diff options
author | Kalle Valo <kvalo@codeaurora.org> | 2015-11-17 13:57:38 -0500 |
---|---|---|
committer | Kalle Valo <kvalo@codeaurora.org> | 2015-11-18 07:28:30 -0500 |
commit | e705c12146aa9c69ca498d4ebb83ba7138f9b41f (patch) | |
tree | b55d4eb7a83c2ec117f460684eb71c89eee6a709 /drivers/net/wireless/intel/iwlwifi/dvm/calib.c | |
parent | 7ac9a364c1721a863ecc6cc9aba66e10114908db (diff) |
iwlwifi: move under intel vendor directory
Part of reorganising wireless drivers directory and Kconfig.
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Diffstat (limited to 'drivers/net/wireless/intel/iwlwifi/dvm/calib.c')
-rw-r--r-- | drivers/net/wireless/intel/iwlwifi/dvm/calib.c | 1113 |
1 files changed, 1113 insertions, 0 deletions
diff --git a/drivers/net/wireless/intel/iwlwifi/dvm/calib.c b/drivers/net/wireless/intel/iwlwifi/dvm/calib.c new file mode 100644 index 000000000000..20e6aa910700 --- /dev/null +++ b/drivers/net/wireless/intel/iwlwifi/dvm/calib.c | |||
@@ -0,0 +1,1113 @@ | |||
1 | /****************************************************************************** | ||
2 | * | ||
3 | * This file is provided under a dual BSD/GPLv2 license. When using or | ||
4 | * redistributing this file, you may do so under either license. | ||
5 | * | ||
6 | * GPL LICENSE SUMMARY | ||
7 | * | ||
8 | * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of version 2 of the GNU General Public License as | ||
12 | * published by the Free Software Foundation. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but | ||
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
17 | * General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, | ||
22 | * USA | ||
23 | * | ||
24 | * The full GNU General Public License is included in this distribution | ||
25 | * in the file called COPYING. | ||
26 | * | ||
27 | * Contact Information: | ||
28 | * Intel Linux Wireless <ilw@linux.intel.com> | ||
29 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
30 | * | ||
31 | * BSD LICENSE | ||
32 | * | ||
33 | * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. | ||
34 | * All rights reserved. | ||
35 | * | ||
36 | * Redistribution and use in source and binary forms, with or without | ||
37 | * modification, are permitted provided that the following conditions | ||
38 | * are met: | ||
39 | * | ||
40 | * * Redistributions of source code must retain the above copyright | ||
41 | * notice, this list of conditions and the following disclaimer. | ||
42 | * * Redistributions in binary form must reproduce the above copyright | ||
43 | * notice, this list of conditions and the following disclaimer in | ||
44 | * the documentation and/or other materials provided with the | ||
45 | * distribution. | ||
46 | * * Neither the name Intel Corporation nor the names of its | ||
47 | * contributors may be used to endorse or promote products derived | ||
48 | * from this software without specific prior written permission. | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
51 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
52 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
53 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
54 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
56 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
57 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
58 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
59 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
60 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
61 | *****************************************************************************/ | ||
62 | |||
63 | #include <linux/slab.h> | ||
64 | #include <net/mac80211.h> | ||
65 | |||
66 | #include "iwl-trans.h" | ||
67 | |||
68 | #include "dev.h" | ||
69 | #include "calib.h" | ||
70 | #include "agn.h" | ||
71 | |||
72 | /***************************************************************************** | ||
73 | * INIT calibrations framework | ||
74 | *****************************************************************************/ | ||
75 | |||
76 | /* Opaque calibration results */ | ||
77 | struct iwl_calib_result { | ||
78 | struct list_head list; | ||
79 | size_t cmd_len; | ||
80 | struct iwl_calib_hdr hdr; | ||
81 | /* data follows */ | ||
82 | }; | ||
83 | |||
84 | struct statistics_general_data { | ||
85 | u32 beacon_silence_rssi_a; | ||
86 | u32 beacon_silence_rssi_b; | ||
87 | u32 beacon_silence_rssi_c; | ||
88 | u32 beacon_energy_a; | ||
89 | u32 beacon_energy_b; | ||
90 | u32 beacon_energy_c; | ||
91 | }; | ||
92 | |||
93 | int iwl_send_calib_results(struct iwl_priv *priv) | ||
94 | { | ||
95 | struct iwl_host_cmd hcmd = { | ||
96 | .id = REPLY_PHY_CALIBRATION_CMD, | ||
97 | }; | ||
98 | struct iwl_calib_result *res; | ||
99 | |||
100 | list_for_each_entry(res, &priv->calib_results, list) { | ||
101 | int ret; | ||
102 | |||
103 | hcmd.len[0] = res->cmd_len; | ||
104 | hcmd.data[0] = &res->hdr; | ||
105 | hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; | ||
106 | ret = iwl_dvm_send_cmd(priv, &hcmd); | ||
107 | if (ret) { | ||
108 | IWL_ERR(priv, "Error %d on calib cmd %d\n", | ||
109 | ret, res->hdr.op_code); | ||
110 | return ret; | ||
111 | } | ||
112 | } | ||
113 | |||
114 | return 0; | ||
115 | } | ||
116 | |||
117 | int iwl_calib_set(struct iwl_priv *priv, | ||
118 | const struct iwl_calib_hdr *cmd, int len) | ||
119 | { | ||
120 | struct iwl_calib_result *res, *tmp; | ||
121 | |||
122 | res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr), | ||
123 | GFP_ATOMIC); | ||
124 | if (!res) | ||
125 | return -ENOMEM; | ||
126 | memcpy(&res->hdr, cmd, len); | ||
127 | res->cmd_len = len; | ||
128 | |||
129 | list_for_each_entry(tmp, &priv->calib_results, list) { | ||
130 | if (tmp->hdr.op_code == res->hdr.op_code) { | ||
131 | list_replace(&tmp->list, &res->list); | ||
132 | kfree(tmp); | ||
133 | return 0; | ||
134 | } | ||
135 | } | ||
136 | |||
137 | /* wasn't in list already */ | ||
