aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/locking
diff options
context:
space:
mode:
authorPeter Zijlstra <peterz@infradead.org>2013-10-31 13:18:19 -0400
committerIngo Molnar <mingo@kernel.org>2013-11-06 03:23:59 -0500
commit1696a8bee390929fed05c6297164816ae2ced280 (patch)
tree59866e14aa5f8bf6f5ac0fa69211be6a5e05afd3 /kernel/locking
parente25a64c4017e3a3cda17454b040737e410a12991 (diff)
locking: Move the rtmutex code to kernel/locking/
Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-p9ijt8div0hwldexwfm4nlhj@git.kernel.org [ Fixed build failure in kernel/rcu/tree_plugin.h. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/locking')
-rw-r--r--kernel/locking/Makefile3
-rw-r--r--kernel/locking/rtmutex-debug.c187
-rw-r--r--kernel/locking/rtmutex-debug.h33
-rw-r--r--kernel/locking/rtmutex-tester.c420
-rw-r--r--kernel/locking/rtmutex.c1060
-rw-r--r--kernel/locking/rtmutex.h26
-rw-r--r--kernel/locking/rtmutex_common.h126
7 files changed, 1855 insertions, 0 deletions
diff --git a/kernel/locking/Makefile b/kernel/locking/Makefile
index 5978fddf1412..59f66dec2bf9 100644
--- a/kernel/locking/Makefile
+++ b/kernel/locking/Makefile
@@ -15,5 +15,8 @@ obj-$(CONFIG_LOCKDEP) += lockdep_proc.o
15endif 15endif
16obj-$(CONFIG_SMP) += spinlock.o 16obj-$(CONFIG_SMP) += spinlock.o
17obj-$(CONFIG_PROVE_LOCKING) += spinlock.o 17obj-$(CONFIG_PROVE_LOCKING) += spinlock.o
18obj-$(CONFIG_RT_MUTEXES) += rtmutex.o
19obj-$(CONFIG_DEBUG_RT_MUTEXES) += rtmutex-debug.o
20obj-$(CONFIG_RT_MUTEX_TESTER) += rtmutex-tester.o
18obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o 21obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o
19obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock_debug.o 22obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock_debug.o
diff --git a/kernel/locking/rtmutex-debug.c b/kernel/locking/rtmutex-debug.c
new file mode 100644
index 000000000000..13b243a323fa
--- /dev/null
+++ b/kernel/locking/rtmutex-debug.c
@@ -0,0 +1,187 @@
1/*
2 * RT-Mutexes: blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner:
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *
9 * This code is based on the rt.c implementation in the preempt-rt tree.
10 * Portions of said code are
11 *
12 * Copyright (C) 2004 LynuxWorks, Inc., Igor Manyilov, Bill Huey
13 * Copyright (C) 2006 Esben Nielsen
14 * Copyright (C) 2006 Kihon Technologies Inc.,
15 * Steven Rostedt <rostedt@goodmis.org>
16 *
17 * See rt.c in preempt-rt for proper credits and further information
18 */
19#include <linux/sched.h>
20#include <linux/sched/rt.h>
21#include <linux/delay.h>
22#include <linux/export.h>
23#include <linux/spinlock.h>
24#include <linux/kallsyms.h>
25#include <linux/syscalls.h>
26#include <linux/interrupt.h>
27#include <linux/plist.h>
28#include <linux/fs.h>
29#include <linux/debug_locks.h>
30
31#include "rtmutex_common.h"
32
33static void printk_task(struct task_struct *p)
34{
35 if (p)
36 printk("%16s:%5d [%p, %3d]", p->comm, task_pid_nr(p), p, p->prio);
37 else
38 printk("<none>");
39}
40
41static void printk_lock(struct rt_mutex *lock, int print_owner)
42{
43 if (lock->name)
44 printk(" [%p] {%s}\n",
45 lock, lock->name);
46 else
47 printk(" [%p] {%s:%d}\n",
48 lock, lock->file, lock->line);
49
50 if (print_owner && rt_mutex_owner(lock)) {
51 printk(".. ->owner: %p\n", lock->owner);
52 printk(".. held by: ");
53 printk_task(rt_mutex_owner(lock));
54 printk("\n");
55 }
56}
57
58void rt_mutex_debug_task_free(struct task_struct *task)
59{
60 DEBUG_LOCKS_WARN_ON(!plist_head_empty(&task->pi_waiters));
61 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
62}
63
64/*
65 * We fill out the fields in the waiter to store the information about
66 * the deadlock. We print when we return. act_waiter can be NULL in
67 * case of a remove waiter operation.
68 */
69void debug_rt_mutex_deadlock(int detect, struct rt_mutex_waiter *act_waiter,
70 struct rt_mutex *lock)
71{
72 struct task_struct *task;
73
74 if (!debug_locks || detect || !act_waiter)
75 return;
76
77 task = rt_mutex_owner(act_waiter->lock);
78 if (task && task != current) {
79 act_waiter->deadlock_task_pid = get_pid(task_pid(task));
80 act_waiter->deadlock_lock = lock;
81 }
82}
83
84void debug_rt_mutex_print_deadlock(struct rt_mutex_waiter *waiter)
85{
86 struct task_struct *task;
87
88 if (!waiter->deadlock_lock || !debug_locks)
89 return;
90
91 rcu_read_lock();
92 task = pid_task(waiter->deadlock_task_pid, PIDTYPE_PID);
93 if (!task) {
94 rcu_read_unlock();
95 return;
96 }
97
98 if (!debug_locks_off()) {
99 rcu_read_unlock();
100 return;
101 }
102
103 printk("\n============================================\n");
104 printk( "[ BUG: circular locking deadlock detected! ]\n");
105 printk("%s\n", print_tainted());
106 printk( "--------------------------------------------\n");
107 printk("%s/%d is deadlocking current task %s/%d\n\n",
108 task->comm, task_pid_nr(task),
109 current->comm, task_pid_nr(current));
110
111 printk("\n1) %s/%d is trying to acquire this lock:\n",
112 current->comm, task_pid_nr(current));
113 printk_lock(waiter->lock, 1);
114
115 printk("\n2) %s/%d is blocked on this lock:\n",
116 task->comm, task_pid_nr(task));
117 printk_lock(waiter->deadlock_lock, 1);
118
119 debug_show_held_locks(current);
120 debug_show_held_locks(task);
121
122 printk("\n%s/%d's [blocked] stackdump:\n\n",
123 task->comm, task_pid_nr(task));
124 show_stack(task, NULL);
125 printk("\n%s/%d's [current] stackdump:\n\n",
126 current->comm, task_pid_nr(current));
127 dump_stack();
128 debug_show_all_locks();
129 rcu_read_unlock();
130
131 printk("[ turning off deadlock detection."
