aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/memcontrol.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2012-12-18 18:08:12 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2012-12-18 18:08:12 -0500
commit673ab8783b596cda5b616b317b1a1b47480c66fd (patch)
treed3fc9bb4279720c53d0dc69c2a34c40635cf05f3 /include/linux/memcontrol.h
parentd7b96ca5d08a8f2f836feb2b3b3bd721d2837a8e (diff)
parent3cf23841b4b76eb94d3f8d0fb3627690e4431413 (diff)
Merge branch 'akpm' (more patches from Andrew)
Merge patches from Andrew Morton: "Most of the rest of MM, plus a few dribs and drabs. I still have quite a few irritating patches left around: ones with dubious testing results, lack of review, ones which should have gone via maintainer trees but the maintainers are slack, etc. I need to be more activist in getting these things wrapped up outside the merge window, but they're such a PITA." * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (48 commits) mm/vmscan.c: avoid possible deadlock caused by too_many_isolated() vmscan: comment too_many_isolated() mm/kmemleak.c: remove obsolete simple_strtoul mm/memory_hotplug.c: improve comments mm/hugetlb: create hugetlb cgroup file in hugetlb_init mm/mprotect.c: coding-style cleanups Documentation: ABI: /sys/devices/system/node/ slub: drop mutex before deleting sysfs entry memcg: add comments clarifying aspects of cache attribute propagation kmem: add slab-specific documentation about the kmem controller slub: slub-specific propagation changes slab: propagate tunable values memcg: aggregate memcg cache values in slabinfo memcg/sl[au]b: shrink dead caches memcg/sl[au]b: track all the memcg children of a kmem_cache memcg: destroy memcg caches sl[au]b: allocate objects from memcg cache sl[au]b: always get the cache from its page in kmem_cache_free() memcg: skip memcg kmem allocations in specified code regions memcg: infrastructure to match an allocation to the right cache ...
Diffstat (limited to 'include/linux/memcontrol.h')
-rw-r--r--include/linux/memcontrol.h209
1 files changed, 209 insertions, 0 deletions
diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
index e98a74c0c9c0..0108a56f814e 100644
--- a/include/linux/memcontrol.h
+++ b/include/linux/memcontrol.h
@@ -21,11 +21,14 @@
21#define _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H
22#include <linux/cgroup.h> 22#include <linux/cgroup.h>
23#include <linux/vm_event_item.h> 23#include <linux/vm_event_item.h>
24#include <linux/hardirq.h>
25#include <linux/jump_label.h>
24 26
25struct mem_cgroup; 27struct mem_cgroup;
26struct page_cgroup; 28struct page_cgroup;
27struct page; 29struct page;
28struct mm_struct; 30struct mm_struct;
31struct kmem_cache;
29 32
30/* Stats that can be updated by kernel. */ 33/* Stats that can be updated by kernel. */
31enum mem_cgroup_page_stat_item { 34enum mem_cgroup_page_stat_item {
@@ -414,5 +417,211 @@ static inline void sock_release_memcg(struct sock *sk)
414{ 417{
415} 418}
416#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 419#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
420
421#ifdef CONFIG_MEMCG_KMEM
422extern struct static_key memcg_kmem_enabled_key;
423
424extern int memcg_limited_groups_array_size;
425
426/*
427 * Helper macro to loop through all memcg-specific caches. Callers must still
428 * check if the cache is valid (it is either valid or NULL).
429 * the slab_mutex must be held when looping through those caches
430 */
431#define for_each_memcg_cache_index(_idx) \
432 for ((_idx) = 0; i < memcg_limited_groups_array_size; (_idx)++)
433
434static inline bool memcg_kmem_enabled(void)
435{
436 return static_key_false(&memcg_kmem_enabled_key);
437}
438
439/*
440 * In general, we'll do everything in our power to not incur in any overhead
441 * for non-memcg users for the kmem functions. Not even a function call, if we
442 * can avoid it.
443 *
444 * Therefore, we'll inline all those functions so that in the best case, we'll
445 * see that kmemcg is off for everybody and proceed quickly. If it is on,
446 * we'll still do most of the flag checking inline. We check a lot of
447 * conditions, but because they are pretty simple, they are expected to be
448 * fast.