138 | list_add_tail(&res->list, &priv->calib_results); | ||
139 | |||
140 | return 0; | ||
141 | } | ||
142 | |||
143 | void iwl_calib_free_results(struct iwl_priv *priv) | ||
144 | { | ||
145 | struct iwl_calib_result *res, *tmp; | ||
146 | |||
147 | list_for_each_entry_safe(res, tmp, &priv->calib_results, list) { | ||
148 | list_del(&res->list); | ||
149 | kfree(res); | ||
150 | } | ||
151 | } | ||
152 | |||
153 | /***************************************************************************** | ||
154 | * RUNTIME calibrations framework | ||
155 | *****************************************************************************/ | ||
156 | |||
157 | /* "false alarms" are signals that our DSP tries to lock onto, | ||
158 | * but then determines that they are either noise, or transmissions | ||
159 | * from a distant wireless network (also "noise", really) that get | ||
160 | * "stepped on" by stronger transmissions within our own network. | ||
161 | * This algorithm attempts to set a sensitivity level that is high | ||
162 | * enough to receive all of our own network traffic, but not so | ||
163 | * high that our DSP gets too busy trying to lock onto non-network | ||
164 | * activity/noise. */ | ||
165 | static int iwl_sens_energy_cck(struct iwl_priv *priv, | ||
166 | u32 norm_fa, | ||
167 | u32 rx_enable_time, | ||
168 | struct statistics_general_data *rx_info) | ||
169 | { | ||
170 | u32 max_nrg_cck = 0; | ||
171 | int i = 0; | ||
172 | u8 max_silence_rssi = 0; | ||
173 | u32 silence_ref = 0; | ||
174 | u8 silence_rssi_a = 0; | ||
175 | u8 silence_rssi_b = 0; | ||
176 | u8 silence_rssi_c = 0; | ||
177 | u32 val; | ||
178 | |||
179 | /* "false_alarms" values below are cross-multiplications to assess the | ||
180 | * numbers of false alarms within the measured period of actual Rx | ||
181 | * (Rx is off when we're txing), vs the min/max expected false alarms | ||
182 | * (some should be expected if rx is sensitive enough) in a | ||
183 | * hypothetical listening period of 200 time units (TU), 204.8 msec: | ||
184 | * | ||
185 | * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time | ||
186 | * | ||
187 | * */ | ||
188 | u32 false_alarms = norm_fa * 200 * 1024; | ||
189 | u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; | ||
190 | u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; | ||
191 | struct iwl_sensitivity_data *data = NULL; | ||
192 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
193 | |||
194 | data = &(priv->sensitivity_data); | ||
195 | |||
196 | data->nrg_auto_corr_silence_diff = 0; | ||
197 | |||
198 | /* Find max silence rssi among all 3 receivers. | ||
199 | * This is background noise, which may include transmissions from other | ||
200 | * networks, measured during silence before our network's beacon */ | ||
201 | silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & | ||
202 | ALL_BAND_FILTER) >> 8); | ||
203 | silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & | ||
204 | ALL_BAND_FILTER) >> 8); | ||
205 | silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & | ||
206 | ALL_BAND_FILTER) >> 8); | ||
207 | |||
208 | val = max(silence_rssi_b, silence_rssi_c); | ||
209 | max_silence_rssi = max(silence_rssi_a, (u8) val); | ||
210 | |||
211 | /* Store silence rssi in 20-beacon history table */ | ||
212 | data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; | ||
213 | data->nrg_silence_idx++; | ||
214 | if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) | ||
215 | data->nrg_silence_idx = 0; | ||
216 | |||
217 | /* Find max silence rssi across 20 beacon history */ | ||
218 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { | ||
219 | val = data->nrg_silence_rssi[i]; | ||
220 | silence_ref = max(silence_ref, val); | ||
221 | } | ||
222 | IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n", | ||
223 | silence_rssi_a, silence_rssi_b, silence_rssi_c, | ||
224 | silence_ref); | ||
225 | |||
226 | /* Find max rx energy (min value!) among all 3 receivers, | ||
227 | * measured during beacon frame. | ||
228 | * Save it in 10-beacon history table. */ | ||
229 | i = data->nrg_energy_idx; | ||
230 | val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); | ||
231 | data->nrg_value[i] = min(rx_info->beacon_energy_a, val); | ||
232 | |||
233 | data->nrg_energy_idx++; | ||
234 | if (data->nrg_energy_idx >= 10) | ||
235 | data->nrg_energy_idx = 0; | ||
236 | |||
237 | /* Find min rx energy (max value) across 10 beacon history. | ||
238 | * This is the minimum signal level that we want to receive well. | ||
239 | * Add backoff (margin so we don't miss slightly lower energy frames). | ||
240 | * This establishes an upper bound (min value) for energy threshold. */ | ||
241 | max_nrg_cck = data->nrg_value[0]; | ||
242 | for (i = 1; i < 10; i++) | ||
243 | max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); | ||
244 | max_nrg_cck += 6; | ||
245 | |||
246 | IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", | ||
247 | rx_info->beacon_energy_a, rx_info->beacon_energy_b, | ||
248 | rx_info->beacon_energy_c, max_nrg_cck - 6); | ||
249 | |||
250 | /* Count number of consecutive beacons with fewer-than-desired | ||
251 | * false alarms. */ | ||
252 | if (false_alarms < min_false_alarms) | ||
253 | data->num_in_cck_no_fa++; | ||
254 | else | ||
255 | data->num_in_cck_no_fa = 0; | ||
256 | IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n", | ||
257 | data->num_in_cck_no_fa); | ||
258 | |||
259 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
260 | if ((false_alarms > max_false_alarms) && | ||
261 | (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { | ||
262 | IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n", | ||
263 | false_alarms, max_false_alarms); | ||
264 | IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n"); | ||
265 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
266 | /* Store for "fewer than desired" on later beacon */ | ||
