aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/usb/dwc2/core.c
diff options
context:
space:
mode:
authorJohn Youn <johnyoun@synopsys.com>2016-02-23 22:55:00 -0500
committerFelipe Balbi <balbi@kernel.org>2016-03-04 08:14:46 -0500
commitb02038faa7f1b228983d05633c8345f826b20042 (patch)
treedec7103c71c8aafb22571d43eaf48553aae56e18 /drivers/usb/dwc2/core.c
parent58e52ff6a6c3ce964c71b2dd9f06be426f993524 (diff)
usb: dwc2: Move host-specific core functions into hcd.c
Move host core initialization and host channel routines into hcd.c. This allows these functions to only be compiled in host-enabled driver configurations (DRD or host-only). Tested-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: John Youn <johnyoun@synopsys.com> Signed-off-by: Felipe Balbi <balbi@kernel.org>
Diffstat (limited to 'drivers/usb/dwc2/core.c')
-rw-r--r--drivers/usb/dwc2/core.c1776
1 files changed, 0 insertions, 1776 deletions
diff --git a/drivers/usb/dwc2/core.c b/drivers/usb/dwc2/core.c
index d5091b91ba49..4135a5ff67ca 100644
--- a/drivers/usb/dwc2/core.c
+++ b/drivers/usb/dwc2/core.c
@@ -238,62 +238,6 @@ int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg)
238 return ret; 238 return ret;
239} 239}
240 240
241/**
242 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
243 * used in both device and host modes
244 *
245 * @hsotg: Programming view of the DWC_otg controller
246 */
247static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
248{
249 u32 intmsk;
250
251 /* Clear any pending OTG Interrupts */
252 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
253
254 /* Clear any pending interrupts */
255 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
256
257 /* Enable the interrupts in the GINTMSK */
258 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
259
260 if (hsotg->core_params->dma_enable <= 0)
261 intmsk |= GINTSTS_RXFLVL;
262 if (hsotg->core_params->external_id_pin_ctl <= 0)
263 intmsk |= GINTSTS_CONIDSTSCHNG;
264
265 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
266 GINTSTS_SESSREQINT;
267
268 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
269}
270
271/*
272 * Initializes the FSLSPClkSel field of the HCFG register depending on the
273 * PHY type
274 */
275static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
276{
277 u32 hcfg, val;
278
279 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
280 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
281 hsotg->core_params->ulpi_fs_ls > 0) ||
282 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
283 /* Full speed PHY */
284 val = HCFG_FSLSPCLKSEL_48_MHZ;
285 } else {
286 /* High speed PHY running at full speed or high speed */
287 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
288 }
289
290 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
291 hcfg = dwc2_readl(hsotg->regs + HCFG);
292 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
293 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
294 dwc2_writel(hcfg, hsotg->regs + HCFG);
295}
296
297/* 241/*
298 * Do core a soft reset of the core. Be careful with this because it 242 * Do core a soft reset of the core. Be careful with this because it
299 * resets all the internal state machines of the core. 243 * resets all the internal state machines of the core.
@@ -463,1726 +407,6 @@ int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg)
463 return 0; 407 return 0;
464} 408}
465 409
466static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
467{
468 u32 usbcfg, i2cctl;
469 int retval = 0;
470
471 /*
472 * core_init() is now called on every switch so only call the
473 * following for the first time through
474 */
475 if (select_phy) {
476 dev_dbg(hsotg->dev, "FS PHY selected\n");
477
478 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
479 if (!(usbcfg & GUSBCFG_PHYSEL)) {
480 usbcfg |= GUSBCFG_PHYSEL;
481 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
482
483 /* Reset after a PHY select */
484 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
485
486 if (retval) {
487 dev_err(hsotg->dev,
488 "%s: Reset failed, aborting", __func__);
489 return retval;
490 }
491 }
492 }
493
494 /*
495 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
496 * do this on HNP Dev/Host mode switches (done in dev_init and
497 * host_init).
498 */
499 if (dwc2_is_host_mode(hsotg))
500 dwc2_init_fs_ls_pclk_sel(hsotg);
501
502 if (hsotg->core_params->i2c_enable > 0) {
503 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
504
505 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
506 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
507 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
508 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
509
510 /* Program GI2CCTL.I2CEn */
511 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
512 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
513 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
514 i2cctl &= ~GI2CCTL_I2CEN;
515 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
516 i2cctl |= GI2CCTL_I2CEN;
517 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
518 }
519
520 return retval;
521}
522
523static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
524{
525 u32 usbcfg, usbcfg_old;
526 int retval = 0;
527
528 if (!select_phy)
529 return 0;
530
531 usbcfg = usbcfg_old = dwc2_readl(hsotg->regs + GUSBCFG);
532
533 /*
534 * HS PHY parameters. These parameters are preserved during soft reset
535 * so only program the first time. Do a soft reset immediately after
536 * setting phyif.
537 */
538 switch (hsotg->core_params->phy_type) {
539 case DWC2_PHY_TYPE_PARAM_ULPI:
540 /* ULPI interface */
541 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
542 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
543 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
544 if (hsotg->core_params->phy_ulpi_ddr > 0)
545 usbcfg |= GUSBCFG_DDRSEL;
546 break;
547 case DWC2_PHY_TYPE_PARAM_UTMI:
548 /* UTMI+ interface */
549 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
550 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
551 if (hsotg->core_params->phy_utmi_width == 16)
552 usbcfg |= GUSBCFG_PHYIF16;
553 break;
554 default:
555 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
556 break;
557 }
558
559 if (usbcfg != usbcfg_old) {
560 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
561
562 /* Reset after setting the PHY parameters */
563 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
564 if (retval) {
565 dev_err(hsotg->dev,
566 "%s: Reset failed, aborting", __func__);
567 return retval;
568 }
569 }
570
571 return retval;
572}
573
574static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
575{
576 u32 usbcfg;
577 int retval = 0;
578
579 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
580 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
581 /* If FS mode with FS PHY */
582 retval = dwc2_fs_phy_init(hsotg, select_phy);
583 if (retval)
584 return retval;
585 } else {
586 /* High speed PHY */
587 retval = dwc2_hs_phy_init(hsotg, select_phy);
588 if (retval)
589 return retval;
590 }
591
592 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
593 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
594 hsotg->core_params->ulpi_fs_ls > 0) {
595 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
596 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
597 usbcfg |= GUSBCFG_ULPI_FS_LS;
598 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
599 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
600 } else {
601 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
602 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
603 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
604 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
605 }
606
607 return retval;
608}
609
610static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
611{
612 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
613
614 switch (hsotg->hw_params.arch) {
615 case GHWCFG2_EXT_DMA_ARCH:
616 dev_err(hsotg->dev, "External DMA Mode not supported\n");
617 return -EINVAL;
618
619 case GHWCFG2_INT_DMA_ARCH:
620 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
621 if (hsotg->core_params->ahbcfg != -1) {
622 ahbcfg &= GAHBCFG_CTRL_MASK;
623 ahbcfg |= hsotg->core_params->ahbcfg &
624 ~GAHBCFG_CTRL_MASK;
625 }
626 break;
627
628 case GHWCFG2_SLAVE_ONLY_ARCH:
629 default:
630 dev_dbg(hsotg->dev, "Slave Only Mode\n");
631 break;
632 }
633
634 dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
635 hsotg->core_params->dma_enable,
636 hsotg->core_params->dma_desc_enable);
637
638 if (hsotg->core_params->dma_enable > 0) {
639 if (hsotg->core_params->dma_desc_enable > 0)
640 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
641 else
642 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
643 } else {
644 dev_dbg(hsotg->dev, "Using Slave mode\n");
645 hsotg->core_params->dma_desc_enable = 0;
646 }
647
648 if (hsotg->core_params->dma_enable > 0)
649 ahbcfg |= GAHBCFG_DMA_EN;
650
651 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
652
653 return 0;
654}
655
656static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
657{
658 u32 usbcfg;
659
660 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
661 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
662
663 switch (hsotg->hw_params.op_mode) {
664 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
665 if (hsotg->core_params->otg_cap ==
666 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
667 usbcfg |= GUSBCFG_HNPCAP;
668 if (hsotg->core_params->otg_cap !=
669 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
670 usbcfg |= GUSBCFG_SRPCAP;
671 break;
672
673 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
674 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
675 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
676 if (hsotg->core_params->otg_cap !=
677 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
678 usbcfg |= GUSBCFG_SRPCAP;
679 break;
680
681 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
682 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
683 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
684 default:
685 break;
686 }
687
688 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
689}
690
691/**
692 * dwc2_core_init() - Initializes the DWC_otg controller registers and
693 * prepares the core for device mode or host mode operation
694 *
695 * @hsotg: Programming view of the DWC_otg controller
696 * @initial_setup: If true then this is the first init for this instance.