132 "Please report this trace. ]\n\n");
133}
134
135void debug_rt_mutex_lock(struct rt_mutex *lock)
136{
137}
138
139void debug_rt_mutex_unlock(struct rt_mutex *lock)
140{
141 DEBUG_LOCKS_WARN_ON(rt_mutex_owner(lock) != current);
142}
143
144void
145debug_rt_mutex_proxy_lock(struct rt_mutex *lock, struct task_struct *powner)
146{
147}
148
149void debug_rt_mutex_proxy_unlock(struct rt_mutex *lock)
150{
151 DEBUG_LOCKS_WARN_ON(!rt_mutex_owner(lock));
152}
153
154void debug_rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
155{
156 memset(waiter, 0x11, sizeof(*waiter));
157 plist_node_init(&waiter->list_entry, MAX_PRIO);
158 plist_node_init(&waiter->pi_list_entry, MAX_PRIO);
159 waiter->deadlock_task_pid = NULL;
160}
161
162void debug_rt_mutex_free_waiter(struct rt_mutex_waiter *waiter)
163{
164 put_pid(waiter->deadlock_task_pid);
165 DEBUG_LOCKS_WARN_ON(!plist_node_empty(&waiter->list_entry));
166 DEBUG_LOCKS_WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
167 memset(waiter, 0x22, sizeof(*waiter));
168}
169
170void debug_rt_mutex_init(struct rt_mutex *lock, const char *name)
171{
172 /*
173 * Make sure we are not reinitializing a held lock:
174 */
175 debug_check_no_locks_freed((void *)lock, sizeof(*lock));
176 lock->name = name;
177}
178
179void
180rt_mutex_deadlock_account_lock(struct rt_mutex *lock, struct task_struct *task)
181{
182}
183
184void rt_mutex_deadlock_account_unlock(struct task_struct *task)
185{
186}
187
diff --git a/kernel/locking/rtmutex-debug.h b/kernel/locking/rtmutex-debug.h
new file mode 100644
index 000000000000..14193d596d78
--- /dev/null
+++ b/kernel/locking/rtmutex-debug.h
@@ -0,0 +1,33 @@
1/*
2 * RT-Mutexes: blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner:
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *
9 * This file contains macros used solely by rtmutex.c. Debug version.
10 */
11
12extern void
13rt_mutex_deadlock_account_lock(struct rt_mutex *lock, struct task_struct *task);
14extern void rt_mutex_deadlock_account_unlock(struct task_struct *task);
15extern void debug_rt_mutex_init_waiter(struct rt_mutex_waiter *waiter);
16extern void debug_rt_mutex_free_waiter(struct rt_mutex_waiter *waiter);
17extern void debug_rt_mutex_init(struct rt_mutex *lock, const char *name);
18extern void debug_rt_mutex_lock(struct rt_mutex *lock);
19extern void debug_rt_mutex_unlock(struct rt_mutex *lock);
20extern void debug_rt_mutex_proxy_lock(struct rt_mutex *lock,
21 struct task_struct *powner);
22extern void debug_rt_mutex_proxy_unlock(struct rt_mutex *lock);
23extern void debug_rt_mutex_deadlock(int detect, struct rt_mutex_waiter *waiter,
24 struct rt_mutex *lock);
25extern void debug_rt_mutex_print_deadlock(struct rt_mutex_waiter *waiter);
26# define debug_rt_mutex_reset_waiter(w) \
27 do { (w)->deadlock_lock = NULL; } while (0)
28
29static inline int debug_rt_mutex_detect_deadlock(struct rt_mutex_waiter *waiter,
30 int detect)
31{
32 return (waiter != NULL);
33}
diff --git a/kernel/locking/rtmutex-tester.c b/kernel/locking/rtmutex-tester.c
new file mode 100644
index 000000000000..1d96dd0d93c1
--- /dev/null
+++ b/kernel/locking/rtmutex-tester.c
@@ -0,0 +1,420 @@
1/*
2 * RT-Mutex-tester: scriptable tester for rt mutexes
3 *
4 * started by Thomas Gleixner:
5 *
6 * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
7 *
8 */
9#include <linux/device.h>
10#include <linux/kthread.h>
11#include <linux/export.h>
12#include <linux/sched.h>
13#include <linux/sched/rt.h>
14#include <linux/spinlock.h>
15#include <linux/timer.h>
16#include <linux/freezer.h>
17#include <linux/stat.h>
18
19#include "rtmutex.h"
20
21#define MAX_RT_TEST_THREADS 8
22#define MAX_RT_TEST_MUTEXES 8
23
24static spinlock_t rttest_lock;
25static atomic_t rttest_event;
26
27struct test_thread_data {
28 int opcode;
29 int opdata;
30 int mutexes[MAX_RT_TEST_MUTEXES];
31 int event;
32 struct device dev;
33};
34
35static struct test_thread_data thread_data[MAX_RT_TEST_THREADS];
36static struct task_struct *threads[MAX_RT_TEST_THREADS];
37static struct rt_mutex mutexes[MAX_RT_TEST_MUTEXES];
38
39enum test_opcodes {
40 RTTEST_NOP = 0,
41 RTTEST_SCHEDOT, /* 1 Sched other, data = nice */
42 RTTEST_SCHEDRT, /* 2 Sched fifo, data = prio */
43 RTTEST_LOCK, /* 3 Lock uninterruptible, data = lockindex */
44 RTTEST_LOCKNOWAIT, /* 4 Lock uninterruptible no wait in wakeup, data = lockindex */
45 RTTEST_LOCKINT, /* 5 Lock interruptible, data = lockindex */
46 RTTEST_LOCKINTNOWAIT, /* 6 Lock interruptible no wait in wakeup, data = lockindex */
47 RTTEST_LOCKCONT, /* 7 Continue locking after the wakeup delay */
48 RTTEST_UNLOCK, /* 8 Unlock, data = lockindex */
49 /* 9, 10 - reserved for BKL commemoration */
50 RTTEST_SIGNAL = 11, /* 11 Signal other test thread, data = thread id */
51 RTTEST_RESETEVENT = 98, /* 98 Reset event counter */
52 RTTEST_RESET = 99, /* 99 Reset all pending operations */
53};
54
55static int handle_op(struct test_thread_data *td, int lockwakeup)
56{
57 int i, id, ret = -EINVAL;
58
59 switch(td->opcode) {
60
61 case RTTEST_NOP:
62 return 0;
63
64 case RTTEST_LOCKCONT:
65 td->mutexes[td->opdata] = 1;
66 td->event = atomic_add_return(1, &rttest_event);
67 return 0;
68
69 case RTTEST_RESET:
70 for (i = 0; i < MAX_RT_TEST_MUTEXES; i++) {
71 if (td->mutexes[i] == 4) {
72 rt_mutex_unlock(&mutexes[i]);
73 td->mutexes[i] = 0;
74 }
75 }
76 return 0;
77
78 case RTTEST_RESETEVENT:
79 atomic_set(&rttest_event, 0);
80 return 0;
81
82 default:
83 if (lockwakeup)
84 return ret;
85 }
86
87 switch(td->opcode) {
88
89 case RTTEST_LOCK:
90 case RTTEST_LOCKNOWAIT:
91 id = td->opdata;
92 if (id < 0 || id >= MAX_RT_TEST_MUTEXES)
93 return ret;
94
95 td->mutexes[id] = 1;
96 td->event = atomic_add_return(1, &rttest_event);
97 rt_mutex_lock(&mutexes[id]);
98 td->event = atomic_add_return(1, &rttest_event);
99 td->mutexes[id] = 4;
100 return 0;
101
102 case RTTEST_LOCKINT:
103 case RTTEST_LOCKINTNOWAIT:
104 id = td->opdata;
105 if (id < 0 || id >= MAX_RT_TEST_MUTEXES)
106 return ret;
107
108 td->mutexes[id] = 1;
109 td->event = atomic_add_return(1, &rttest_event);
110 ret = rt_mutex_lock_interruptible(&mutexes[id], 0);
111 td->event = atomic_add_return(1, &rttest_event);
112 td->mutexes[id] = ret ? 0 : 4;
113 return ret ? -EINTR : 0;
114
115 case RTTEST_UNLOCK:
116 id = td->opdata;
117 if (id < 0 || id >= MAX_RT_TEST_MUTEXES || td->mutexes[id] != 4)
118 return ret;
119
120 td->event = atomic_add_return(1, &rttest_event);
121 rt_mutex_unlock(&mutexes[id]);
122 td->event = atomic_add_return(1, &rttest_event);
123 td->mutexes[id] = 0;
124 return 0;
125
126 default:
127 break;
128 }
129 return ret;
130}
131
132/*
133 * Schedule replacement for rtsem_down(). Only called for threads with
134 * PF_MUTEX_TESTER set.