267 | data->nrg_silence_ref = silence_ref; | ||
268 | |||
269 | /* increase energy threshold (reduce nrg value) | ||
270 | * to decrease sensitivity */ | ||
271 | data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; | ||
272 | /* Else if we got fewer than desired, increase sensitivity */ | ||
273 | } else if (false_alarms < min_false_alarms) { | ||
274 | data->nrg_curr_state = IWL_FA_TOO_FEW; | ||
275 | |||
276 | /* Compare silence level with silence level for most recent | ||
277 | * healthy number or too many false alarms */ | ||
278 | data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - | ||
279 | (s32)silence_ref; | ||
280 | |||
281 | IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n", | ||
282 | false_alarms, min_false_alarms, | ||
283 | data->nrg_auto_corr_silence_diff); | ||
284 | |||
285 | /* Increase value to increase sensitivity, but only if: | ||
286 | * 1a) previous beacon did *not* have *too many* false alarms | ||
287 | * 1b) AND there's a significant difference in Rx levels | ||
288 | * from a previous beacon with too many, or healthy # FAs | ||
289 | * OR 2) We've seen a lot of beacons (100) with too few | ||
290 | * false alarms */ | ||
291 | if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && | ||
292 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
293 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
294 | |||
295 | IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n"); | ||
296 | /* Increase nrg value to increase sensitivity */ | ||
297 | val = data->nrg_th_cck + NRG_STEP_CCK; | ||
298 | data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); | ||
299 | } else { | ||
300 | IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n"); | ||
301 | } | ||
302 | |||
303 | /* Else we got a healthy number of false alarms, keep status quo */ | ||
304 | } else { | ||
305 | IWL_DEBUG_CALIB(priv, " FA in safe zone\n"); | ||
306 | data->nrg_curr_state = IWL_FA_GOOD_RANGE; | ||
307 | |||
308 | /* Store for use in "fewer than desired" with later beacon */ | ||
309 | data->nrg_silence_ref = silence_ref; | ||
310 | |||
311 | /* If previous beacon had too many false alarms, | ||
312 | * give it some extra margin by reducing sensitivity again | ||
313 | * (but don't go below measured energy of desired Rx) */ | ||
314 | if (IWL_FA_TOO_MANY == data->nrg_prev_state) { | ||
315 | IWL_DEBUG_CALIB(priv, "... increasing margin\n"); | ||
316 | if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) | ||
317 | data->nrg_th_cck -= NRG_MARGIN; | ||
318 | else | ||
319 | data->nrg_th_cck = max_nrg_cck; | ||
320 | } | ||
321 | } | ||
322 | |||
323 | /* Make sure the energy threshold does not go above the measured | ||
324 | * energy of the desired Rx signals (reduced by backoff margin), | ||
325 | * or else we might start missing Rx frames. | ||
326 | * Lower value is higher energy, so we use max()! | ||
327 | */ | ||
328 | data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); | ||
329 | IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck); | ||
330 | |||
331 | data->nrg_prev_state = data->nrg_curr_state; | ||
332 | |||
333 | /* Auto-correlation CCK algorithm */ | ||
334 | if (false_alarms > min_false_alarms) { | ||
335 | |||
336 | /* increase auto_corr values to decrease sensitivity | ||
337 | * so the DSP won't be disturbed by the noise | ||
338 | */ | ||
339 | if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) | ||
340 | data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; | ||
341 | else { | ||
342 | val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; | ||
343 | data->auto_corr_cck = | ||
344 | min((u32)ranges->auto_corr_max_cck, val); | ||
345 | } | ||
346 | val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; | ||
347 | data->auto_corr_cck_mrc = | ||
348 | min((u32)ranges->auto_corr_max_cck_mrc, val); | ||
349 | } else if ((false_alarms < min_false_alarms) && | ||
350 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
351 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
352 | |||
353 | /* Decrease auto_corr values to increase sensitivity */ | ||
354 | val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; | ||
355 | data->auto_corr_cck = | ||
356 | max((u32)ranges->auto_corr_min_cck, val); | ||
357 | val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; | ||
358 | data->auto_corr_cck_mrc = | ||
359 | max((u32)ranges->auto_corr_min_cck_mrc, val); | ||
360 | } | ||
361 | |||
362 | return 0; | ||
363 | } | ||
364 | |||
365 | |||
366 | static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, | ||
367 | u32 norm_fa, | ||
368 | u32 rx_enable_time) | ||
369 | { | ||
370 | u32 val; | ||
371 | u32 false_alarms = norm_fa * 200 * 1024; | ||
372 | u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; | ||
373 | u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; | ||
374 | struct iwl_sensitivity_data *data = NULL; | ||
375 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
376 | |||
377 | data = &(priv->sensitivity_data); | ||
378 | |||
379 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
380 | if (false_alarms > max_false_alarms) { | ||
381 | |||
382 | IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n", | ||
383 | false_alarms, max_false_alarms); | ||
384 | |||
385 | val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; | ||
386 | data->auto_corr_ofdm = | ||
387 | min((u32)ranges->auto_corr_max_ofdm, val); | ||
388 | |||
389 | val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; | ||
390 | data->auto_corr_ofdm_mrc = | ||
391 | min((u32)ranges->auto_corr_max_ofdm_mrc, val); | ||
392 | |||
393 | val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; | ||
394 | data->auto_corr_ofdm_x1 = | ||
395 | min((u32)ranges->auto_corr_max_ofdm_x1, val); | ||
396 | |||
397 | val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; | ||
398 | data->auto_corr_ofdm_mrc_x1 = | ||
399 | min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); | ||
400 | } | ||