697 */
698int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
699{
700 u32 usbcfg, otgctl;
701 int retval;
702
703 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
704
705 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
706
707 /* Set ULPI External VBUS bit if needed */
708 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
709 if (hsotg->core_params->phy_ulpi_ext_vbus ==
710 DWC2_PHY_ULPI_EXTERNAL_VBUS)
711 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
712
713 /* Set external TS Dline pulsing bit if needed */
714 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
715 if (hsotg->core_params->ts_dline > 0)
716 usbcfg |= GUSBCFG_TERMSELDLPULSE;
717
718 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
719
720 /*
721 * Reset the Controller
722 *
723 * We only need to reset the controller if this is a re-init.
724 * For the first init we know for sure that earlier code reset us (it
725 * needed to in order to properly detect various parameters).
726 */
727 if (!initial_setup) {
728 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
729 if (retval) {
730 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
731 __func__);
732 return retval;
733 }
734 }
735
736 /*
737 * This needs to happen in FS mode before any other programming occurs
738 */
739 retval = dwc2_phy_init(hsotg, initial_setup);
740 if (retval)
741 return retval;
742
743 /* Program the GAHBCFG Register */
744 retval = dwc2_gahbcfg_init(hsotg);
745 if (retval)
746 return retval;
747
748 /* Program the GUSBCFG register */
749 dwc2_gusbcfg_init(hsotg);
750
751 /* Program the GOTGCTL register */
752 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
753 otgctl &= ~GOTGCTL_OTGVER;
754 if (hsotg->core_params->otg_ver > 0)
755 otgctl |= GOTGCTL_OTGVER;
756 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
757 dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
758
759 /* Clear the SRP success bit for FS-I2c */
760 hsotg->srp_success = 0;
761
762 /* Enable common interrupts */
763 dwc2_enable_common_interrupts(hsotg);
764
765 /*
766 * Do device or host initialization based on mode during PCD and
767 * HCD initialization
768 */
769 if (dwc2_is_host_mode(hsotg)) {
770 dev_dbg(hsotg->dev, "Host Mode\n");
771 hsotg->op_state = OTG_STATE_A_HOST;
772 } else {
773 dev_dbg(hsotg->dev, "Device Mode\n");
774 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
775 }
776
777 return 0;
778}
779
780/**
781 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
782 *
783 * @hsotg: Programming view of DWC_otg controller
784 */
785void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
786{
787 u32 intmsk;
788
789 dev_dbg(hsotg->dev, "%s()\n", __func__);
790
791 /* Disable all interrupts */
792 dwc2_writel(0, hsotg->regs + GINTMSK);
793 dwc2_writel(0, hsotg->regs + HAINTMSK);
794
795 /* Enable the common interrupts */
796 dwc2_enable_common_interrupts(hsotg);
797
798 /* Enable host mode interrupts without disturbing common interrupts */
799 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
800 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
801 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
802}
803
804/**
805 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
806 *
807 * @hsotg: Programming view of DWC_otg controller
808 */
809void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
810{
811 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
812
813 /* Disable host mode interrupts without disturbing common interrupts */
814 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
815 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
816 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
817}
818
819/*
820 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
821 * For system that have a total fifo depth that is smaller than the default
822 * RX + TX fifo size.
823 *
824 * @hsotg: Programming view of DWC_otg controller
825 */
826static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
827{
828 struct dwc2_core_params *params = hsotg->core_params;
829 struct dwc2_hw_params *hw = &hsotg->hw_params;
830 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
831
832 total_fifo_size = hw->total_fifo_size;
833 rxfsiz = params->host_rx_fifo_size;
834 nptxfsiz = params->host_nperio_tx_fifo_size;
835 ptxfsiz = params->host_perio_tx_fifo_size;
836
837 /*
838 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
839 * allocation with support for high bandwidth endpoints. Synopsys
840 * defines MPS(Max Packet size) for a periodic EP=1024, and for
841 * non-periodic as 512.
842 */
843 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
844 /*
845 * For Buffer DMA mode/Scatter Gather DMA mode
846 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
847 * with n = number of host channel.
848 * 2 * ((1024/4) + 2) = 516
849 */
850 rxfsiz = 516 + hw->host_channels;
851
852 /*
853 * min non-periodic tx fifo depth
854 * 2 * (largest non-periodic USB packet used / 4)
855 * 2 * (512/4) = 256
856 */
857 nptxfsiz = 256;
858
859 /*
860 * min periodic tx fifo depth
861 * (largest packet size*MC)/4
862 * (1024 * 3)/4 = 768
863 */
864 ptxfsiz = 768;
865
866 params->host_rx_fifo_size = rxfsiz;
867 params->host_nperio_tx_fifo_size = nptxfsiz;
868 params->host_perio_tx_fifo_size = ptxfsiz;
869 }
870
871 /*
872 * If the summation of RX, NPTX and PTX fifo sizes is still
873 * bigger than the total_fifo_size, then we have a problem.
874 *
875 * We won't be able to allocate as many endpoints. Right now,
876 * we're just printing an error message, but ideally this FIFO
877 * allocation algorithm would be improved in the future.
878 *
879 * FIXME improve this FIFO allocation algorithm.
