is therefore prime. | ||
| 142 | */ | ||
| 143 | bitmap_fill(new->primes, sz); | ||
| 144 | bitmap_copy(new->primes, p->primes, p->sz); | ||
| 145 | for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) | ||
| 146 | new->last = clear_multiples(y, new->primes, p->sz, sz); | ||
| 147 | new->sz = sz; | ||
| 148 | |||
| 149 | BUG_ON(new->last <= x); | ||
| 150 | |||
| 151 | rcu_assign_pointer(primes, new); | ||
| 152 | if (p != &small_primes) | ||
| 153 | kfree_rcu((struct primes *)p, rcu); | ||
| 154 | |||
| 155 | unlock: | ||
| 156 | mutex_unlock(&lock); | ||
| 157 | return true; | ||
| 158 | } | ||
| 159 | |||
| 160 | static void free_primes(void) | ||
| 161 | { | ||
| 162 | const struct primes *p; | ||
| 163 | |||
| 164 | mutex_lock(&lock); | ||
| 165 | p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | ||
| 166 | if (p != &small_primes) { | ||
| 167 | rcu_assign_pointer(primes, &small_primes); | ||
| 168 | kfree_rcu((struct primes *)p, rcu); | ||
| 169 | } | ||
| 170 | mutex_unlock(&lock); | ||
| 171 | } | ||
| 172 | |||
| 173 | /** | ||
| 174 | * next_prime_number - return the next prime number | ||
| 175 | * @x: the starting point for searching to test | ||
| 176 | * | ||
| 177 | * A prime number is an integer greater than 1 that is only divisible by | ||
| 178 | * itself and 1. The set of prime numbers is computed using the Sieve of | ||
| 179 | * Eratoshenes (on finding a prime, all multiples of that prime are removed | ||
| 180 | * from the set) enabling a fast lookup of the next prime number larger than | ||
| 181 | * @x. If the sieve fails (memory limitation), the search falls back to using | ||
| 182 | * slow trial-divison, up to the value of ULONG_MAX (which is reported as the | ||
| 183 | * final prime as a sentinel). | ||
| 184 | * | ||
| 185 | * Returns: the next prime number larger than @x | ||
| 186 | */ | ||
| 187 | unsigned long next_prime_number(unsigned long x) | ||
| 188 | { | ||
| 189 | const struct primes *p; | ||
| 190 | |||
| 191 | rcu_read_lock(); | ||
| 192 | p = rcu_dereference(primes); | ||
| 193 | while (x >= p->last) { | ||
| 194 | rcu_read_unlock(); | ||
| 195 | |||
| 196 | if (!expand_to_next_prime(x)) | ||
| 197 | return slow_next_prime_number(x); | ||
| 198 | |||
| 199 | rcu_read_lock(); | ||
| 200 | p = rcu_dereference(primes); | ||
| 201 | } | ||
| 202 | x = find_next_bit(p->primes, p->last, x + 1); | ||
| 203 | rcu_read_unlock(); | ||
| 204 | |||
| 205 | return x; | ||
| 206 | } | ||
| 207 | EXPORT_SYMBOL(next_prime_number); | ||
| 208 | |||
| 209 | /** | ||
| 210 | * is_prime_number - test whether the given number is prime | ||
| 211 | * @x: the number to test | ||
| 212 | * | ||
| 213 | * A prime number is an integer greater than 1 that is only divisible by | ||
| 214 | * itself and 1. Internally a cache of prime numbers is kept (to speed up | ||
| 215 | * searching for sequential primes, see next_prime_number()), but if the number | ||
| 216 | * falls outside of that cache, its primality is tested using trial-divison. | ||
| 217 | * | ||
| 218 | * Returns: true if @x is prime, false for composite numbers. | ||
| 219 | */ | ||
| 220 | bool is_prime_number(unsigned long x) | ||
| 221 | { | ||
| 222 | const struct primes *p; | ||
| 223 | bool result; | ||
| 224 | |||
| 225 | rcu_read_lock(); | ||
| 226 | p = rcu_dereference(primes); | ||
| 227 | while (x >= p->sz) { | ||
| 228 | rcu_read_unlock(); | ||
| 229 | |||
| 230 | if (!expand_to_next_prime(x)) | ||
| 231 | return slow_is_prime_number(x); | ||
| 232 | |||
| 233 | rcu_read_lock(); | ||
| 234 | p = rcu_dereference(primes); | ||
| 235 | } | ||
| 236 | result = test_bit(x, p->primes); | ||
| 237 | rcu_read_unlock(); | ||
| 238 | |||
| 239 | return result; | ||
| 240 | } | ||
| 241 | EXPORT_SYMBOL(is_prime_number); | ||
| 242 | |||
| 243 | static void dump_primes(void) | ||
| 244 | { | ||
| 245 | const struct primes *p; | ||
| 246 | char *buf; | ||
| 247 | |||
| 248 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | ||
| 249 | |||
| 250 | rcu_read_lock(); | ||
| 251 | p = rcu_dereference(primes); | ||
| 252 | |||
| 253 | if (buf) | ||
| 254 | bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); | ||
| 255 | pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", | ||
| 256 | p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); | ||
| 257 | |||
| 258 | rcu_read_unlock(); | ||
| 259 | |||
| 260 | kfree(buf); | ||
| 261 | } | ||
| 262 | |||
| 263 | static int selftest(unsigned long max) | ||
| 264 | { | ||
| 265 | unsigned long x, last; | ||
| 266 | |||
| 267 | if (!max) | ||
| 268 | return 0; | ||
| 269 | |||
| 270 | for (last = 0, x = 2; x < max; x++) { | ||
| 271 | bool slow = slow_is_prime_number(x); | ||
| 272 | bool fast = is_prime_number(x); | ||
| 273 | |||
| 274 | if (slow != fast) { | ||
| 275 | pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", | ||
| 276 | x, slow ? "yes" : "no", fast ? "yes" : "no"); | ||
| 277 | goto err; | ||
| 278 | } | ||
| 279 | |||
| 280 | if (!slow) | ||
| 281 | continue; | ||
| 282 | |||
| 283 | if (next_prime_number(last) != x) { | ||
| 284 | pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", | ||
| 285 | last, x, next_prime_number(last)); | ||
| 286 | goto err; | ||
| 287 | } | ||
| 288 | last = x; | ||
| 289 | } | ||
| 290 | |||
| 291 | pr_info("selftest(%lu) passed, last prime was %lu", x, last); | ||
| 292 | return 0; | ||
| 293 | |||
| 294 | err: | ||
| 295 | dump_primes(); | ||
| 296 | return -EINVAL; | ||
| 297 | } | ||
| 298 | |||
| 299 | static int __init primes_init(void) | ||
| 300 | { | ||
| 301 | return selftest(selftest_max); | ||
| 302 | } | ||
| 303 | |||
| 304 | static void __exit primes_exit(void) | ||
| 305 | { | ||
| 306 | free_primes(); | ||
| 307 | } | ||
| 308 | |||
| 309 | module_init(primes_init); | ||
| 310 | module_exit(primes_exit); | ||
| 311 | |||
| 312 | module_param_named(selftest, selftest_max, ulong, 0400); | ||
| 313 | |||
| 314 | MODULE_AUTHOR("Intel Corporation"); | ||
| 315 | MODULE_LICENSE("GPL"); | ||