401 | |||
402 | /* Else if we got fewer than desired, increase sensitivity */ | ||
403 | else if (false_alarms < min_false_alarms) { | ||
404 | |||
405 | IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n", | ||
406 | false_alarms, min_false_alarms); | ||
407 | |||
408 | val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; | ||
409 | data->auto_corr_ofdm = | ||
410 | max((u32)ranges->auto_corr_min_ofdm, val); | ||
411 | |||
412 | val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; | ||
413 | data->auto_corr_ofdm_mrc = | ||
414 | max((u32)ranges->auto_corr_min_ofdm_mrc, val); | ||
415 | |||
416 | val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; | ||
417 | data->auto_corr_ofdm_x1 = | ||
418 | max((u32)ranges->auto_corr_min_ofdm_x1, val); | ||
419 | |||
420 | val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; | ||
421 | data->auto_corr_ofdm_mrc_x1 = | ||
422 | max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); | ||
423 | } else { | ||
424 | IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n", | ||
425 | min_false_alarms, false_alarms, max_false_alarms); | ||
426 | } | ||
427 | return 0; | ||
428 | } | ||
429 | |||
430 | static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv, | ||
431 | struct iwl_sensitivity_data *data, | ||
432 | __le16 *tbl) | ||
433 | { | ||
434 | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = | ||
435 | cpu_to_le16((u16)data->auto_corr_ofdm); | ||
436 | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = | ||
437 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc); | ||
438 | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = | ||
439 | cpu_to_le16((u16)data->auto_corr_ofdm_x1); | ||
440 | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = | ||
441 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); | ||
442 | |||
443 | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = | ||
444 | cpu_to_le16((u16)data->auto_corr_cck); | ||
445 | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = | ||
446 | cpu_to_le16((u16)data->auto_corr_cck_mrc); | ||
447 | |||
448 | tbl[HD_MIN_ENERGY_CCK_DET_INDEX] = | ||
449 | cpu_to_le16((u16)data->nrg_th_cck); | ||
450 | tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] = | ||
451 | cpu_to_le16((u16)data->nrg_th_ofdm); | ||
452 | |||
453 | tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = | ||
454 | cpu_to_le16(data->barker_corr_th_min); | ||
455 | tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = | ||
456 | cpu_to_le16(data->barker_corr_th_min_mrc); | ||
457 | tbl[HD_OFDM_ENERGY_TH_IN_INDEX] = | ||
458 | cpu_to_le16(data->nrg_th_cca); | ||
459 | |||
460 | IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", | ||
461 | data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, | ||
462 | data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, | ||
463 | data->nrg_th_ofdm); | ||
464 | |||
465 | IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n", | ||
466 | data->auto_corr_cck, data->auto_corr_cck_mrc, | ||
467 | data->nrg_th_cck); | ||
468 | } | ||
469 | |||
470 | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | ||
471 | static int iwl_sensitivity_write(struct iwl_priv *priv) | ||
472 | { | ||
473 | struct iwl_sensitivity_cmd cmd; | ||
474 | struct iwl_sensitivity_data *data = NULL; | ||
475 | struct iwl_host_cmd cmd_out = { | ||
476 | .id = SENSITIVITY_CMD, | ||
477 | .len = { sizeof(struct iwl_sensitivity_cmd), }, | ||
478 | .flags = CMD_ASYNC, | ||
479 | .data = { &cmd, }, | ||
480 | }; | ||
481 | |||
482 | data = &(priv->sensitivity_data); | ||
483 | |||
484 | memset(&cmd, 0, sizeof(cmd)); | ||
485 | |||
486 | iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]); | ||
487 | |||
488 | /* Update uCode's "work" table, and copy it to DSP */ | ||
489 | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | ||
490 | |||
491 | /* Don't send command to uCode if nothing has changed */ | ||
492 | if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), | ||
493 | sizeof(u16)*HD_TABLE_SIZE)) { | ||
494 | IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); | ||
495 | return 0; | ||
496 | } | ||
497 | |||
498 | /* Copy table for comparison next time */ | ||
499 | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), | ||
500 | sizeof(u16)*HD_TABLE_SIZE); | ||
501 | |||
502 | return iwl_dvm_send_cmd(priv, &cmd_out); | ||
503 | } | ||
504 | |||
505 | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | ||
506 | static int iwl_enhance_sensitivity_write(struct iwl_priv *priv) | ||
507 | { | ||
508 | struct iwl_enhance_sensitivity_cmd cmd; | ||
509 | struct iwl_sensitivity_data *data = NULL; | ||
510 | struct iwl_host_cmd cmd_out = { | ||
511 | .id = SENSITIVITY_CMD, | ||
512 | .len = { sizeof(struct iwl_enhance_sensitivity_cmd), }, | ||
513 | .flags = CMD_ASYNC, | ||
514 | .data = { &cmd, }, | ||
515 | }; | ||
516 | |||
517 | data = &(priv->sensitivity_data); | ||
518 | |||
519 | memset(&cmd, 0, sizeof(cmd)); | ||
520 | |||
521 | iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]); | ||
522 | |||
523 | if (priv->lib->hd_v2) { | ||
524 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = | ||
525 | HD_INA_NON_SQUARE_DET_OFDM_DATA_V2; | ||
526 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = | ||
527 | HD_INA_NON_SQUARE_DET_CCK_DATA_V2; | ||
528 | cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = | ||
529 | HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2; | ||
530 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
531 | HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; | ||
532 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
533 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; | ||
534 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = | ||
535 | HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2; | ||
536 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
537 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2; | ||
