diff options
author | Rex Zhu <Rex.Zhu@amd.com> | 2016-08-10 23:01:01 -0400 |
---|---|---|
committer | Alex Deucher <alexander.deucher@amd.com> | 2016-09-19 13:22:12 -0400 |
commit | 1486022088dea351805e4db4fc76c4d7c68733d6 (patch) | |
tree | 8c37221805728c4fd175347206293cb284fed29f /drivers/gpu | |
parent | b859c2070354ad8a2512e1524533d9f3291174c7 (diff) |
drm/amd/powerplay: implement fw image related smum interface for tonga.
Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Diffstat (limited to 'drivers/gpu')
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c | 2 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/Makefile | 2 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c | 3214 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h | 60 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c | 17 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h | 37 |
6 files changed, 3329 insertions, 3 deletions
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c index 42783bf7647c..3110bf0eeacc 100644 --- a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c | |||
@@ -800,7 +800,7 @@ static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) | |||
800 | 800 | ||
801 | if (0 == result) { | 801 | if (0 == result) { |
802 | data->soft_regs_start = tmp; | 802 | data->soft_regs_start = tmp; |
803 | tonga_smu->ulSoftRegsStart = tmp; | 803 | tonga_smu->soft_regs_start = tmp; |
804 | } | 804 | } |
805 | 805 | ||
806 | error |= (0 != result); | 806 | error |= (0 != result); |
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/Makefile b/drivers/gpu/drm/amd/powerplay/smumgr/Makefile index 7561239eb874..2ff4aa031b1a 100644 --- a/drivers/gpu/drm/amd/powerplay/smumgr/Makefile +++ b/drivers/gpu/drm/amd/powerplay/smumgr/Makefile | |||
@@ -3,7 +3,7 @@ | |||
3 | # It provides the smu management services for the driver. | 3 | # It provides the smu management services for the driver. |
4 | 4 | ||
5 | SMU_MGR = smumgr.o cz_smumgr.o tonga_smumgr.o fiji_smumgr.o fiji_smc.o\ | 5 | SMU_MGR = smumgr.o cz_smumgr.o tonga_smumgr.o fiji_smumgr.o fiji_smc.o\ |
6 | polaris10_smumgr.o iceland_smumgr.o polaris10_smc.o | 6 | polaris10_smumgr.o iceland_smumgr.o polaris10_smc.o tonga_smc.o |
7 | 7 | ||
8 | AMD_PP_SMUMGR = $(addprefix $(AMD_PP_PATH)/smumgr/,$(SMU_MGR)) | 8 | AMD_PP_SMUMGR = $(addprefix $(AMD_PP_PATH)/smumgr/,$(SMU_MGR)) |
9 | 9 | ||
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c new file mode 100644 index 000000000000..3acdbffed88c --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c | |||
@@ -0,0 +1,3214 @@ | |||
1 | /* | ||
2 | * Copyright 2015 Advanced Micro Devices, Inc. | ||
3 | * | ||
4 | * Permission is hereby granted, free of charge, to any person obtaining a | ||
5 | * copy of this software and associated documentation files (the "Software"), | ||
6 | * to deal in the Software without restriction, including without limitation | ||
7 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
8 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
9 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
10 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | ||
11 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | ||
12 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | ||
13 | * OTHER DEALINGS IN THE SOFTWARE. | ||
14 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
15 | * and/or sell copies of the Software, and to permit persons to whom the | ||
16 | * Software is furnished to do so, subject to the following conditions: | ||
17 | * | ||
18 | * The above copyright notice and this permission notice shall be included in | ||
19 | * all copies or substantial portions of the Software. | ||
20 | * | ||
21 | * | ||
22 | */ | ||
23 | |||
24 | #include "tonga_smc.h" | ||
25 | #include "smu7_dyn_defaults.h" | ||
26 | |||
27 | #include "smu7_hwmgr.h" | ||
28 | #include "hardwaremanager.h" | ||
29 | #include "ppatomctrl.h" | ||
30 | #include "pp_debug.h" | ||
31 | #include "cgs_common.h" | ||
32 | #include "atombios.h" | ||
33 | #include "tonga_smumgr.h" | ||
34 | #include "pppcielanes.h" | ||
35 | #include "pp_endian.h" | ||
36 | #include "smu7_ppsmc.h" | ||
37 | |||
38 | #include "smu72_discrete.h" | ||
39 | |||
40 | #include "smu/smu_7_1_2_d.h" | ||
41 | #include "smu/smu_7_1_2_sh_mask.h" | ||
42 | |||
43 | #include "gmc/gmc_8_1_d.h" | ||
44 | #include "gmc/gmc_8_1_sh_mask.h" | ||
45 | |||
46 | #include "bif/bif_5_0_d.h" | ||
47 | #include "bif/bif_5_0_sh_mask.h" | ||
48 | |||
49 | #include "dce/dce_10_0_d.h" | ||
50 | #include "dce/dce_10_0_sh_mask.h" | ||
51 | |||
52 | |||
53 | #define VOLTAGE_SCALE 4 | ||
54 | #define POWERTUNE_DEFAULT_SET_MAX 1 | ||
55 | #define VOLTAGE_VID_OFFSET_SCALE1 625 | ||
56 | #define VOLTAGE_VID_OFFSET_SCALE2 100 | ||
57 | #define MC_CG_ARB_FREQ_F1 0x0b | ||
58 | #define VDDC_VDDCI_DELTA 200 | ||
59 | |||
60 | |||
61 | static struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { | ||