449 */
450bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
451 int order);
452void __memcg_kmem_commit_charge(struct page *page,
453 struct mem_cgroup *memcg, int order);
454void __memcg_kmem_uncharge_pages(struct page *page, int order);
455
456int memcg_cache_id(struct mem_cgroup *memcg);
457int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
458 struct kmem_cache *root_cache);
459void memcg_release_cache(struct kmem_cache *cachep);
460void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);
461
462int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
463void memcg_update_array_size(int num_groups);
464
465struct kmem_cache *
466__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
467
468void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
469void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
470
471/**
472 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
473 * @gfp: the gfp allocation flags.
474 * @memcg: a pointer to the memcg this was charged against.
475 * @order: allocation order.
476 *
477 * returns true if the memcg where the current task belongs can hold this
478 * allocation.
479 *
480 * We return true automatically if this allocation is not to be accounted to
481 * any memcg.
482 */
483static inline bool
484memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
485{
486 if (!memcg_kmem_enabled())
487 return true;
488
489 /*
490 * __GFP_NOFAIL allocations will move on even if charging is not
491 * possible. Therefore we don't even try, and have this allocation
492 * unaccounted. We could in theory charge it with
493 * res_counter_charge_nofail, but we hope those allocations are rare,
494 * and won't be worth the trouble.
495 */
496 if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
497 return true;
498 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
499 return true;
500
501 /* If the test is dying, just let it go. */
502 if (unlikely(fatal_signal_pending(current)))
503 return true;
504
505 return __memcg_kmem_newpage_charge(gfp, memcg, order);
506}
507
508/**
509 * memcg_kmem_uncharge_pages: uncharge pages from memcg
510 * @page: pointer to struct page being freed
511 * @order: allocation order.
512 *
513 * there is no need to specify memcg here, since it is embedded in page_cgroup
514 */
515static inline void
516memcg_kmem_uncharge_pages(struct page *page, int order)
517{
518 if (memcg_kmem_enabled())
519 __memcg_kmem_uncharge_pages(page, order);
520}
521
522/**
523 * memcg_kmem_commit_charge: embeds correct memcg in a page
524 * @page: pointer to struct page recently allocated
525 * @memcg: the memcg structure we charged against
526 * @order: allocation order.
527 *
528 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
529 * failure of the allocation. if @page is NULL, this function will revert the
530 * charges. Otherwise, it will commit the memcg given by @memcg to the
531 * corresponding page_cgroup.
532 */
533static inline void
534memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
535{
536 if (memcg_kmem_enabled() && memcg)
537 __memcg_kmem_commit_charge(page, memcg, order);
538}
539
540/**
541 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
542 * @cachep: the original global kmem cache
543 * @gfp: allocation flags.
544 *
545 * This function assumes that the task allocating, which determines the memcg
546 * in the page allocator, belongs to the same cgroup throughout the whole
547 * process. Misacounting can happen if the task calls memcg_kmem_get_cache()
548 * while belonging to a cgroup, and later on changes. This is considered
549 * acceptable, and should only happen upon task migration.
550 *
551 * Before the cache is created by the memcg core, there is also a possible
552 * imbalance: the task belongs to a memcg, but the cache being allocated from
553 * is the global cache, since the child cache is not yet guaranteed to be
554 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
555 * passed and the page allocator will not attempt any cgroup accounting.
556 */
557static __always_inline struct kmem_cache *
558memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
559{
560 if (!memcg_kmem_enabled())
561 return cachep;
562 if (gfp & __GFP_NOFAIL)
563 return cachep;
564 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
565 return cachep;
566 if (unlikely(fatal_signal_pending(current)))
567 return cachep;
568
569 return __memcg_kmem_get_cache(cachep, gfp);
570}
571#else
572#define for_each_memcg_cache_index(_idx) \
573 for (; NULL; )
574
575static inline bool memcg_kmem_enabled(void)
576{
577 return false;
578}
579
580static inline bool
581memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
582{
583 return true;
584}
585
586static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
587{
588}
589
590static inline void
591memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
592{
593}
594
595static inline int memcg_cache_id(struct mem_cgroup *memcg)
596{
597 return -1;
598}
599
600static inline int
601memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
602 struct kmem_cache *root_cache)
603{
604 return 0;
605}
606
607static inline void memcg_release_cache(struct kmem_cache *cachep)
608{
609}
610
611static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
612 struct kmem_cache *s)
613{
614}
615
616static inline struct kmem_cache *
617memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
618{
619 return cachep;
620}
621
622static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
623{
624}
625#endif /* CONFIG_MEMCG_KMEM */
417#endif /* _LINUX_MEMCONTROL_H */ 626#endif /* _LINUX_MEMCONTROL_H */
418 627