538 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
539 | HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; | ||
540 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
541 | HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; | ||
542 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = | ||
543 | HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2; | ||
544 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
545 | HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2; | ||
546 | } else { | ||
547 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = | ||
548 | HD_INA_NON_SQUARE_DET_OFDM_DATA_V1; | ||
549 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = | ||
550 | HD_INA_NON_SQUARE_DET_CCK_DATA_V1; | ||
551 | cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = | ||
552 | HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1; | ||
553 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
554 | HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; | ||
555 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
556 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; | ||
557 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = | ||
558 | HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1; | ||
559 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
560 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1; | ||
561 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
562 | HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; | ||
563 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
564 | HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; | ||
565 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = | ||
566 | HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1; | ||
567 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
568 | HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1; | ||
569 | } | ||
570 | |||
571 | /* Update uCode's "work" table, and copy it to DSP */ | ||
572 | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | ||
573 | |||
574 | /* Don't send command to uCode if nothing has changed */ | ||
575 | if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]), | ||
576 | sizeof(u16)*HD_TABLE_SIZE) && | ||
577 | !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX], | ||
578 | &(priv->enhance_sensitivity_tbl[0]), | ||
579 | sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) { | ||
580 | IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); | ||
581 | return 0; | ||
582 | } | ||
583 | |||
584 | /* Copy table for comparison next time */ | ||
585 | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]), | ||
586 | sizeof(u16)*HD_TABLE_SIZE); | ||
587 | memcpy(&(priv->enhance_sensitivity_tbl[0]), | ||
588 | &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]), | ||
589 | sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES); | ||
590 | |||
591 | return iwl_dvm_send_cmd(priv, &cmd_out); | ||
592 | } | ||
593 | |||
594 | void iwl_init_sensitivity(struct iwl_priv *priv) | ||
595 | { | ||
596 | int ret = 0; | ||
597 | int i; | ||
598 | struct iwl_sensitivity_data *data = NULL; | ||
599 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
600 | |||
601 | if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) | ||
602 | return; | ||
603 | |||
604 | IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n"); | ||
605 | |||
606 | /* Clear driver's sensitivity algo data */ | ||
607 | data = &(priv->sensitivity_data); | ||
608 | |||
609 | if (ranges == NULL) | ||
610 | return; | ||
611 | |||
612 | memset(data, 0, sizeof(struct iwl_sensitivity_data)); | ||
613 | |||
614 | data->num_in_cck_no_fa = 0; | ||
615 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
616 | data->nrg_prev_state = IWL_FA_TOO_MANY; | ||
617 | data->nrg_silence_ref = 0; | ||
618 | data->nrg_silence_idx = 0; | ||
619 | data->nrg_energy_idx = 0; | ||
620 | |||
621 | for (i = 0; i < 10; i++) | ||
622 | data->nrg_value[i] = 0; | ||
623 | |||
624 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) | ||
625 | data->nrg_silence_rssi[i] = 0; | ||
626 | |||
627 | data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; | ||
628 | data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; | ||
629 | data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; | ||
630 | data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; | ||
631 | data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; | ||
632 | data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; | ||
633 | data->nrg_th_cck = ranges->nrg_th_cck; | ||
634 | data->nrg_th_ofdm = ranges->nrg_th_ofdm; | ||
635 | data->barker_corr_th_min = ranges->barker_corr_th_min; | ||
636 | data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; | ||
637 | data->nrg_th_cca = ranges->nrg_th_cca; | ||
638 | |||
639 | data->last_bad_plcp_cnt_ofdm = 0; | ||
640 | data->last_fa_cnt_ofdm = 0; | ||
641 | data->last_bad_plcp_cnt_cck = 0; | ||
642 | data->last_fa_cnt_cck = 0; | ||
643 | |||
644 | if (priv->fw->enhance_sensitivity_table) | ||
645 | ret |= iwl_enhance_sensitivity_write(priv); | ||
646 | else | ||
647 | ret |= iwl_sensitivity_write(priv); | ||
648 | IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret); | ||
649 | } | ||
650 | |||
651 | void iwl_sensitivity_calibration(struct iwl_priv *priv) | ||
652 | { | ||
653 | u32 rx_enable_time; | ||
654 | u32 fa_cck; | ||
655 | u32 fa_ofdm; | ||
656 | u32 bad_plcp_cck; | ||
657 | u32 bad_plcp_ofdm; | ||
658 | u32 norm_fa_ofdm; | ||
659 | u32 norm_fa_cck; | ||
660 | struct iwl_sensitivity_data *data = NULL; | ||
661 | struct statistics_rx_non_phy *rx_info; | ||
662 | struct statistics_rx_phy *ofdm, *cck; | ||
663 | struct statistics_general_data statis; | ||
664 | |||
665 | if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) | ||
666 | return; | ||
667 | |||
668 | data = &(priv->sensitivity_data); | ||
669 | |||
670 | if (!iwl_is_any_associated(priv)) { | ||