135 *
136 * This allows us to have finegrained control over the event flow.
137 *
138 */
139void schedule_rt_mutex_test(struct rt_mutex *mutex)
140{
141 int tid, op, dat;
142 struct test_thread_data *td;
143
144 /* We have to lookup the task */
145 for (tid = 0; tid < MAX_RT_TEST_THREADS; tid++) {
146 if (threads[tid] == current)
147 break;
148 }
149
150 BUG_ON(tid == MAX_RT_TEST_THREADS);
151
152 td = &thread_data[tid];
153
154 op = td->opcode;
155 dat = td->opdata;
156
157 switch (op) {
158 case RTTEST_LOCK:
159 case RTTEST_LOCKINT:
160 case RTTEST_LOCKNOWAIT:
161 case RTTEST_LOCKINTNOWAIT:
162 if (mutex != &mutexes[dat])
163 break;
164
165 if (td->mutexes[dat] != 1)
166 break;
167
168 td->mutexes[dat] = 2;
169 td->event = atomic_add_return(1, &rttest_event);
170 break;
171
172 default:
173 break;
174 }
175
176 schedule();
177
178
179 switch (op) {
180 case RTTEST_LOCK:
181 case RTTEST_LOCKINT:
182 if (mutex != &mutexes[dat])
183 return;
184
185 if (td->mutexes[dat] != 2)
186 return;
187
188 td->mutexes[dat] = 3;
189 td->event = atomic_add_return(1, &rttest_event);
190 break;
191
192 case RTTEST_LOCKNOWAIT:
193 case RTTEST_LOCKINTNOWAIT:
194 if (mutex != &mutexes[dat])
195 return;
196
197 if (td->mutexes[dat] != 2)
198 return;
199
200 td->mutexes[dat] = 1;
201 td->event = atomic_add_return(1, &rttest_event);
202 return;
203
204 default:
205 return;
206 }
207
208 td->opcode = 0;
209
210 for (;;) {
211 set_current_state(TASK_INTERRUPTIBLE);
212
213 if (td->opcode > 0) {
214 int ret;
215
216 set_current_state(TASK_RUNNING);
217 ret = handle_op(td, 1);
218 set_current_state(TASK_INTERRUPTIBLE);
219 if (td->opcode == RTTEST_LOCKCONT)
220 break;
221 td->opcode = ret;
222 }
223
224 /* Wait for the next command to be executed */
225 schedule();
226 }
227
228 /* Restore previous command and data */
229 td->opcode = op;
230 td->opdata = dat;
231}
232
233static int test_func(void *data)
234{
235 struct test_thread_data *td = data;
236 int ret;
237
238 current->flags |= PF_MUTEX_TESTER;
239 set_freezable();
240 allow_signal(SIGHUP);
241
242 for(;;) {
243
244 set_current_state(TASK_INTERRUPTIBLE);
245
246 if (td->opcode > 0) {
247 set_current_state(TASK_RUNNING);
248 ret = handle_op(td, 0);
249 set_current_state(TASK_INTERRUPTIBLE);
250 td->opcode = ret;
251 }
252
253 /* Wait for the next command to be executed */
254 schedule();
255 try_to_freeze();
256
257 if (signal_pending(current))
258 flush_signals(current);
259
260 if(kthread_should_stop())
261 break;
262 }
263 return 0;
264}
265
266/**
267 * sysfs_test_command - interface for test commands
268 * @dev: thread reference
269 * @buf: command for actual step
270 * @count: length of buffer
271 *
272 * command syntax:
273 *
274 * opcode:data
275 */
276static ssize_t sysfs_test_command(struct device *dev, struct device_attribute *attr,
277 const char *buf, size_t count)
278{
279 struct sched_param schedpar;
280 struct test_thread_data *td;
281 char cmdbuf[32];
282 int op, dat, tid, ret;
283
284 td = container_of(dev, struct test_thread_data, dev);
285 tid = td->dev.id;
286
287 /* strings from sysfs write are not 0 terminated! */
288 if (count >= sizeof(cmdbuf))
289 return -EINVAL;
290
291 /* strip of \n: */
292 if (buf[count-1] == '\n')
293 count--;
294 if (count < 1)
295 return -EINVAL;
296
297 memcpy(cmdbuf, buf, count);
298 cmdbuf[count] = 0;
299
300 if (sscanf(cmdbuf, "%d:%d", &op, &dat) != 2)
301 return -EINVAL;
302
303 switch (op) {
304 case RTTEST_SCHEDOT:
305 schedpar.sched_priority = 0;
306 ret = sched_setscheduler(threads[tid], SCHED_NORMAL, &schedpar);
307 if (ret)
308 return ret;
309 set_user_nice(current, 0);
310 break;
311
312 case RTTEST_SCHEDRT:
313 schedpar.sched_priority = dat;
314 ret = sched_setscheduler(threads[tid], SCHED_FIFO, &schedpar);
315 if (ret)
316 return ret;
317 break;
318
319 case RTTEST_SIGNAL:
320 send_sig(SIGHUP, threads[tid], 0);
321 break;
322
323 default:
324 if (td->opcode > 0)
325 return -EBUSY;
326 td->opdata = dat;
327 td->opcode = op;
328 wake_up_process(threads[tid]);
329 }
330
331 return count;
332}
333
334/**
335 * sysfs_test_status - sysfs interface for rt tester
336 * @dev: thread to query
337 * @buf: char buffer to be filled with thread status info
338 */
339static ssize_t sysfs_test_status(struct device *dev, struct device_attribute *attr,
340 char *buf)
341{
342 struct test_thread_data *td;
343 struct task_struct *tsk;
344 char *curr = buf;
345 int i;
346
347 td = container_of(dev, struct test_thread_data, dev);
348 tsk = threads[td->dev.id];
349
350 spin_lock(&rttest_lock);
351
352 curr += sprintf(curr,
353 "O: %4d, E:%8d, S: 0x%08lx, P: %4d, N: %4d, B: %p, M:",
354 td->opcode, td->event, tsk->state,
355 (MAX_RT_PRIO - 1) - tsk->prio,
356 (MAX_RT_PRIO - 1) - tsk->normal_prio,
357 tsk->pi_blocked_on);
358
359 for (i = MAX_RT_TEST_MUTEXES - 1; i >=0 ; i--)
360 curr += sprintf(curr, "%d", td->mutexes[i]);
361
362 spin_unlock(&rttest_lock);
363
364 curr += sprintf(curr, ", T: %p, R: %p\n", tsk,
365 mutexes[td->dev.id].owner);
366
367 return curr - buf;
368}
369
370static DEVICE_ATTR(status, S_IRUSR, sysfs_test_status, NULL);
371static DEVICE_ATTR(command, S_IWUSR, NULL, sysfs_test_command);
372
373static struct bus_type rttest_subsys = {
374 .name = "rttest",
375 .dev_name = "rttest",
376};
377
378static int init_test_thread(int id)
379{
380 thread_data[id].dev.bus = &rttest_subsys;
381 thread_data[id].dev.id = id;
382
383 threads[id] = kthread_run(test_func, &thread_data[id], "rt-test-%d", id);
384 if (IS_ERR(threads[id]))
385 return PTR_ERR(threads[id]);
386
387 return device_register(&thread_data[id].dev);
388}
389
390static int init_rttest(void)
391{
392 int ret, i;
393
394 spin_lock_init(&rttest_lock);
395
396 for (i = 0; i < MAX_RT_TEST_MUTEXES; i++)
397 rt_mutex_init(&mutexes[i]);
398
399 ret = subsys_system_register(&rttest_subsys, NULL);
400 if (ret)
401 return ret;
402
403 for (i = 0; i < MAX_RT_TEST_THREADS; i++) {
404 ret = init_test_thread(i);
405 if (ret)
406 break;
407 ret = device_create_file(&thread_data[i].dev, &dev_attr_status);
408 if (ret)
409 break;
410 ret = device_create_file(&thread_data[i].dev, &dev_attr_command);
411 if (ret)
412 break;
413 }
414
415 printk("Initializing RT-Tester: %s\n", ret ? "Failed" : "OK" );
416
417 return ret;
418}
419
420device_initcall(init_rttest);
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
new file mode 100644
index 000000000000..0dd6aec1cb6a
--- /dev/null
+++ b/kernel/locking/rtmutex.c
@@ -0,0 +1,1060 @@
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/export.h>
15#include <linux/sched.h>
16#include <linux/sched/rt.h>
17#include <linux/timer.h>
18
19#include "rtmutex_common.h"
20
21/*
22 * lock->owner state tracking:
23 *
24 * lock->owner holds the task_struct pointer of the owner. Bit 0
25 * is used to keep track of the "lock has waiters" state.