880 */
881 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
882 dev_err(hsotg->dev, "invalid fifo sizes\n");
883}
884
885static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
886{
887 struct dwc2_core_params *params = hsotg->core_params;
888 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
889
890 if (!params->enable_dynamic_fifo)
891 return;
892
893 dwc2_calculate_dynamic_fifo(hsotg);
894
895 /* Rx FIFO */
896 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
897 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
898 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
899 grxfsiz |= params->host_rx_fifo_size <<
900 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
901 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
902 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
903 dwc2_readl(hsotg->regs + GRXFSIZ));
904
905 /* Non-periodic Tx FIFO */
906 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
907 dwc2_readl(hsotg->regs + GNPTXFSIZ));
908 nptxfsiz = params->host_nperio_tx_fifo_size <<
909 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
910 nptxfsiz |= params->host_rx_fifo_size <<
911 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
912 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
913 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
914 dwc2_readl(hsotg->regs + GNPTXFSIZ));
915
916 /* Periodic Tx FIFO */
917 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
918 dwc2_readl(hsotg->regs + HPTXFSIZ));
919 hptxfsiz = params->host_perio_tx_fifo_size <<
920 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
921 hptxfsiz |= (params->host_rx_fifo_size +
922 params->host_nperio_tx_fifo_size) <<
923 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
924 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
925 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
926 dwc2_readl(hsotg->regs + HPTXFSIZ));
927
928 if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
929 hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
930 /*
931 * Global DFIFOCFG calculation for Host mode -
932 * include RxFIFO, NPTXFIFO and HPTXFIFO
933 */
934 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
935 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
936 dfifocfg |= (params->host_rx_fifo_size +
937 params->host_nperio_tx_fifo_size +
938 params->host_perio_tx_fifo_size) <<
939 GDFIFOCFG_EPINFOBASE_SHIFT &
940 GDFIFOCFG_EPINFOBASE_MASK;
941 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
942 }
943}
944
945/**
946 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
947 * Host mode
948 *
949 * @hsotg: Programming view of DWC_otg controller
950 *
951 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
952 * request queues. Host channels are reset to ensure that they are ready for
953 * performing transfers.
954 */
955void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
956{
957 u32 hcfg, hfir, otgctl;
958
959 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
960
961 /* Restart the Phy Clock */
962 dwc2_writel(0, hsotg->regs + PCGCTL);
963
964 /* Initialize Host Configuration Register */
965 dwc2_init_fs_ls_pclk_sel(hsotg);
966 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
967 hcfg = dwc2_readl(hsotg->regs + HCFG);
968 hcfg |= HCFG_FSLSSUPP;
969 dwc2_writel(hcfg, hsotg->regs + HCFG);
970 }
971
972 /*
973 * This bit allows dynamic reloading of the HFIR register during
974 * runtime. This bit needs to be programmed during initial configuration
975 * and its value must not be changed during runtime.
976 */
977 if (hsotg->core_params->reload_ctl > 0) {
978 hfir = dwc2_readl(hsotg->regs + HFIR);
979 hfir |= HFIR_RLDCTRL;
980 dwc2_writel(hfir, hsotg->regs + HFIR);
981 }
982
983 if (hsotg->core_params->dma_desc_enable > 0) {
984 u32 op_mode = hsotg->hw_params.op_mode;
985 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
986 !hsotg->hw_params.dma_desc_enable ||
987 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
988 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
989 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
990 dev_err(hsotg->dev,
991 "Hardware does not support descriptor DMA mode -\n");
992 dev_err(hsotg->dev,
993 "falling back to buffer DMA mode.\n");
994 hsotg->core_params->dma_desc_enable = 0;
995 } else {
996 hcfg = dwc2_readl(hsotg->regs + HCFG);
997 hcfg |= HCFG_DESCDMA;
998 dwc2_writel(hcfg, hsotg->regs + HCFG);
999 }
1000 }
1001
1002 /* Configure data FIFO sizes */
1003 dwc2_config_fifos(hsotg);
1004
1005 /* TODO - check this */
1006 /* Clear Host Set HNP Enable in the OTG Control Register */
1007 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1008 otgctl &= ~GOTGCTL_HSTSETHNPEN;
1009 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1010
1011 /* Make sure the FIFOs are flushed */
1012 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
1013 dwc2_flush_rx_fifo(hsotg);
1014
1015 /* Clear Host Set HNP Enable in the OTG Control Register */
1016 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
1017 otgctl &= ~GOTGCTL_HSTSETHNPEN;
1018 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
1019
1020 if (hsotg->core_params->dma_desc_enable <= 0) {
1021 int num_channels, i;
1022 u32 hcchar;
1023
1024 /* Flush out any leftover queued requests */
1025 num_channels = hsotg->core_params->host_channels;
1026 for (i = 0; i < num_channels; i++) {
1027 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1028 hcchar &= ~HCCHAR_CHENA;
1029 hcchar |= HCCHAR_CHDIS;
1030 hcchar &= ~HCCHAR_EPDIR;
1031 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1032 }
1033
1034 /* Halt all channels to put them into a known state */
1035 for (i = 0; i < num_channels; i++) {
1036 int count = 0;
1037
1038 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1039 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
1040 hcchar &= ~HCCHAR_EPDIR;
1041 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1042 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
1043 __func__, i);
1044 do {
1045 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1046 if (++count > 1000) {
1047 dev_err(hsotg->dev,
1048 "Unable to clear enable on channel %d\n",
1049 i);
1050 break;
1051 }
1052 udelay(1);
1053 } while (hcchar & HCCHAR_CHENA);
1054 }
1055 }
1056
1057 /* Turn on the vbus power */
1058 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
1059 if (hsotg->op_state == OTG_STATE_A_HOST) {
1060 u32 hprt0 = dwc2_read_hprt0(hsotg);
1061
1062 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
1063 !!(hprt0 & HPRT0_PWR));
1064 if (!(hprt0 & HPRT0_PWR)) {
1065 hprt0 |= HPRT0_PWR;
1066 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1067 }
1068 }
1069
1070 dwc2_enable_host_interrupts(hsotg);
1071}
1072
1073static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
1074 struct dwc2_host_chan *chan)
1075{
1076 u32 hcintmsk = HCINTMSK_CHHLTD;
1077
1078 switch (chan->ep_type) {
1079 case USB_ENDPOINT_XFER_CONTROL:
1080 case USB_ENDPOINT_XFER_BULK:
1081 dev_vdbg(hsotg->dev, "control/bulk\n");
1082 hcintmsk |= HCINTMSK_XFERCOMPL;
1083 hcintmsk |= HCINTMSK_STALL;
1084 hcintmsk |= HCINTMSK_XACTERR;
1085 hcintmsk |= HCINTMSK_DATATGLERR;
1086 if (chan->ep_is_in) {
1087 hcintmsk |= HCINTMSK_BBLERR;
1088 } else {
1089 hcintmsk |= HCINTMSK_NAK;
1090 hcintmsk |= HCINTMSK_NYET;
1091 if (chan->do_ping)
1092 hcintmsk |= HCINTMSK_ACK;
1093 }
1094
1095 if (chan->do_split) {