671 | IWL_DEBUG_CALIB(priv, "<< - not associated\n"); | ||
672 | return; | ||
673 | } | ||
674 | |||
675 | spin_lock_bh(&priv->statistics.lock); | ||
676 | rx_info = &priv->statistics.rx_non_phy; | ||
677 | ofdm = &priv->statistics.rx_ofdm; | ||
678 | cck = &priv->statistics.rx_cck; | ||
679 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
680 | IWL_DEBUG_CALIB(priv, "<< invalid data.\n"); | ||
681 | spin_unlock_bh(&priv->statistics.lock); | ||
682 | return; | ||
683 | } | ||
684 | |||
685 | /* Extract Statistics: */ | ||
686 | rx_enable_time = le32_to_cpu(rx_info->channel_load); | ||
687 | fa_cck = le32_to_cpu(cck->false_alarm_cnt); | ||
688 | fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); | ||
689 | bad_plcp_cck = le32_to_cpu(cck->plcp_err); | ||
690 | bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); | ||
691 | |||
692 | statis.beacon_silence_rssi_a = | ||
693 | le32_to_cpu(rx_info->beacon_silence_rssi_a); | ||
694 | statis.beacon_silence_rssi_b = | ||
695 | le32_to_cpu(rx_info->beacon_silence_rssi_b); | ||
696 | statis.beacon_silence_rssi_c = | ||
697 | le32_to_cpu(rx_info->beacon_silence_rssi_c); | ||
698 | statis.beacon_energy_a = | ||
699 | le32_to_cpu(rx_info->beacon_energy_a); | ||
700 | statis.beacon_energy_b = | ||
701 | le32_to_cpu(rx_info->beacon_energy_b); | ||
702 | statis.beacon_energy_c = | ||
703 | le32_to_cpu(rx_info->beacon_energy_c); | ||
704 | |||
705 | spin_unlock_bh(&priv->statistics.lock); | ||
706 | |||
707 | IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time); | ||
708 | |||
709 | if (!rx_enable_time) { | ||
710 | IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n"); | ||
711 | return; | ||
712 | } | ||
713 | |||
714 | /* These statistics increase monotonically, and do not reset | ||
715 | * at each beacon. Calculate difference from last value, or just | ||
716 | * use the new statistics value if it has reset or wrapped around. */ | ||
717 | if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) | ||
718 | data->last_bad_plcp_cnt_cck = bad_plcp_cck; | ||
719 | else { | ||
720 | bad_plcp_cck -= data->last_bad_plcp_cnt_cck; | ||
721 | data->last_bad_plcp_cnt_cck += bad_plcp_cck; | ||
722 | } | ||
723 | |||
724 | if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) | ||
725 | data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; | ||
726 | else { | ||
727 | bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; | ||
728 | data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; | ||
729 | } | ||
730 | |||
731 | if (data->last_fa_cnt_ofdm > fa_ofdm) | ||
732 | data->last_fa_cnt_ofdm = fa_ofdm; | ||
733 | else { | ||
734 | fa_ofdm -= data->last_fa_cnt_ofdm; | ||
735 | data->last_fa_cnt_ofdm += fa_ofdm; | ||
736 | } | ||
737 | |||
738 | if (data->last_fa_cnt_cck > fa_cck) | ||
739 | data->last_fa_cnt_cck = fa_cck; | ||
740 | else { | ||
741 | fa_cck -= data->last_fa_cnt_cck; | ||
742 | data->last_fa_cnt_cck += fa_cck; | ||
743 | } | ||
744 | |||
745 | /* Total aborted signal locks */ | ||
746 | norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; | ||
747 | norm_fa_cck = fa_cck + bad_plcp_cck; | ||
748 | |||
749 | IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, | ||
750 | bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); | ||
751 | |||
752 | iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); | ||
753 | iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); | ||
754 | if (priv->fw->enhance_sensitivity_table) | ||
755 | iwl_enhance_sensitivity_write(priv); | ||
756 | else | ||
757 | iwl_sensitivity_write(priv); | ||
758 | } | ||
759 | |||
760 | static inline u8 find_first_chain(u8 mask) | ||
761 | { | ||
762 | if (mask & ANT_A) | ||
763 | return CHAIN_A; | ||
764 | if (mask & ANT_B) | ||
765 | return CHAIN_B; | ||
766 | return CHAIN_C; | ||
767 | } | ||
768 | |||
769 | /** | ||
770 | * Run disconnected antenna algorithm to find out which antennas are | ||
771 | * disconnected. | ||
772 | */ | ||
773 | static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig, | ||
774 | struct iwl_chain_noise_data *data) | ||
775 | { | ||
776 | u32 active_chains = 0; | ||
777 | u32 max_average_sig; | ||
778 | u16 max_average_sig_antenna_i; | ||
779 | u8 num_tx_chains; | ||
780 | u8 first_chain; | ||
781 | u16 i = 0; | ||
782 | |||
783 | average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS; | ||
784 | average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS; | ||
785 | average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS; | ||
786 | |||
787 | if (average_sig[0] >= average_sig[1]) { | ||
788 | max_average_sig = average_sig[0]; | ||
789 | max_average_sig_antenna_i = 0; | ||
790 | active_chains = (1 << max_average_sig_antenna_i); | ||
791 | } else { | ||
792 | max_average_sig = average_sig[1]; | ||
793 | max_average_sig_antenna_i = 1; | ||
794 | active_chains = (1 << max_average_sig_antenna_i); | ||
795 | } | ||
796 | |||
797 | if (average_sig[2] >= max_average_sig) { | ||
798 | max_average_sig = average_sig[2]; | ||
799 | max_average_sig_antenna_i = 2; | ||
800 | active_chains = (1 << max_average_sig_antenna_i); | ||
801 | } | ||
802 | |||
803 | IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n", | ||
804 | average_sig[0], average_sig[1], average_sig[2]); | ||
805 | IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n", | ||
806 | max_average_sig, max_average_sig_antenna_i); | ||
807 | |||
808 | /* Compare signal strengths for all 3 receivers. */ | ||
809 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
810 | if (i != max_average_sig_antenna_i) { | ||
811 | s32 rssi_delta = (max_average_sig - average_sig[i]); | ||
812 | |||
813 | /* If signal is very weak, compared with | ||
814 | * strongest, mark it as disconnected. */ | ||
815 | if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) | ||
816 | data->disconn_array[i] = 1; | ||
817 | else | ||
818 | active_chains |= (1 << i); | ||
819 | IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d " | ||