26 *
27 * owner bit0
28 * NULL 0 lock is free (fast acquire possible)
29 * NULL 1 lock is free and has waiters and the top waiter
30 * is going to take the lock*
31 * taskpointer 0 lock is held (fast release possible)
32 * taskpointer 1 lock is held and has waiters**
33 *
34 * The fast atomic compare exchange based acquire and release is only
35 * possible when bit 0 of lock->owner is 0.
36 *
37 * (*) It also can be a transitional state when grabbing the lock
38 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
39 * we need to set the bit0 before looking at the lock, and the owner may be
40 * NULL in this small time, hence this can be a transitional state.
41 *
42 * (**) There is a small time when bit 0 is set but there are no
43 * waiters. This can happen when grabbing the lock in the slow path.
44 * To prevent a cmpxchg of the owner releasing the lock, we need to
45 * set this bit before looking at the lock.
46 */
47
48static void
49rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
50{
51 unsigned long val = (unsigned long)owner;
52
53 if (rt_mutex_has_waiters(lock))
54 val |= RT_MUTEX_HAS_WAITERS;
55
56 lock->owner = (struct task_struct *)val;
57}
58
59static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
60{
61 lock->owner = (struct task_struct *)
62 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
63}
64
65static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
66{
67 if (!rt_mutex_has_waiters(lock))
68 clear_rt_mutex_waiters(lock);
69}
70
71/*
72 * We can speed up the acquire/release, if the architecture
73 * supports cmpxchg and if there's no debugging state to be set up
74 */
75#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
76# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
77static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
78{
79 unsigned long owner, *p = (unsigned long *) &lock->owner;
80
81 do {
82 owner = *p;
83 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
84}
85#else
86# define rt_mutex_cmpxchg(l,c,n) (0)
87static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
88{
89 lock->owner = (struct task_struct *)
90 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
91}
92#endif
93
94/*
95 * Calculate task priority from the waiter list priority
96 *
97 * Return task->normal_prio when the waiter list is empty or when
98 * the waiter is not allowed to do priority boosting
99 */
100int rt_mutex_getprio(struct task_struct *task)
101{
102 if (likely(!task_has_pi_waiters(task)))
103 return task->normal_prio;
104
105 return min(task_top_pi_waiter(task)->pi_list_entry.prio,
106 task->normal_prio);
107}
108
109/*
110 * Adjust the priority of a task, after its pi_waiters got modified.
111 *
112 * This can be both boosting and unboosting. task->pi_lock must be held.
113 */
114static void __rt_mutex_adjust_prio(struct task_struct *task)
115{
116 int prio = rt_mutex_getprio(task);
117
118 if (task->prio != prio)
119 rt_mutex_setprio(task, prio);
120}
121
122/*
123 * Adjust task priority (undo boosting). Called from the exit path of
124 * rt_mutex_slowunlock() and rt_mutex_slowlock().
125 *
126 * (Note: We do this outside of the protection of lock->wait_lock to
127 * allow the lock to be taken while or before we readjust the priority
128 * of task. We do not use the spin_xx_mutex() variants here as we are
129 * outside of the debug path.)
130 */
131static void rt_mutex_adjust_prio(struct task_struct *task)
132{
133 unsigned long flags;
134
135 raw_spin_lock_irqsave(&task->pi_lock, flags);
136 __rt_mutex_adjust_prio(task);
137 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
138}
139
140/*
141 * Max number of times we'll walk the boosting chain:
142 */
143int max_lock_depth = 1024;
144
145/*
146 * Adjust the priority chain. Also used for deadlock detection.
147 * Decreases task's usage by one - may thus free the task.
148 *
149 * @task: the task owning the mutex (owner) for which a chain walk is probably
150 * needed
151 * @deadlock_detect: do we have to carry out deadlock detection?
152 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
153 * things for a task that has just got its priority adjusted, and
154 * is waiting on a mutex)
155 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
156 * its priority to the mutex owner (can be NULL in the case
157 * depicted above or if the top waiter is gone away and we are
158 * actually deboosting the owner)
159 * @top_task: the current top waiter
160 *
161 * Returns 0 or -EDEADLK.
162 */
163static int rt_mutex_adjust_prio_chain(struct task_struct *task,
164 int deadlock_detect,
165 struct rt_mutex *orig_lock,
166 struct rt_mutex_waiter *orig_waiter,
167 struct task_struct *top_task)
168{
169 struct rt_mutex *lock;
170 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
171 int detect_deadlock, ret = 0, depth = 0;
172 unsigned long flags;
173
174 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
175 deadlock_detect);
176
177 /*
178 * The (de)boosting is a step by step approach with a lot of
179 * pitfalls. We want this to be preemptible and we want hold a
180 * maximum of two locks per step. So we have to check
181 * carefully whether things change under us.
182 */
183 again:
184 if (++depth > max_lock_depth) {
185 static int prev_max;
186
187 /*
188 * Print this only once. If the admin changes the limit,
189 * print a new message when reaching the limit again.
190 */
191 if (prev_max != max_lock_depth) {
192 prev_max = max_lock_depth;
193 printk(KERN_WARNING "Maximum lock depth %d reached "
194 "task: %s (%d)\n", max_lock_depth,
195 top_task->comm, task_pid_nr(top_task));
196 }
197 put_task_struct(task);
198
199 return deadlock_detect ? -EDEADLK : 0;
200 }
201 retry:
202 /*
203 * Task can not go away as we did a get_task() before !
204 */
205 raw_spin_lock_irqsave(&task->pi_lock, flags);
206
207 waiter = task->pi_blocked_on;
208 /*
209 * Check whether the end of the boosting chain has been
210 * reached or the state of the chain has changed while we
211 * dropped the locks.