1096 hcintmsk |= HCINTMSK_NAK;
1097 if (chan->complete_split)
1098 hcintmsk |= HCINTMSK_NYET;
1099 else
1100 hcintmsk |= HCINTMSK_ACK;
1101 }
1102
1103 if (chan->error_state)
1104 hcintmsk |= HCINTMSK_ACK;
1105 break;
1106
1107 case USB_ENDPOINT_XFER_INT:
1108 if (dbg_perio())
1109 dev_vdbg(hsotg->dev, "intr\n");
1110 hcintmsk |= HCINTMSK_XFERCOMPL;
1111 hcintmsk |= HCINTMSK_NAK;
1112 hcintmsk |= HCINTMSK_STALL;
1113 hcintmsk |= HCINTMSK_XACTERR;
1114 hcintmsk |= HCINTMSK_DATATGLERR;
1115 hcintmsk |= HCINTMSK_FRMOVRUN;
1116
1117 if (chan->ep_is_in)
1118 hcintmsk |= HCINTMSK_BBLERR;
1119 if (chan->error_state)
1120 hcintmsk |= HCINTMSK_ACK;
1121 if (chan->do_split) {
1122 if (chan->complete_split)
1123 hcintmsk |= HCINTMSK_NYET;
1124 else
1125 hcintmsk |= HCINTMSK_ACK;
1126 }
1127 break;
1128
1129 case USB_ENDPOINT_XFER_ISOC:
1130 if (dbg_perio())
1131 dev_vdbg(hsotg->dev, "isoc\n");
1132 hcintmsk |= HCINTMSK_XFERCOMPL;
1133 hcintmsk |= HCINTMSK_FRMOVRUN;
1134 hcintmsk |= HCINTMSK_ACK;
1135
1136 if (chan->ep_is_in) {
1137 hcintmsk |= HCINTMSK_XACTERR;
1138 hcintmsk |= HCINTMSK_BBLERR;
1139 }
1140 break;
1141 default:
1142 dev_err(hsotg->dev, "## Unknown EP type ##\n");
1143 break;
1144 }
1145
1146 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1147 if (dbg_hc(chan))
1148 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1149}
1150
1151static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
1152 struct dwc2_host_chan *chan)
1153{
1154 u32 hcintmsk = HCINTMSK_CHHLTD;
1155
1156 /*
1157 * For Descriptor DMA mode core halts the channel on AHB error.
1158 * Interrupt is not required.
1159 */
1160 if (hsotg->core_params->dma_desc_enable <= 0) {
1161 if (dbg_hc(chan))
1162 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1163 hcintmsk |= HCINTMSK_AHBERR;
1164 } else {
1165 if (dbg_hc(chan))
1166 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
1167 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1168 hcintmsk |= HCINTMSK_XFERCOMPL;
1169 }
1170
1171 if (chan->error_state && !chan->do_split &&
1172 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
1173 if (dbg_hc(chan))
1174 dev_vdbg(hsotg->dev, "setting ACK\n");
1175 hcintmsk |= HCINTMSK_ACK;
1176 if (chan->ep_is_in) {
1177 hcintmsk |= HCINTMSK_DATATGLERR;
1178 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
1179 hcintmsk |= HCINTMSK_NAK;
1180 }
1181 }
1182
1183 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1184 if (dbg_hc(chan))
1185 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
1186}
1187
1188static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
1189 struct dwc2_host_chan *chan)
1190{
1191 u32 intmsk;
1192
1193 if (hsotg->core_params->dma_enable > 0) {
1194 if (dbg_hc(chan))
1195 dev_vdbg(hsotg->dev, "DMA enabled\n");
1196 dwc2_hc_enable_dma_ints(hsotg, chan);
1197 } else {
1198 if (dbg_hc(chan))
1199 dev_vdbg(hsotg->dev, "DMA disabled\n");
1200 dwc2_hc_enable_slave_ints(hsotg, chan);
1201 }
1202
1203 /* Enable the top level host channel interrupt */
1204 intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
1205 intmsk |= 1 << chan->hc_num;
1206 dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
1207 if (dbg_hc(chan))
1208 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
1209
1210 /* Make sure host channel interrupts are enabled */
1211 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
1212 intmsk |= GINTSTS_HCHINT;
1213 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
1214 if (dbg_hc(chan))
1215 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
1216}
1217
1218/**
1219 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
1220 * a specific endpoint
1221 *
1222 * @hsotg: Programming view of DWC_otg controller
1223 * @chan: Information needed to initialize the host channel
1224 *
1225 * The HCCHARn register is set up with the characteristics specified in chan.
1226 * Host channel interrupts that may need to be serviced while this transfer is
1227 * in progress are enabled.
1228 */
1229void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1230{
1231 u8 hc_num = chan->hc_num;
1232 u32 hcintmsk;
1233 u32 hcchar;
1234 u32 hcsplt = 0;
1235
1236 if (dbg_hc(chan))
1237 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1238
1239 /* Clear old interrupt conditions for this host channel */
1240 hcintmsk = 0xffffffff;
1241 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1242 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
1243
1244 /* Enable channel interrupts required for this transfer */
1245 dwc2_hc_enable_ints(hsotg, chan);
1246
1247 /*
1248 * Program the HCCHARn register with the endpoint characteristics for
1249 * the current transfer
1250 */
1251 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
1252 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
1253 if (chan->ep_is_in)
1254 hcchar |= HCCHAR_EPDIR;
1255 if (chan->speed == USB_SPEED_LOW)
1256 hcchar |= HCCHAR_LSPDDEV;
1257 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
1258 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
1259 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
1260 if (dbg_hc(chan)) {
1261 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
1262 hc_num, hcchar);
1263
1264 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
1265 __func__, hc_num);
1266 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
1267 chan->dev_addr);
1268 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
1269 chan->ep_num);
1270 dev_vdbg(hsotg->dev, " Is In: %d\n",
1271 chan->ep_is_in);
1272 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
1273 chan->speed == USB_SPEED_LOW);
1274 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
1275 chan->ep_type);
1276 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
1277 chan->max_packet);
1278 }
1279
1280 /* Program the HCSPLT register for SPLITs */
1281 if (chan->do_split) {
1282 if (dbg_hc(chan))
1283 dev_vdbg(hsotg->dev,
1284 "Programming HC %d with split --> %s\n",
1285 hc_num,
1286 chan->complete_split ? "CSPLIT" : "SSPLIT");
1287 if (chan->complete_split)
1288 hcsplt |= HCSPLT_COMPSPLT;
1289 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
1290 HCSPLT_XACTPOS_MASK;
1291 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
1292 HCSPLT_HUBADDR_MASK;
1293 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
1294 HCSPLT_PRTADDR_MASK;
1295 if (dbg_hc(chan)) {
1296 dev_vdbg(hsotg->dev, " comp split %d\n",
1297 chan->complete_split);
1298 dev_vdbg(hsotg->dev, " xact pos %d\n",
1299 chan->xact_pos);
1300 dev_vdbg(hsotg->dev, " hub addr %d\n",
1301 chan->hub_addr);
1302 dev_vdbg(hsotg->dev, " hub port %d\n",
1303 chan->hub_port);
1304 dev_vdbg(hsotg->dev, " is_in %d\n",
1305 chan->ep_is_in);
1306 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
1307 chan->max_packet);
1308 dev_vdbg(hsotg->dev, " xferlen %d\n",
1309 chan->xfer_len);
1310 }
1311 }
1312
1313 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
1314}
1315
1316/**
1317 * dwc2_hc_halt() - Attempts to halt a host channel
1318 *
1319 * @hsotg: Controller register interface
1320 * @chan: Host channel to halt
1321 * @halt_status: Reason for halting the channel
1322 *
1323 * This function should only be called in Slave mode or to abort a transfer in
1324 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
1325 * controller halts the channel when the transfer is complete or a condition
1326 * occurs that requires application intervention.