820 | "disconn_array[i] = %d\n", | ||
821 | i, rssi_delta, data->disconn_array[i]); | ||
822 | } | ||
823 | } | ||
824 | |||
825 | /* | ||
826 | * The above algorithm sometimes fails when the ucode | ||
827 | * reports 0 for all chains. It's not clear why that | ||
828 | * happens to start with, but it is then causing trouble | ||
829 | * because this can make us enable more chains than the | ||
830 | * hardware really has. | ||
831 | * | ||
832 | * To be safe, simply mask out any chains that we know | ||
833 | * are not on the device. | ||
834 | */ | ||
835 | active_chains &= priv->nvm_data->valid_rx_ant; | ||
836 | |||
837 | num_tx_chains = 0; | ||
838 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
839 | /* loops on all the bits of | ||
840 | * priv->hw_setting.valid_tx_ant */ | ||
841 | u8 ant_msk = (1 << i); | ||
842 | if (!(priv->nvm_data->valid_tx_ant & ant_msk)) | ||
843 | continue; | ||
844 | |||
845 | num_tx_chains++; | ||
846 | if (data->disconn_array[i] == 0) | ||
847 | /* there is a Tx antenna connected */ | ||
848 | break; | ||
849 | if (num_tx_chains == priv->hw_params.tx_chains_num && | ||
850 | data->disconn_array[i]) { | ||
851 | /* | ||
852 | * If all chains are disconnected | ||
853 | * connect the first valid tx chain | ||
854 | */ | ||
855 | first_chain = | ||
856 | find_first_chain(priv->nvm_data->valid_tx_ant); | ||
857 | data->disconn_array[first_chain] = 0; | ||
858 | active_chains |= BIT(first_chain); | ||
859 | IWL_DEBUG_CALIB(priv, | ||
860 | "All Tx chains are disconnected W/A - declare %d as connected\n", | ||
861 | first_chain); | ||
862 | break; | ||
863 | } | ||
864 | } | ||
865 | |||
866 | if (active_chains != priv->nvm_data->valid_rx_ant && | ||
867 | active_chains != priv->chain_noise_data.active_chains) | ||
868 | IWL_DEBUG_CALIB(priv, | ||
869 | "Detected that not all antennas are connected! " | ||
870 | "Connected: %#x, valid: %#x.\n", | ||
871 | active_chains, | ||
872 | priv->nvm_data->valid_rx_ant); | ||
873 | |||
874 | /* Save for use within RXON, TX, SCAN commands, etc. */ | ||
875 | data->active_chains = active_chains; | ||
876 | IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n", | ||
877 | active_chains); | ||
878 | } | ||
879 | |||
880 | static void iwlagn_gain_computation(struct iwl_priv *priv, | ||
881 | u32 average_noise[NUM_RX_CHAINS], | ||
882 | u8 default_chain) | ||
883 | { | ||
884 | int i; | ||
885 | s32 delta_g; | ||
886 | struct iwl_chain_noise_data *data = &priv->chain_noise_data; | ||
887 | |||
888 | /* | ||
889 | * Find Gain Code for the chains based on "default chain" | ||
890 | */ | ||
891 | for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) { | ||
892 | if ((data->disconn_array[i])) { | ||
893 | data->delta_gain_code[i] = 0; | ||
894 | continue; | ||
895 | } | ||
896 | |||
897 | delta_g = (priv->lib->chain_noise_scale * | ||
898 | ((s32)average_noise[default_chain] - | ||
899 | (s32)average_noise[i])) / 1500; | ||
900 | |||
901 | /* bound gain by 2 bits value max, 3rd bit is sign */ | ||
902 | data->delta_gain_code[i] = | ||
903 | min(abs(delta_g), | ||
904 | (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); | ||
905 | |||
906 | if (delta_g < 0) | ||
907 | /* | ||
908 | * set negative sign ... | ||
909 | * note to Intel developers: This is uCode API format, | ||
910 | * not the format of any internal device registers. | ||
911 | * Do not change this format for e.g. 6050 or similar | ||
912 | * devices. Change format only if more resolution | ||
913 | * (i.e. more than 2 bits magnitude) is needed. | ||
914 | */ | ||
915 | data->delta_gain_code[i] |= (1 << 2); | ||
916 | } | ||
917 | |||
918 | IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n", | ||
919 | data->delta_gain_code[1], data->delta_gain_code[2]); | ||
920 | |||
921 | if (!data->radio_write) { | ||
922 | struct iwl_calib_chain_noise_gain_cmd cmd; | ||
923 | |||
924 | memset(&cmd, 0, sizeof(cmd)); | ||
925 | |||
926 | iwl_set_calib_hdr(&cmd.hdr, | ||
927 | priv->phy_calib_chain_noise_gain_cmd); | ||
928 | cmd.delta_gain_1 = data->delta_gain_code[1]; | ||
929 | cmd.delta_gain_2 = data->delta_gain_code[2]; | ||
930 | iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD, | ||
931 | CMD_ASYNC, sizeof(cmd), &cmd); | ||
932 | |||
933 | data->radio_write = 1; | ||
934 | data->state = IWL_CHAIN_NOISE_CALIBRATED; | ||
935 | } | ||
936 | } | ||
937 | |||
938 | /* | ||
939 | * Accumulate 16 beacons of signal and noise statistics for each of | ||
940 | * 3 receivers/antennas/rx-chains, then figure out: | ||
941 | * 1) Which antennas are connected. | ||
942 | * 2) Differential rx gain settings to balance the 3 receivers. | ||
943 | */ | ||
944 | void iwl_chain_noise_calibration(struct iwl_priv *priv) | ||
945 | { | ||
946 | struct iwl_chain_noise_data *data = NULL; | ||
947 | |||
948 | u32 chain_noise_a; | ||
949 | u32 chain_noise_b; | ||
950 | u32 chain_noise_c; | ||
951 | u32 chain_sig_a; | ||
952 | u32 chain_sig_b; | ||
953 | u32 chain_sig_c; | ||
954 | u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
955 | u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
956 | u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; | ||
957 | u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; | ||
958 | u16 i = 0; | ||
959 | u16 rxon_chnum = INITIALIZATION_VALUE; | ||
960 | u16 stat_chnum = INITIALIZATION_VALUE; | ||
961 | u8 rxon_band24; | ||
962 | u8 stat_band24; | ||
963 | struct statistics_rx_non_phy *rx_info; | ||
964 | |||
965 | /* | ||
966 | * MULTI-FIXME: | ||
967 | * When we support multiple interfaces on different channels, | ||
968 | * this must be modified/fixed. | ||
969 | */ | ||
970 | struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; | ||
971 | |||
972 | if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED) | ||
973 | return; | ||
974 | |||
975 | data = &(priv->chain_noise_data); | ||
976 | |||
977 | /* | ||