212 */
213 if (!waiter)
214 goto out_unlock_pi;
215
216 /*
217 * Check the orig_waiter state. After we dropped the locks,
218 * the previous owner of the lock might have released the lock.
219 */
220 if (orig_waiter && !rt_mutex_owner(orig_lock))
221 goto out_unlock_pi;
222
223 /*
224 * Drop out, when the task has no waiters. Note,
225 * top_waiter can be NULL, when we are in the deboosting
226 * mode!
227 */
228 if (top_waiter && (!task_has_pi_waiters(task) ||
229 top_waiter != task_top_pi_waiter(task)))
230 goto out_unlock_pi;
231
232 /*
233 * When deadlock detection is off then we check, if further
234 * priority adjustment is necessary.
235 */
236 if (!detect_deadlock && waiter->list_entry.prio == task->prio)
237 goto out_unlock_pi;
238
239 lock = waiter->lock;
240 if (!raw_spin_trylock(&lock->wait_lock)) {
241 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
242 cpu_relax();
243 goto retry;
244 }
245
246 /* Deadlock detection */
247 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
248 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
249 raw_spin_unlock(&lock->wait_lock);
250 ret = deadlock_detect ? -EDEADLK : 0;
251 goto out_unlock_pi;
252 }
253
254 top_waiter = rt_mutex_top_waiter(lock);
255
256 /* Requeue the waiter */
257 plist_del(&waiter->list_entry, &lock->wait_list);
258 waiter->list_entry.prio = task->prio;
259 plist_add(&waiter->list_entry, &lock->wait_list);
260
261 /* Release the task */
262 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
263 if (!rt_mutex_owner(lock)) {
264 /*
265 * If the requeue above changed the top waiter, then we need
266 * to wake the new top waiter up to try to get the lock.
267 */
268
269 if (top_waiter != rt_mutex_top_waiter(lock))
270 wake_up_process(rt_mutex_top_waiter(lock)->task);
271 raw_spin_unlock(&lock->wait_lock);
272 goto out_put_task;
273 }
274 put_task_struct(task);
275
276 /* Grab the next task */
277 task = rt_mutex_owner(lock);
278 get_task_struct(task);
279 raw_spin_lock_irqsave(&task->pi_lock, flags);
280
281 if (waiter == rt_mutex_top_waiter(lock)) {
282 /* Boost the owner */
283 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
284 waiter->pi_list_entry.prio = waiter->list_entry.prio;
285 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
286 __rt_mutex_adjust_prio(task);
287
288 } else if (top_waiter == waiter) {
289 /* Deboost the owner */
290 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
291 waiter = rt_mutex_top_waiter(lock);
292 waiter->pi_list_entry.prio = waiter->list_entry.prio;
293 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
294 __rt_mutex_adjust_prio(task);
295 }
296
297 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
298
299 top_waiter = rt_mutex_top_waiter(lock);
300 raw_spin_unlock(&lock->wait_lock);
301
302 if (!detect_deadlock && waiter != top_waiter)
303 goto out_put_task;
304
305 goto again;
306
307 out_unlock_pi:
308 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
309 out_put_task:
310 put_task_struct(task);
311
312 return ret;
313}
314
315/*
316 * Try to take an rt-mutex
317 *
318 * Must be called with lock->wait_lock held.
319 *
320 * @lock: the lock to be acquired.
321 * @task: the task which wants to acquire the lock
322 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
323 */
324static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
325 struct rt_mutex_waiter *waiter)
326{
327 /*
328 * We have to be careful here if the atomic speedups are
329 * enabled, such that, when
330 * - no other waiter is on the lock
331 * - the lock has been released since we did the cmpxchg
332 * the lock can be released or taken while we are doing the
333 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
334 *
335 * The atomic acquire/release aware variant of
336 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
337 * the WAITERS bit, the atomic release / acquire can not
338 * happen anymore and lock->wait_lock protects us from the
339 * non-atomic case.
340 *
341 * Note, that this might set lock->owner =
342 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
343 * any more. This is fixed up when we take the ownership.
344 * This is the transitional state explained at the top of this file.
345 */
346 mark_rt_mutex_waiters(lock);
347
348 if (rt_mutex_owner(lock))
349 return 0;
350
351 /*
352 * It will get the lock because of one of these conditions:
353 * 1) there is no waiter
354 * 2) higher priority than waiters
355 * 3) it is top waiter
356 */
357 if (rt_mutex_has_waiters(lock)) {
358 if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
359 if (!waiter || waiter != rt_mutex_top_waiter(lock))
360 return 0;
361 }
362 }
363
364 if (waiter || rt_mutex_has_waiters(lock)) {
365 unsigned long flags;
366 struct rt_mutex_waiter *top;
367
368 raw_spin_lock_irqsave(&task->pi_lock, flags);
369
370 /* remove the queued waiter. */
371 if (waiter) {
372 plist_del(&waiter->list_entry, &lock->wait_list);
373 task->pi_blocked_on = NULL;
374 }
375
376 /*
377 * We have to enqueue the top waiter(if it exists) into
378 * task->pi_waiters list.
379 */
380 if (rt_mutex_has_waiters(lock)) {
381 top = rt_mutex_top_waiter(lock);
382 top->pi_list_entry.prio = top->list_entry.prio;
383 plist_add(&top->pi_list_entry, &task->pi_waiters);
384 }
385 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
386 }
387
388 /* We got the lock. */
389 debug_rt_mutex_lock(lock);
390
391 rt_mutex_set_owner(lock, task);
392
393 rt_mutex_deadlock_account_lock(lock, task);
394
395 return 1;
396}
397
398/*
399 * Task blocks on lock.
400 *
401 * Prepare waiter and propagate pi chain
402 *
403 * This must be called with lock->wait_lock held.
404 */
405static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
406 struct rt_mutex_waiter *waiter,
407 struct task_struct *task,
408 int detect_deadlock)
409{
410 struct task_struct *owner = rt_mutex_owner(lock);
411 struct rt_mutex_waiter *top_waiter = waiter;
412 unsigned long flags;
413 int chain_walk = 0, res;
414
415 raw_spin_lock_irqsave(&task->pi_lock, flags);
416 __rt_mutex_adjust_prio(task);
417 waiter->task = task;
418 waiter->lock = lock;
419 plist_node_init(&waiter->list_entry, task->prio);
420 plist_node_init(&waiter->pi_list_entry, task->prio);
421
422 /* Get the top priority waiter on the lock */
423 if (rt_mutex_has_waiters(lock))
424 top_waiter = rt_mutex_top_waiter(lock);
425 plist_add(&waiter->list_entry, &lock->wait_list);
426
427 task->pi_blocked_on = waiter;
428
429 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
430
431 if (!owner)
432 return 0;
433
434 if (waiter == rt_mutex_top_waiter(lock)) {
435 raw_spin_lock_irqsave(&owner->pi_lock, flags);
436 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
437 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
438
439 __rt_mutex_adjust_prio(owner);
440 if (owner->pi_blocked_on)
441 chain_walk = 1;
442 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
443 }
444 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
445 chain_walk = 1;
446
447 if (!chain_walk)
448 return 0;
449
450 /*
451 * The owner can't disappear while holding a lock,
452 * so the owner struct is protected by wait_lock.
453 * Gets dropped in rt_mutex_adjust_prio_chain()!
454 */
455 get_task_struct(owner);
456
457 raw_spin_unlock(&lock->wait_lock);
458
459 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
460 task);
461
462 raw_spin_lock(&lock->wait_lock);
463
464 return res;
465}
466
467/*
468 * Wake up the next waiter on the lock.