1327 *
1328 * In slave mode, checks for a free request queue entry, then sets the Channel
1329 * Enable and Channel Disable bits of the Host Channel Characteristics
1330 * register of the specified channel to intiate the halt. If there is no free
1331 * request queue entry, sets only the Channel Disable bit of the HCCHARn
1332 * register to flush requests for this channel. In the latter case, sets a
1333 * flag to indicate that the host channel needs to be halted when a request
1334 * queue slot is open.
1335 *
1336 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
1337 * HCCHARn register. The controller ensures there is space in the request
1338 * queue before submitting the halt request.
1339 *
1340 * Some time may elapse before the core flushes any posted requests for this
1341 * host channel and halts. The Channel Halted interrupt handler completes the
1342 * deactivation of the host channel.
1343 */
1344void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
1345 enum dwc2_halt_status halt_status)
1346{
1347 u32 nptxsts, hptxsts, hcchar;
1348
1349 if (dbg_hc(chan))
1350 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1351 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1352 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1353
1354 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1355 halt_status == DWC2_HC_XFER_AHB_ERR) {
1356 /*
1357 * Disable all channel interrupts except Ch Halted. The QTD
1358 * and QH state associated with this transfer has been cleared
1359 * (in the case of URB_DEQUEUE), so the channel needs to be
1360 * shut down carefully to prevent crashes.
1361 */
1362 u32 hcintmsk = HCINTMSK_CHHLTD;
1363
1364 dev_vdbg(hsotg->dev, "dequeue/error\n");
1365 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1366
1367 /*
1368 * Make sure no other interrupts besides halt are currently
1369 * pending. Handling another interrupt could cause a crash due
1370 * to the QTD and QH state.
1371 */
1372 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1373
1374 /*
1375 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1376 * even if the channel was already halted for some other
1377 * reason
1378 */
1379 chan->halt_status = halt_status;
1380
1381 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1382 if (!(hcchar & HCCHAR_CHENA)) {
1383 /*
1384 * The channel is either already halted or it hasn't
1385 * started yet. In DMA mode, the transfer may halt if
1386 * it finishes normally or a condition occurs that
1387 * requires driver intervention. Don't want to halt
1388 * the channel again. In either Slave or DMA mode,
1389 * it's possible that the transfer has been assigned
1390 * to a channel, but not started yet when an URB is
1391 * dequeued. Don't want to halt a channel that hasn't
1392 * started yet.
1393 */
1394 return;
1395 }
1396 }
1397 if (chan->halt_pending) {
1398 /*
1399 * A halt has already been issued for this channel. This might
1400 * happen when a transfer is aborted by a higher level in
1401 * the stack.
1402 */
1403 dev_vdbg(hsotg->dev,
1404 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1405 __func__, chan->hc_num);
1406 return;
1407 }
1408
1409 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1410
1411 /* No need to set the bit in DDMA for disabling the channel */
1412 /* TODO check it everywhere channel is disabled */
1413 if (hsotg->core_params->dma_desc_enable <= 0) {
1414 if (dbg_hc(chan))
1415 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1416 hcchar |= HCCHAR_CHENA;
1417 } else {
1418 if (dbg_hc(chan))
1419 dev_dbg(hsotg->dev, "desc DMA enabled\n");
1420 }
1421 hcchar |= HCCHAR_CHDIS;
1422
1423 if (hsotg->core_params->dma_enable <= 0) {
1424 if (dbg_hc(chan))
1425 dev_vdbg(hsotg->dev, "DMA not enabled\n");
1426 hcchar |= HCCHAR_CHENA;
1427
1428 /* Check for space in the request queue to issue the halt */
1429 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1430 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1431 dev_vdbg(hsotg->dev, "control/bulk\n");
1432 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1433 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1434 dev_vdbg(hsotg->dev, "Disabling channel\n");
1435 hcchar &= ~HCCHAR_CHENA;
1436 }
1437 } else {
1438 if (dbg_perio())
1439 dev_vdbg(hsotg->dev, "isoc/intr\n");
1440 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1441 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1442 hsotg->queuing_high_bandwidth) {
1443 if (dbg_perio())
1444 dev_vdbg(hsotg->dev, "Disabling channel\n");
1445 hcchar &= ~HCCHAR_CHENA;
1446 }
1447 }
1448 } else {
1449 if (dbg_hc(chan))
1450 dev_vdbg(hsotg->dev, "DMA enabled\n");
1451 }
1452
1453 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1454 chan->halt_status = halt_status;
1455
1456 if (hcchar & HCCHAR_CHENA) {
1457 if (dbg_hc(chan))
1458 dev_vdbg(hsotg->dev, "Channel enabled\n");
1459 chan->halt_pending = 1;
1460 chan->halt_on_queue = 0;
1461 } else {
1462 if (dbg_hc(chan))
1463 dev_vdbg(hsotg->dev, "Channel disabled\n");
1464 chan->halt_on_queue = 1;
1465 }
1466
1467 if (dbg_hc(chan)) {
1468 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1469 chan->hc_num);
1470 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1471 hcchar);
1472 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1473 chan->halt_pending);
1474 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1475 chan->halt_on_queue);
1476 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1477 chan->halt_status);
1478 }
1479}
1480
1481/**
1482 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1483 *
1484 * @hsotg: Programming view of DWC_otg controller
1485 * @chan: Identifies the host channel to clean up
1486 *
1487 * This function is normally called after a transfer is done and the host
1488 * channel is being released
1489 */
1490void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1491{
1492 u32 hcintmsk;
1493
1494 chan->xfer_started = 0;
1495
1496 list_del_init(&chan->split_order_list_entry);
1497
1498 /*
1499 * Clear channel interrupt enables and any unhandled channel interrupt
1500 * conditions
1501 */
1502 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1503 hcintmsk = 0xffffffff;
1504 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1505 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1506}
1507
1508/**
1509 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1510 * which frame a periodic transfer should occur
1511 *
1512 * @hsotg: Programming view of DWC_otg controller
1513 * @chan: Identifies the host channel to set up and its properties
1514 * @hcchar: Current value of the HCCHAR register for the specified host channel
1515 *
1516 * This function has no effect on non-periodic transfers
1517 */
1518static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1519 struct dwc2_host_chan *chan, u32 *hcchar)
1520{
1521 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1522 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1523 int host_speed;
1524 int xfer_ns;
1525 int xfer_us;
1526 int bytes_in_fifo;
1527 u16 fifo_space;
1528 u16 frame_number;
1529 u16 wire_frame;
1530
1531 /*
1532 * Try to figure out if we're an even or odd frame. If we set
1533 * even and the current frame number is even the the transfer
1534 * will happen immediately. Similar if both are odd. If one is
1535 * even and the other is odd then the transfer will happen when
1536 * the frame number ticks.