978 | * Accumulate just the first "chain_noise_num_beacons" after | ||
979 | * the first association, then we're done forever. | ||
980 | */ | ||
981 | if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { | ||
982 | if (data->state == IWL_CHAIN_NOISE_ALIVE) | ||
983 | IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n"); | ||
984 | return; | ||
985 | } | ||
986 | |||
987 | spin_lock_bh(&priv->statistics.lock); | ||
988 | |||
989 | rx_info = &priv->statistics.rx_non_phy; | ||
990 | |||
991 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
992 | IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n"); | ||
993 | spin_unlock_bh(&priv->statistics.lock); | ||
994 | return; | ||
995 | } | ||
996 | |||
997 | rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK); | ||
998 | rxon_chnum = le16_to_cpu(ctx->staging.channel); | ||
999 | stat_band24 = | ||
1000 | !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); | ||
1001 | stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16; | ||
1002 | |||
1003 | /* Make sure we accumulate data for just the associated channel | ||
1004 | * (even if scanning). */ | ||
1005 | if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { | ||
1006 | IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n", | ||
1007 | rxon_chnum, rxon_band24); | ||
1008 | spin_unlock_bh(&priv->statistics.lock); | ||
1009 | return; | ||
1010 | } | ||
1011 | |||
1012 | /* | ||
1013 | * Accumulate beacon statistics values across | ||
1014 | * "chain_noise_num_beacons" | ||
1015 | */ | ||
1016 | chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & | ||
1017 | IN_BAND_FILTER; | ||
1018 | chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & | ||
1019 | IN_BAND_FILTER; | ||
1020 | chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & | ||
1021 | IN_BAND_FILTER; | ||
1022 | |||
1023 | chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; | ||
1024 | chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; | ||
1025 | chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; | ||
1026 | |||
1027 | spin_unlock_bh(&priv->statistics.lock); | ||
1028 | |||
1029 | data->beacon_count++; | ||
1030 | |||
1031 | data->chain_noise_a = (chain_noise_a + data->chain_noise_a); | ||
1032 | data->chain_noise_b = (chain_noise_b + data->chain_noise_b); | ||
1033 | data->chain_noise_c = (chain_noise_c + data->chain_noise_c); | ||
1034 | |||
1035 | data->chain_signal_a = (chain_sig_a + data->chain_signal_a); | ||
1036 | data->chain_signal_b = (chain_sig_b + data->chain_signal_b); | ||
1037 | data->chain_signal_c = (chain_sig_c + data->chain_signal_c); | ||
1038 | |||
1039 | IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n", | ||
1040 | rxon_chnum, rxon_band24, data->beacon_count); | ||
1041 | IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n", | ||
1042 | chain_sig_a, chain_sig_b, chain_sig_c); | ||
1043 | IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n", | ||
1044 | chain_noise_a, chain_noise_b, chain_noise_c); | ||
1045 | |||
1046 | /* If this is the "chain_noise_num_beacons", determine: | ||
1047 | * 1) Disconnected antennas (using signal strengths) | ||
1048 | * 2) Differential gain (using silence noise) to balance receivers */ | ||
1049 | if (data->beacon_count != IWL_CAL_NUM_BEACONS) | ||
1050 | return; | ||
1051 | |||
1052 | /* Analyze signal for disconnected antenna */ | ||
1053 | if (priv->lib->bt_params && | ||
1054 | priv->lib->bt_params->advanced_bt_coexist) { | ||
1055 | /* Disable disconnected antenna algorithm for advanced | ||
1056 | bt coex, assuming valid antennas are connected */ | ||
1057 | data->active_chains = priv->nvm_data->valid_rx_ant; | ||
1058 | for (i = 0; i < NUM_RX_CHAINS; i++) | ||
1059 | if (!(data->active_chains & (1<<i))) | ||
1060 | data->disconn_array[i] = 1; | ||
1061 | } else | ||
1062 | iwl_find_disconn_antenna(priv, average_sig, data); | ||
1063 | |||
1064 | /* Analyze noise for rx balance */ | ||
1065 | average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS; | ||
1066 | average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS; | ||
1067 | average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS; | ||
1068 | |||
1069 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
1070 | if (!(data->disconn_array[i]) && | ||
1071 | (average_noise[i] <= min_average_noise)) { | ||
1072 | /* This means that chain i is active and has | ||
1073 | * lower noise values so far: */ | ||
1074 | min_average_noise = average_noise[i]; | ||
1075 | min_average_noise_antenna_i = i; | ||
1076 | } | ||
1077 | } | ||
1078 | |||
1079 | IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n", | ||
1080 | average_noise[0], average_noise[1], | ||
1081 | average_noise[2]); | ||
1082 | |||
1083 | IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n", | ||
1084 | min_average_noise, min_average_noise_antenna_i); | ||
1085 | |||
1086 | iwlagn_gain_computation( | ||
1087 | priv, average_noise, | ||
1088 | find_first_chain(priv->nvm_data->valid_rx_ant)); | ||
1089 | |||
1090 | /* Some power changes may have been made during the calibration. | ||
1091 | * Update and commit the RXON | ||
1092 | */ | ||
1093 | iwl_update_chain_flags(priv); | ||
1094 | |||
1095 | data->state = IWL_CHAIN_NOISE_DONE; | ||
1096 | iwl_power_update_mode(priv, false); | ||
1097 | } | ||
1098 | |||
1099 | void iwl_reset_run_time_calib(struct iwl_priv *priv) | ||
1100 | { | ||
1101 | int i; | ||
1102 | memset(&(priv->sensitivity_data), 0, | ||
1103 | sizeof(struct iwl_sensitivity_data)); | ||
1104 | memset(&(priv->chain_noise_data), 0, | ||
1105 | sizeof(struct iwl_chain_noise_data)); | ||
1106 | for (i = 0; i < NUM_RX_CHAINS; i++) | ||
1107 | priv->chain_noise_data.delta_gain_code[i] = | ||
1108 | CHAIN_NOISE_DELTA_GAIN_INIT_VAL; | ||
1109 | |||
1110 | /* Ask for statistics now, the uCode will send notification | ||
1111 | * periodically after association */ | ||
1112 | iwl_send_statistics_request(priv, CMD_ASYNC, true); | ||
1113 | } | ||