469 *
470 * Remove the top waiter from the current tasks waiter list and wake it up.
471 *
472 * Called with lock->wait_lock held.
473 */
474static void wakeup_next_waiter(struct rt_mutex *lock)
475{
476 struct rt_mutex_waiter *waiter;
477 unsigned long flags;
478
479 raw_spin_lock_irqsave(&current->pi_lock, flags);
480
481 waiter = rt_mutex_top_waiter(lock);
482
483 /*
484 * Remove it from current->pi_waiters. We do not adjust a
485 * possible priority boost right now. We execute wakeup in the
486 * boosted mode and go back to normal after releasing
487 * lock->wait_lock.
488 */
489 plist_del(&waiter->pi_list_entry, &current->pi_waiters);
490
491 rt_mutex_set_owner(lock, NULL);
492
493 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
494
495 wake_up_process(waiter->task);
496}
497
498/*
499 * Remove a waiter from a lock and give up
500 *
501 * Must be called with lock->wait_lock held and
502 * have just failed to try_to_take_rt_mutex().
503 */
504static void remove_waiter(struct rt_mutex *lock,
505 struct rt_mutex_waiter *waiter)
506{
507 int first = (waiter == rt_mutex_top_waiter(lock));
508 struct task_struct *owner = rt_mutex_owner(lock);
509 unsigned long flags;
510 int chain_walk = 0;
511
512 raw_spin_lock_irqsave(&current->pi_lock, flags);
513 plist_del(&waiter->list_entry, &lock->wait_list);
514 current->pi_blocked_on = NULL;
515 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
516
517 if (!owner)
518 return;
519
520 if (first) {
521
522 raw_spin_lock_irqsave(&owner->pi_lock, flags);
523
524 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
525
526 if (rt_mutex_has_waiters(lock)) {
527 struct rt_mutex_waiter *next;
528
529 next = rt_mutex_top_waiter(lock);
530 plist_add(&next->pi_list_entry, &owner->pi_waiters);
531 }
532 __rt_mutex_adjust_prio(owner);
533
534 if (owner->pi_blocked_on)
535 chain_walk = 1;
536
537 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
538 }
539
540 WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
541
542 if (!chain_walk)
543 return;
544
545 /* gets dropped in rt_mutex_adjust_prio_chain()! */
546 get_task_struct(owner);
547
548 raw_spin_unlock(&lock->wait_lock);
549
550 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
551
552 raw_spin_lock(&lock->wait_lock);
553}
554
555/*
556 * Recheck the pi chain, in case we got a priority setting
557 *
558 * Called from sched_setscheduler
559 */
560void rt_mutex_adjust_pi(struct task_struct *task)
561{
562 struct rt_mutex_waiter *waiter;
563 unsigned long flags;
564
565 raw_spin_lock_irqsave(&task->pi_lock, flags);
566
567 waiter = task->pi_blocked_on;
568 if (!waiter || waiter->list_entry.prio == task->prio) {
569 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
570 return;
571 }
572
573 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
574
575 /* gets dropped in rt_mutex_adjust_prio_chain()! */
576 get_task_struct(task);
577 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
578}
579
580/**
581 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
582 * @lock: the rt_mutex to take
583 * @state: the state the task should block in (TASK_INTERRUPTIBLE
584 * or TASK_UNINTERRUPTIBLE)
585 * @timeout: the pre-initialized and started timer, or NULL for none
586 * @waiter: the pre-initialized rt_mutex_waiter
587 *
588 * lock->wait_lock must be held by the caller.
589 */
590static int __sched
591__rt_mutex_slowlock(struct rt_mutex *lock, int state,
592 struct hrtimer_sleeper *timeout,
593 struct rt_mutex_waiter *waiter)
594{
595 int ret = 0;
596
597 for (;;) {
598 /* Try to acquire the lock: */
599 if (try_to_take_rt_mutex(lock, current, waiter))
600 break;
601
602 /*
603 * TASK_INTERRUPTIBLE checks for signals and
604 * timeout. Ignored otherwise.
605 */
606 if (unlikely(state == TASK_INTERRUPTIBLE)) {
607 /* Signal pending? */
608 if (signal_pending(current))
609 ret = -EINTR;
610 if (timeout && !timeout->task)
611 ret = -ETIMEDOUT;
612 if (ret)
613 break;
614 }
615
616 raw_spin_unlock(&lock->wait_lock);
617
618 debug_rt_mutex_print_deadlock(waiter);
619
620 schedule_rt_mutex(lock);
621
622 raw_spin_lock(&lock->wait_lock);
623 set_current_state(state);
624 }
625
626 return ret;
627}
628
629/*
630 * Slow path lock function:
631 */
632static int __sched
633rt_mutex_slowlock(struct rt_mutex *lock, int state,
634 struct hrtimer_sleeper *timeout,
635 int detect_deadlock)
636{
637 struct rt_mutex_waiter waiter;
638 int ret = 0;
639
640 debug_rt_mutex_init_waiter(&waiter);
641
642 raw_spin_lock(&lock->wait_lock);
643
644 /* Try to acquire the lock again: */
645 if (try_to_take_rt_mutex(lock, current, NULL)) {
646 raw_spin_unlock(&lock->wait_lock);
647 return 0;
648 }
649
650 set_current_state(state);
651
652 /* Setup the timer, when timeout != NULL */
653 if (unlikely(timeout)) {
654 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
655 if (!hrtimer_active(&timeout->timer))
656 timeout->task = NULL;
657 }
658
659 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
660
661 if (likely(!ret))
662 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
663
664 set_current_state(TASK_RUNNING);
665
666 if (unlikely(ret))
667 remove_waiter(lock, &waiter);
668
669 /*
670 * try_to_take_rt_mutex() sets the waiter bit
671 * unconditionally. We might have to fix that up.
672 */
673 fixup_rt_mutex_waiters(lock);
674
675 raw_spin_unlock(&lock->wait_lock);
676
677 /* Remove pending timer: */
678 if (unlikely(timeout))
679 hrtimer_cancel(&timeout->timer);
680
681 debug_rt_mutex_free_waiter(&waiter);
682
683 return ret;
684}
685
686/*
687 * Slow path try-lock function:
688 */
689static inline int
690rt_mutex_slowtrylock(struct rt_mutex *lock)
691{
692 int ret = 0;
693
694 raw_spin_lock(&lock->wait_lock);
695
696 if (likely(rt_mutex_owner(lock) != current)) {
697
698 ret = try_to_take_rt_mutex(lock, current, NULL);
699 /*
700 * try_to_take_rt_mutex() sets the lock waiters
701 * bit unconditionally. Clean this up.
702 */
703 fixup_rt_mutex_waiters(lock);
704 }
705
706 raw_spin_unlock(&lock->wait_lock);
707
708 return ret;
709}
710
711/*
712 * Slow path to release a rt-mutex:
713 */
714static void __sched
715rt_mutex_slowunlock(struct rt_mutex *lock)
716{
717 raw_spin_lock(&lock->wait_lock);
718
719 debug_rt_mutex_unlock(lock);
720
721 rt_mutex_deadlock_account_unlock(current);
722
723 if (!rt_mutex_has_waiters(lock)) {
724 lock->owner = NULL;
725 raw_spin_unlock(&lock->wait_lock);
726 return;
727 }
728
729 wakeup_next_waiter(lock);
730
731 raw_spin_unlock(&lock->wait_lock);
732
733 /* Undo pi boosting if necessary: */
734 rt_mutex_adjust_prio(current);
735}
736
737/*
738 * debug aware fast / slowpath lock,trylock,unlock
739 *
740 * The atomic acquire/release ops are compiled away, when either the
741 * architecture does not support cmpxchg or when debugging is enabled.