1537 *
1538 * There's a bit of a balancing act to get this right.
1539 * Sometimes we may want to send data in the current frame (AK
1540 * right away). We might want to do this if the frame number
1541 * _just_ ticked, but we might also want to do this in order
1542 * to continue a split transaction that happened late in a
1543 * microframe (so we didn't know to queue the next transfer
1544 * until the frame number had ticked). The problem is that we
1545 * need a lot of knowledge to know if there's actually still
1546 * time to send things or if it would be better to wait until
1547 * the next frame.
1548 *
1549 * We can look at how much time is left in the current frame
1550 * and make a guess about whether we'll have time to transfer.
1551 * We'll do that.
1552 */
1553
1554 /* Get speed host is running at */
1555 host_speed = (chan->speed != USB_SPEED_HIGH &&
1556 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1557
1558 /* See how many bytes are in the periodic FIFO right now */
1559 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1560 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1561 bytes_in_fifo = sizeof(u32) *
1562 (hsotg->core_params->host_perio_tx_fifo_size -
1563 fifo_space);
1564
1565 /*
1566 * Roughly estimate bus time for everything in the periodic
1567 * queue + our new transfer. This is "rough" because we're
1568 * using a function that makes takes into account IN/OUT
1569 * and INT/ISO and we're just slamming in one value for all
1570 * transfers. This should be an over-estimate and that should
1571 * be OK, but we can probably tighten it.
1572 */
1573 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1574 chan->xfer_len + bytes_in_fifo);
1575 xfer_us = NS_TO_US(xfer_ns);
1576
1577 /* See what frame number we'll be at by the time we finish */
1578 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1579
1580 /* This is when we were scheduled to be on the wire */
1581 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1582
1583 /*
1584 * If we'd finish _after_ the frame we're scheduled in then
1585 * it's hopeless. Just schedule right away and hope for the
1586 * best. Note that it _might_ be wise to call back into the
1587 * scheduler to pick a better frame, but this is better than
1588 * nothing.
1589 */
1590 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1591 dwc2_sch_vdbg(hsotg,
1592 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1593 chan->qh, wire_frame, frame_number,
1594 dwc2_frame_num_dec(frame_number,
1595 wire_frame));
1596 wire_frame = frame_number;
1597
1598 /*
1599 * We picked a different frame number; communicate this
1600 * back to the scheduler so it doesn't try to schedule
1601 * another in the same frame.
1602 *
1603 * Remember that next_active_frame is 1 before the wire
1604 * frame.
1605 */
1606 chan->qh->next_active_frame =
1607 dwc2_frame_num_dec(frame_number, 1);
1608 }
1609
1610 if (wire_frame & 1)
1611 *hcchar |= HCCHAR_ODDFRM;
1612 else
1613 *hcchar &= ~HCCHAR_ODDFRM;
1614 }
1615}
1616
1617static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1618{
1619 /* Set up the initial PID for the transfer */
1620 if (chan->speed == USB_SPEED_HIGH) {
1621 if (chan->ep_is_in) {
1622 if (chan->multi_count == 1)
1623 chan->data_pid_start = DWC2_HC_PID_DATA0;
1624 else if (chan->multi_count == 2)
1625 chan->data_pid_start = DWC2_HC_PID_DATA1;
1626 else
1627 chan->data_pid_start = DWC2_HC_PID_DATA2;
1628 } else {
1629 if (chan->multi_count == 1)
1630 chan->data_pid_start = DWC2_HC_PID_DATA0;
1631 else
1632 chan->data_pid_start = DWC2_HC_PID_MDATA;
1633 }
1634 } else {
1635 chan->data_pid_start = DWC2_HC_PID_DATA0;
1636 }
1637}
1638
1639/**
1640 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1641 * the Host Channel
1642 *
1643 * @hsotg: Programming view of DWC_otg controller
1644 * @chan: Information needed to initialize the host channel
1645 *
1646 * This function should only be called in Slave mode. For a channel associated
1647 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1648 * associated with a periodic EP, the periodic Tx FIFO is written.
1649 *
1650 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1651 * the number of bytes written to the Tx FIFO.
1652 */
1653static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1654 struct dwc2_host_chan *chan)
1655{
1656 u32 i;
1657 u32 remaining_count;
1658 u32 byte_count;
1659 u32 dword_count;
1660 u32 __iomem *data_fifo;
1661 u32 *data_buf = (u32 *)chan->xfer_buf;
1662
1663 if (dbg_hc(chan))
1664 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1665
1666 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1667
1668 remaining_count = chan->xfer_len - chan->xfer_count;
1669 if (remaining_count > chan->max_packet)
1670 byte_count = chan->max_packet;
1671 else
1672 byte_count = remaining_count;
1673
1674 dword_count = (byte_count + 3) / 4;
1675
1676 if (((unsigned long)data_buf & 0x3) == 0) {
1677 /* xfer_buf is DWORD aligned */
1678 for (i = 0; i < dword_count; i++, data_buf++)
1679 dwc2_writel(*data_buf, data_fifo);
1680 } else {
1681 /* xfer_buf is not DWORD aligned */
1682 for (i = 0; i < dword_count; i++, data_buf++) {
1683 u32 data = data_buf[0] | data_buf[1] << 8 |
1684 data_buf[2] << 16 | data_buf[3] << 24;
1685 dwc2_writel(data, data_fifo);
1686 }
1687 }
1688
1689 chan->xfer_count += byte_count;
1690 chan->xfer_buf += byte_count;
1691}
1692
1693/**
1694 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1695 * channel and starts the transfer
1696 *
1697 * @hsotg: Programming view of DWC_otg controller
1698 * @chan: Information needed to initialize the host channel. The xfer_len value
1699 * may be reduced to accommodate the max widths of the XferSize and
1700 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1701 * changed to reflect the final xfer_len value.
1702 *
1703 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1704 * the caller must ensure that there is sufficient space in the request queue
1705 * and Tx Data FIFO.
1706 *
1707 * For an OUT transfer in Slave mode, it loads a data packet into the
1708 * appropriate FIFO. If necessary, additional data packets are loaded in the
1709 * Host ISR.
1710 *
1711 * For an IN transfer in Slave mode, a data packet is requested. The data
1712 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1713 * additional data packets are requested in the Host ISR.
1714 *
1715 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1716 * register along with a packet count of 1 and the channel is enabled. This
1717 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1718 * simply set to 0 since no data transfer occurs in this case.
1719 *
1720 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1721 * all the information required to perform the subsequent data transfer. In
1722 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1723 * controller performs the entire PING protocol, then starts the data
1724 * transfer.
1725 */
1726void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1727 struct dwc2_host_chan *chan)
1728{
1729 u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1730 u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1731 u32 hcchar;
1732 u32 hctsiz = 0;
1733 u16 num_packets;
1734 u32 ec_mc;
1735
1736 if (dbg_hc(chan))
1737 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1738
1739 if (chan->do_ping) {
1740 if (hsotg->core_params->dma_enable <= 0) {
1741 if (dbg_hc(chan))
1742 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1743 dwc2_hc_do_ping(hsotg, chan);
1744 chan->xfer_started = 1;
1745 return;
1746 } else {
1747 if (dbg_hc(chan))
1748 dev_vdbg(hsotg->dev, "ping, DMA\n");
1749 hctsiz |= TSIZ_DOPNG;
1750 }
1751 }
1752
1753 if (chan->do_split) {
1754 if (dbg_hc(chan))
1755 dev_vdbg(hsotg->dev, "split\n");
1756 num_packets = 1;
1757
1758 if (chan->complete_split && !chan->ep_is_in)
1759 /*
1760 * For CSPLIT OUT Transfer, set the size to 0 so the
1761 * core doesn't expect any data written to the FIFO
1762 */
1763 chan->xfer_len = 0;
1764 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1765 chan->xfer_len = chan->max_packet;
1766 else if (!chan->ep_is_in && chan->xfer_len > 188)
1767 chan->xfer_len = 188;
1768
1769 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1770 TSIZ_XFERSIZE_MASK;
1771
1772 /* For split set ec_mc for immediate retries */
1773 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1774 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1775 ec_mc = 3;
1776 else
1777 ec_mc = 1;
1778 } else {
1779 if (dbg_hc(chan))
1780 dev_vdbg(hsotg->dev, "no split\n");
1781 /*
1782 * Ensure that the transfer length and packet count will fit
1783 * in the widths allocated for them in the HCTSIZn register
1784 */
1785 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1786 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1787 /*
1788 * Make sure the transfer size is no larger than one
1789 * (micro)frame's worth of data. (A check was done
1790 * when the periodic transfer was accepted to ensure
1791 * that a (micro)frame's worth of data can be
1792 * programmed into a channel.)
1793 */
1794 u32 max_periodic_len =
1795 chan->multi_count * chan->max_packet;
1796
1797 if (chan->xfer_len > max_periodic_len)
1798 chan->xfer_len = max_periodic_len;
1799 } else if (chan->xfer_len > max_hc_xfer_size) {
1800 /*
1801 * Make sure that xfer_len is a multiple of max packet
1802 * size
1803 */
1804 chan->xfer_len =
1805 max_hc_xfer_size - chan->max_packet + 1;
1806 }
1807
1808 if (chan->xfer_len > 0) {
1809 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1810 chan->max_packet;
1811 if (num_packets > max_hc_pkt_count) {
1812 num_packets = max_hc_pkt_count;
1813 chan->xfer_len = num_packets * chan->max_packet;
1814 }
1815 } else {
1816 /* Need 1 packet for transfer length of 0 */
1817 num_packets = 1;
1818 }
1819
1820 if (chan->ep_is_in)
1821 /*
1822 * Always program an integral # of max packets for IN
1823 * transfers
1824 */
1825 chan->xfer_len = num_packets * chan->max_packet;
1826
1827 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1828 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1829 /*
1830 * Make sure that the multi_count field matches the
1831 * actual transfer length
1832 */
1833 chan->multi_count = num_packets;
1834
1835 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1836 dwc2_set_pid_isoc(chan);
1837
1838 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1839 TSIZ_XFERSIZE_MASK;
1840
1841 /* The ec_mc gets the multi_count for non-split */
1842 ec_mc = chan->multi_count;
1843 }
1844
1845 chan->start_pkt_count = num_packets;
1846 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1847 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1848 TSIZ_SC_MC_PID_MASK;
1849 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1850 if (dbg_hc(chan)) {
1851 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1852 hctsiz, chan->hc_num);
1853
1854 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1855 chan->hc_num);
1856 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1857 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1858 TSIZ_XFERSIZE_SHIFT);
1859 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1860 (hctsiz & TSIZ_PKTCNT_MASK) >>
1861 TSIZ_PKTCNT_SHIFT);
1862 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1863 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1864 TSIZ_SC_MC_PID_SHIFT);
1865 }
1866
1867 if (hsotg->core_params->dma_enable > 0) {
1868 dwc2_writel((u32)chan->xfer_dma,
1869 hsotg->regs + HCDMA(chan->hc_num));
1870 if (dbg_hc(chan))
1871 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1872 (unsigned long)chan->xfer_dma, chan->hc_num);
1873 }
1874
1875 /* Start the split */
1876 if (chan->do_split) {
1877 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1878
1879 hcsplt |= HCSPLT_SPLTENA;
1880 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1881 }
1882
1883 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1884 hcchar &= ~HCCHAR_MULTICNT_MASK;
1885 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1886 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1887
1888 if (hcchar & HCCHAR_CHDIS)
1889 dev_warn(hsotg->dev,
1890 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1891 __func__, chan->hc_num, hcchar);
1892
1893 /* Set host channel enable after all other setup is complete */
1894 hcchar |= HCCHAR_CHENA;
1895 hcchar &= ~HCCHAR_CHDIS;
1896
1897 if (dbg_hc(chan))
1898 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1899 (hcchar & HCCHAR_MULTICNT_MASK) >>
1900 HCCHAR_MULTICNT_SHIFT);
1901
1902 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1903 if (dbg_hc(chan))
1904 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1905 chan->hc_num);
1906
1907 chan->xfer_started = 1;
1908 chan->requests++;
1909
1910 if (hsotg->core_params->dma_enable <= 0 &&
1911 !chan->ep_is_in && chan->xfer_len > 0)
1912 /* Load OUT packet into the appropriate Tx FIFO */
1913 dwc2_hc_write_packet(hsotg, chan);
1914}
1915
1916/**
1917 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1918 * host channel and starts the transfer in Descriptor DMA mode
1919 *
1920 * @hsotg: Programming view of DWC_otg controller
1921 * @chan: Information needed to initialize the host channel
1922 *
1923 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1924 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1925 * with micro-frame bitmap.
1926 *
1927 * Initializes HCDMA register with descriptor list address and CTD value then
1928 * starts the transfer via enabling the channel.