742 */
743static inline int
744rt_mutex_fastlock(struct rt_mutex *lock, int state,
745 int detect_deadlock,
746 int (*slowfn)(struct rt_mutex *lock, int state,
747 struct hrtimer_sleeper *timeout,
748 int detect_deadlock))
749{
750 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
751 rt_mutex_deadlock_account_lock(lock, current);
752 return 0;
753 } else
754 return slowfn(lock, state, NULL, detect_deadlock);
755}
756
757static inline int
758rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
759 struct hrtimer_sleeper *timeout, int detect_deadlock,
760 int (*slowfn)(struct rt_mutex *lock, int state,
761 struct hrtimer_sleeper *timeout,
762 int detect_deadlock))
763{
764 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
765 rt_mutex_deadlock_account_lock(lock, current);
766 return 0;
767 } else
768 return slowfn(lock, state, timeout, detect_deadlock);
769}
770
771static inline int
772rt_mutex_fasttrylock(struct rt_mutex *lock,
773 int (*slowfn)(struct rt_mutex *lock))
774{
775 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
776 rt_mutex_deadlock_account_lock(lock, current);
777 return 1;
778 }
779 return slowfn(lock);
780}
781
782static inline void
783rt_mutex_fastunlock(struct rt_mutex *lock,
784 void (*slowfn)(struct rt_mutex *lock))
785{
786 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
787 rt_mutex_deadlock_account_unlock(current);
788 else
789 slowfn(lock);
790}
791
792/**
793 * rt_mutex_lock - lock a rt_mutex
794 *
795 * @lock: the rt_mutex to be locked
796 */
797void __sched rt_mutex_lock(struct rt_mutex *lock)
798{
799 might_sleep();
800
801 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
802}
803EXPORT_SYMBOL_GPL(rt_mutex_lock);
804
805/**
806 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
807 *
808 * @lock: the rt_mutex to be locked
809 * @detect_deadlock: deadlock detection on/off
810 *
811 * Returns:
812 * 0 on success
813 * -EINTR when interrupted by a signal
814 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
815 */
816int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
817 int detect_deadlock)
818{
819 might_sleep();
820
821 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
822 detect_deadlock, rt_mutex_slowlock);
823}
824EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
825
826/**
827 * rt_mutex_timed_lock - lock a rt_mutex interruptible
828 * the timeout structure is provided
829 * by the caller
830 *
831 * @lock: the rt_mutex to be locked
832 * @timeout: timeout structure or NULL (no timeout)
833 * @detect_deadlock: deadlock detection on/off
834 *
835 * Returns:
836 * 0 on success
837 * -EINTR when interrupted by a signal
838 * -ETIMEDOUT when the timeout expired
839 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
840 */
841int
842rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
843 int detect_deadlock)
844{
845 might_sleep();
846
847 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
848 detect_deadlock, rt_mutex_slowlock);
849}
850EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
851
852/**
853 * rt_mutex_trylock - try to lock a rt_mutex
854 *
855 * @lock: the rt_mutex to be locked
856 *
857 * Returns 1 on success and 0 on contention
858 */
859int __sched rt_mutex_trylock(struct rt_mutex *lock)
860{
861 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
862}
863EXPORT_SYMBOL_GPL(rt_mutex_trylock);
864
865/**
866 * rt_mutex_unlock - unlock a rt_mutex
867 *
868 * @lock: the rt_mutex to be unlocked
869 */
870void __sched rt_mutex_unlock(struct rt_mutex *lock)
871{
872 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
873}
874EXPORT_SYMBOL_GPL(rt_mutex_unlock);
875
876/**
877 * rt_mutex_destroy - mark a mutex unusable
878 * @lock: the mutex to be destroyed
879 *
880 * This function marks the mutex uninitialized, and any subsequent
881 * use of the mutex is forbidden. The mutex must not be locked when
882 * this function is called.
883 */
884void rt_mutex_destroy(struct rt_mutex *lock)
885{
886 WARN_ON(rt_mutex_is_locked(lock));
887#ifdef CONFIG_DEBUG_RT_MUTEXES
888 lock->magic = NULL;
889#endif
890}
891
892EXPORT_SYMBOL_GPL(rt_mutex_destroy);
893
894/**
895 * __rt_mutex_init - initialize the rt lock
896 *
897 * @lock: the rt lock to be initialized
898 *
899 * Initialize the rt lock to unlocked state.
900 *
901 * Initializing of a locked rt lock is not allowed
902 */
903void __rt_mutex_init(struct rt_mutex *lock, const char *name)
904{
905 lock->owner = NULL;
906 raw_spin_lock_init(&lock->wait_lock);
907 plist_head_init(&lock->wait_list);
908
909 debug_rt_mutex_init(lock, name);
910}
911EXPORT_SYMBOL_GPL(__rt_mutex_init);
912
913/**
914 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
915 * proxy owner
916 *
917 * @lock: the rt_mutex to be locked
918 * @proxy_owner:the task to set as owner
919 *
920 * No locking. Caller has to do serializing itself
921 * Special API call for PI-futex support
922 */
923void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
924 struct task_struct *proxy_owner)
925{
926 __rt_mutex_init(lock, NULL);
927 debug_rt_mutex_proxy_lock(lock, proxy_owner);
928 rt_mutex_set_owner(lock, proxy_owner);
929 rt_mutex_deadlock_account_lock(lock, proxy_owner);
930}
931
932/**
933 * rt_mutex_proxy_unlock - release a lock on behalf of owner
934 *
935 * @lock: the rt_mutex to be locked
936 *
937 * No locking. Caller has to do serializing itself
938 * Special API call for PI-futex support
939 */
940void rt_mutex_proxy_unlock(struct rt_mutex *lock,
941 struct task_struct *proxy_owner)
942{
943 debug_rt_mutex_proxy_unlock(lock);
944 rt_mutex_set_owner(lock, NULL);
945 rt_mutex_deadlock_account_unlock(proxy_owner);
946}
947
948/**
949 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
950 * @lock: the rt_mutex to take
951 * @waiter: the pre-initialized rt_mutex_waiter
952 * @task: the task to prepare
953 * @detect_deadlock: perform deadlock detection (1) or not (0)
954 *
955 * Returns:
956 * 0 - task blocked on lock
957 * 1 - acquired the lock for task, caller should wake it up
958 * <0 - error
959 *
960 * Special API call for FUTEX_REQUEUE_PI support.
961 */
962int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
963 struct rt_mutex_waiter *waiter,
964 struct task_struct *task, int detect_deadlock)
965{
966 int ret;
967
968 raw_spin_lock(&lock->wait_lock);
969
970 if (try_to_take_rt_mutex(lock, task, NULL)) {
971 raw_spin_unlock(&lock->wait_lock);
972 return 1;
973 }
974
975 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
976
977 if (ret && !rt_mutex_owner(lock)) {
978 /*
979 * Reset the return value. We might have
980 * returned with -EDEADLK and the owner
981 * released the lock while we were walking the
982 * pi chain. Let the waiter sort it out.
983 */
984 ret = 0;
985 }
986
987 if (unlikely(ret))
988 remove_waiter(lock, waiter);
989
990 raw_spin_unlock(&lock->wait_lock);
991
992 debug_rt_mutex_print_deadlock(waiter);
993
994 return ret;
995}
996
997/**
998 * rt_mutex_next_owner - return the next owner of the lock
999 *
1000 * @lock: the rt lock query
1001 *
1002 * Returns the next owner of the lock or NULL
1003 *
1004 * Caller has to serialize against other accessors to the lock
1005 * itself.
1006 *
1007 * Special API call for PI-futex support
1008 */
1009struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1010{
1011 if (!rt_mutex_has_waiters(lock))
1012 return NULL;
1013
1014 return rt_mutex_top_waiter(lock)->task;
1015}
1016
1017/**
1018 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1019 * @lock: the rt_mutex we were woken on
1020 * @to: the timeout, null if none. hrtimer should already have
1021 * been started.
1022 * @waiter: the pre-initialized rt_mutex_waiter
1023 * @detect_deadlock: perform deadlock detection (1) or not (0)
1024 *
1025 * Complete the lock acquisition started our behalf by another thread.
1026 *
1027 * Returns:
1028 * 0 - success
1029 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1030 *
1031 * Special API call for PI-futex requeue support
1032 */
1033int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1034 struct hrtimer_sleeper *to,
1035 struct rt_mutex_waiter *waiter,
1036 int detect_deadlock)
1037{
1038 int ret;
1039
1040 raw_spin_lock(&lock->wait_lock);
1041
1042 set_current_state(TASK_INTERRUPTIBLE);
1043
1044 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1045
1046 set_current_state(TASK_RUNNING);
1047
1048 if (unlikely(ret))
1049 remove_waiter(lock, waiter);
1050
1051 /*
1052 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1053 * have to fix that up.
1054 */
1055 fixup_rt_mutex_waiters(lock);
1056
1057 raw_spin_unlock(&lock->wait_lock);
1058
1059 return ret;
1060}
diff --git a/kernel/locking/rtmutex.h b/kernel/locking/rtmutex.h
new file mode 100644
index 000000000000..a1a1dd06421d
--- /dev/null
+++ b/kernel/locking/rtmutex.h
@@ -0,0 +1,26 @@
1/*
2 * RT-Mutexes: blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner:
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *
9 * This file contains macros used solely by rtmutex.c.
10 * Non-debug version.
11 */
12
13#define rt_mutex_deadlock_check(l) (0)
14#define rt_mutex_deadlock_account_lock(m, t) do { } while (0)
15#define rt_mutex_deadlock_account_unlock(l) do { } while (0)
16#define debug_rt_mutex_init_waiter(w) do { } while (0)
17#define debug_rt_mutex_free_waiter(w) do { } while (0)
18#define debug_rt_mutex_lock(l) do { } while (0)
19#define debug_rt_mutex_proxy_lock(l,p) do { } while (0)
20#define debug_rt_mutex_proxy_unlock(l) do { } while (0)
21#define debug_rt_mutex_unlock(l) do { } while (0)
22#define debug_rt_mutex_init(m, n) do { } while (0)
23#define debug_rt_mutex_deadlock(d, a ,l) do { } while (0)
24#define debug_rt_mutex_print_deadlock(w) do { } while (0)
25#define debug_rt_mutex_detect_deadlock(w,d) (d)
26#define debug_rt_mutex_reset_waiter(w) do { } while (0)
diff --git a/kernel/locking/rtmutex_common.h b/kernel/locking/rtmutex_common.h
new file mode 100644
index 000000000000..53a66c85261b
--- /dev/null
+++ b/kernel/locking/rtmutex_common.h
@@ -0,0 +1,126 @@
1/*
2 * RT Mutexes: blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner:
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *
9 * This file contains the private data structure and API definitions.
10 */
11
12#ifndef __KERNEL_RTMUTEX_COMMON_H
13#define __KERNEL_RTMUTEX_COMMON_H
14
15#include <linux/rtmutex.h>
16
17/*
18 * The rtmutex in kernel tester is independent of rtmutex debugging. We
19 * call schedule_rt_mutex_test() instead of schedule() for the tasks which
20 * belong to the tester. That way we can delay the wakeup path of those
21 * threads to provoke lock stealing and testing of complex boosting scenarios.
22 */
23#ifdef CONFIG_RT_MUTEX_TESTER
24
25extern void schedule_rt_mutex_test(struct rt_mutex *lock);
26
27#define schedule_rt_mutex(_lock) \
28 do { \
29 if (!(current->flags & PF_MUTEX_TESTER)) \
30 schedule(); \
31 else \
32 schedule_rt_mutex_test(_lock); \
33 } while (0)
34
35#else
36# define schedule_rt_mutex(_lock) schedule()
37#endif
38
39/*
40 * This is the control structure for tasks blocked on a rt_mutex,
41 * which is allocated on the kernel stack on of the blocked task.
42 *
43 * @list_entry: pi node to enqueue into the mutex waiters list
44 * @pi_list_entry: pi node to enqueue into the mutex owner waiters list
45 * @task: task reference to the blocked task
46 */
47struct rt_mutex_waiter {
48 struct plist_node list_entry;
49 struct plist_node pi_list_entry;
50 struct task_struct *task;
51 struct rt_mutex *lock;
52#ifdef CONFIG_DEBUG_RT_MUTEXES
53 unsigned long ip;
54 struct pid *deadlock_task_pid;
55 struct rt_mutex *deadlock_lock;
56#endif
57};
58
59/*
60 * Various helpers to access the waiters-plist:
61 */
62static inline int rt_mutex_has_waiters(struct rt_mutex *lock)
63{
64 return !plist_head_empty(&lock->wait_list);
65}
66
67static inline struct rt_mutex_waiter *
68rt_mutex_top_waiter(struct rt_mutex *lock)
69{
70 struct rt_mutex_waiter *w;
71
72 w = plist_first_entry(&lock->wait_list, struct rt_mutex_waiter,
73 list_entry);
74 BUG_ON(w->lock != lock);
75
76 return w;
77}
78
79static inline int task_has_pi_waiters(struct task_struct *p)
80{
81 return !plist_head_empty(&p->pi_waiters);
82}
83
84static inline struct rt_mutex_waiter *
85task_top_pi_waiter(struct task_struct *p)
86{
87 return plist_first_entry(&p->pi_waiters, struct rt_mutex_waiter,
88 pi_list_entry);
89}
90
91/*
92 * lock->owner state tracking:
93 */
94#define RT_MUTEX_HAS_WAITERS 1UL
95#define RT_MUTEX_OWNER_MASKALL 1UL
96
97static inline struct task_struct *rt_mutex_owner(struct rt_mutex *lock)
98{
99 return (struct task_struct *)
100 ((unsigned long)lock->owner & ~RT_MUTEX_OWNER_MASKALL);
101}
102
103/*
104 * PI-futex support (proxy locking functions, etc.):
105 */
106extern struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock);
107extern void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
108 struct task_struct *proxy_owner);
109extern void rt_mutex_proxy_unlock(struct rt_mutex *lock,
110 struct task_struct *proxy_owner);
111extern int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
112 struct rt_mutex_waiter *waiter,
113 struct task_struct *task,
114 int detect_deadlock);
115extern int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
116 struct hrtimer_sleeper *to,
117 struct rt_mutex_waiter *waiter,
118 int detect_deadlock);
119
120#ifdef CONFIG_DEBUG_RT_MUTEXES
121# include "rtmutex-debug.h"
122#else
123# include "rtmutex.h"
124#endif
125
126#endif