1929 */
1930void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1931 struct dwc2_host_chan *chan)
1932{
1933 u32 hcchar;
1934 u32 hctsiz = 0;
1935
1936 if (chan->do_ping)
1937 hctsiz |= TSIZ_DOPNG;
1938
1939 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1940 dwc2_set_pid_isoc(chan);
1941
1942 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1943 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1944 TSIZ_SC_MC_PID_MASK;
1945
1946 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1947 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1948
1949 /* Non-zero only for high-speed interrupt endpoints */
1950 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1951
1952 if (dbg_hc(chan)) {
1953 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1954 chan->hc_num);
1955 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1956 chan->data_pid_start);
1957 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1958 }
1959
1960 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1961
1962 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1963 chan->desc_list_sz, DMA_TO_DEVICE);
1964
1965 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1966
1967 if (dbg_hc(chan))
1968 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1969 &chan->desc_list_addr, chan->hc_num);
1970
1971 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1972 hcchar &= ~HCCHAR_MULTICNT_MASK;
1973 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1974 HCCHAR_MULTICNT_MASK;
1975
1976 if (hcchar & HCCHAR_CHDIS)
1977 dev_warn(hsotg->dev,
1978 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1979 __func__, chan->hc_num, hcchar);
1980
1981 /* Set host channel enable after all other setup is complete */
1982 hcchar |= HCCHAR_CHENA;
1983 hcchar &= ~HCCHAR_CHDIS;
1984
1985 if (dbg_hc(chan))
1986 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1987 (hcchar & HCCHAR_MULTICNT_MASK) >>
1988 HCCHAR_MULTICNT_SHIFT);
1989
1990 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1991 if (dbg_hc(chan))
1992 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1993 chan->hc_num);
1994
1995 chan->xfer_started = 1;
1996 chan->requests++;
1997}
1998
1999/**
2000 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
2001 * a previous call to dwc2_hc_start_transfer()
2002 *
2003 * @hsotg: Programming view of DWC_otg controller
2004 * @chan: Information needed to initialize the host channel
2005 *
2006 * The caller must ensure there is sufficient space in the request queue and Tx
2007 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
2008 * the controller acts autonomously to complete transfers programmed to a host
2009 * channel.
2010 *
2011 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
2012 * if there is any data remaining to be queued. For an IN transfer, another
2013 * data packet is always requested. For the SETUP phase of a control transfer,
2014 * this function does nothing.
2015 *
2016 * Return: 1 if a new request is queued, 0 if no more requests are required
2017 * for this transfer
2018 */
2019int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
2020 struct dwc2_host_chan *chan)
2021{
2022 if (dbg_hc(chan))
2023 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2024 chan->hc_num);
2025
2026 if (chan->do_split)
2027 /* SPLITs always queue just once per channel */
2028 return 0;
2029
2030 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
2031 /* SETUPs are queued only once since they can't be NAK'd */
2032 return 0;
2033
2034 if (chan->ep_is_in) {
2035 /*
2036 * Always queue another request for other IN transfers. If
2037 * back-to-back INs are issued and NAKs are received for both,
2038 * the driver may still be processing the first NAK when the
2039 * second NAK is received. When the interrupt handler clears
2040 * the NAK interrupt for the first NAK, the second NAK will
2041 * not be seen. So we can't depend on the NAK interrupt
2042 * handler to requeue a NAK'd request. Instead, IN requests
2043 * are issued each time this function is called. When the
2044 * transfer completes, the extra requests for the channel will
2045 * be flushed.
2046 */
2047 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2048
2049 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
2050 hcchar |= HCCHAR_CHENA;
2051 hcchar &= ~HCCHAR_CHDIS;
2052 if (dbg_hc(chan))
2053 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
2054 hcchar);
2055 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2056 chan->requests++;
2057 return 1;
2058 }
2059
2060 /* OUT transfers */
2061
2062 if (chan->xfer_count < chan->xfer_len) {
2063 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2064 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2065 u32 hcchar = dwc2_readl(hsotg->regs +
2066 HCCHAR(chan->hc_num));
2067
2068 dwc2_hc_set_even_odd_frame(hsotg, chan,
2069 &hcchar);
2070 }
2071
2072 /* Load OUT packet into the appropriate Tx FIFO */
2073 dwc2_hc_write_packet(hsotg, chan);
2074 chan->requests++;
2075 return 1;
2076 }
2077
2078 return 0;
2079}
2080
2081/**
2082 * dwc2_hc_do_ping() - Starts a PING transfer
2083 *
2084 * @hsotg: Programming view of DWC_otg controller
2085 * @chan: Information needed to initialize the host channel
2086 *
2087 * This function should only be called in Slave mode. The Do Ping bit is set in
2088 * the HCTSIZ register, then the channel is enabled.
2089 */
2090void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
2091{
2092 u32 hcchar;
2093 u32 hctsiz;
2094
2095 if (dbg_hc(chan))
2096 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
2097 chan->hc_num);
2098
2099
2100 hctsiz = TSIZ_DOPNG;
2101 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
2102 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
2103
2104 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
2105 hcchar |= HCCHAR_CHENA;
2106 hcchar &= ~HCCHAR_CHDIS;
2107 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
2108}
2109
2110/**
2111 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
2112 * the HFIR register according to PHY type and speed
2113 *
2114 * @hsotg: Programming view of DWC_otg controller
2115 *
2116 * NOTE: The caller can modify the value of the HFIR register only after the
2117 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
2118 * has been set
2119 */
2120u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
2121{
2122 u32 usbcfg;
2123 u32 hprt0;
2124 int clock = 60; /* default value */
2125
2126 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2127 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2128
2129 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
2130 !(usbcfg & GUSBCFG_PHYIF16))
2131 clock = 60;
2132 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
2133 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
2134 clock = 48;
2135 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2136 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2137 clock = 30;
2138 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2139 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
2140 clock = 60;
2141 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
2142 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
2143 clock = 48;
2144 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
2145 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
2146 clock = 48;
2147 if ((usbcfg & GUSBCFG_PHYSEL) &&
2148 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2149 clock = 48;
2150
2151 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
2152 /* High speed case */
2153 return 125 * clock - 1;
2154 else
2155 /* FS/LS case */
2156 return 1000 * clock - 1;
2157}
2158
2159/**
2160 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
2161 * buffer
2162 *
2163 * @core_if: Programming view of DWC_otg controller
2164 * @dest: Destination buffer for the packet
2165 * @bytes: Number of bytes to copy to the destination
2166 */
2167void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
2168{
2169 u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
2170 u32 *data_buf = (u32 *)dest;
2171 int word_count = (bytes + 3) / 4;
2172 int i;
2173
2174 /*
2175 * Todo: Account for the case where dest is not dword aligned. This
2176 * requires reading data from the FIFO into a u32 temp buffer, then
2177 * moving it into the data buffer.
2178 */
2179
2180 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
2181
2182 for (i = 0; i < word_count; i++, data_buf++)
2183 *data_buf = dwc2_readl(fifo);
2184}
2185
2186/** 410/**
2187 * dwc2_dump_host_registers() - Prints the host registers 411 * dwc2_dump_host_registers() - Prints the host registers
2188 * 412 *