62 | /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, | ||
63 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT | ||
64 | */ | ||
65 | {1, 0xF, 0xFD, 0x19, | ||
66 | 5, 45, 0, 0xB0000, | ||
67 | {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, | ||
68 | 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, | ||
69 | {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, | ||
70 | 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4} | ||
71 | }, | ||
72 | }; | ||
73 | |||
74 | /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ | ||
75 | static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = { | ||
76 | {600, 1050, 3, 0}, | ||
77 | {600, 1050, 6, 1} | ||
78 | }; | ||
79 | |||
80 | /* [FF, SS] type, [] 4 voltage ranges, | ||
81 | * and [Floor Freq, Boundary Freq, VID min , VID max] | ||
82 | */ | ||
83 | static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = { | ||
84 | { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, | ||
85 | { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } | ||
86 | }; | ||
87 | |||
88 | /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */ | ||
89 | static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = { | ||
90 | {0, 1, 3, 2, 4, 5}, | ||
91 | {0, 2, 4, 5, 6, 5} | ||
92 | }; | ||
93 | |||
94 | /* PPGen has the gain setting generated in x * 100 unit | ||
95 | * This function is to convert the unit to x * 4096(0x1000) unit. | ||
96 | * This is the unit expected by SMC firmware | ||
97 | */ | ||
98 | |||
99 | |||
100 | static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr, | ||
101 | phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, | ||
102 | uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) | ||
103 | { | ||
104 | uint32_t i = 0; | ||
105 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
106 | struct phm_ppt_v1_information *pptable_info = | ||
107 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
108 | |||
109 | /* clock - voltage dependency table is empty table */ | ||
110 | if (allowed_clock_voltage_table->count == 0) | ||
111 | return -EINVAL; | ||
112 | |||
113 | for (i = 0; i < allowed_clock_voltage_table->count; i++) { | ||
114 | /* find first sclk bigger than request */ | ||
115 | if (allowed_clock_voltage_table->entries[i].clk >= clock) { | ||
116 | voltage->VddGfx = phm_get_voltage_index( | ||
117 | pptable_info->vddgfx_lookup_table, | ||
118 | allowed_clock_voltage_table->entries[i].vddgfx); | ||
119 | voltage->Vddc = phm_get_voltage_index( | ||
120 | pptable_info->vddc_lookup_table, | ||
121 | allowed_clock_voltage_table->entries[i].vddc); | ||
122 | |||
123 | if (allowed_clock_voltage_table->entries[i].vddci) | ||
124 | voltage->Vddci = | ||
125 | phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci); | ||
126 | else | ||
127 | voltage->Vddci = | ||
128 | phm_get_voltage_id(&data->vddci_voltage_table, | ||
129 | allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA); | ||
130 | |||
131 | |||
132 | if (allowed_clock_voltage_table->entries[i].mvdd) | ||
133 | *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; | ||
134 | |||
135 | voltage->Phases = 1; | ||
136 | return 0; | ||
137 | } | ||
138 | } | ||
139 | |||
140 | /* sclk is bigger than max sclk in the dependence table */ | ||
141 | voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table, | ||
142 | allowed_clock_voltage_table->entries[i-1].vddgfx); | ||
143 | voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, | ||
144 | allowed_clock_voltage_table->entries[i-1].vddc); | ||
145 | |||
146 | if (allowed_clock_voltage_table->entries[i-1].vddci) | ||
147 | voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, | ||
148 | allowed_clock_voltage_table->entries[i-1].vddci); | ||
149 | |||
150 | if (allowed_clock_voltage_table->entries[i-1].mvdd) | ||
151 | *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; | ||
152 | |||
153 | return 0; | ||
154 | } | ||
155 | |||
156 | |||
157 | /** | ||
158 | * Vddc table preparation for SMC. | ||
159 | * | ||
160 | * @param hwmgr the address of the hardware manager | ||
161 | * @param table the SMC DPM table structure to be populated | ||
162 | * @return always 0 | ||
163 | */ | ||
164 | static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, | ||
165 | SMU72_Discrete_DpmTable *table) | ||
166 | { | ||
167 | unsigned int count; | ||
168 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
169 | |||
170 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { | ||
171 | table->VddcLevelCount = data->vddc_voltage_table.count; | ||
172 | for (count = 0; count < table->VddcLevelCount; count++) { | ||
173 | table->VddcTable[count] = | ||
174 | PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE); | ||
175 | } | ||
176 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); | ||
177 | } | ||
178 | return 0; | ||
179 | } | ||
180 | |||
181 | /** | ||
182 | * VddGfx table preparation for SMC. | ||
183 | * | ||
184 | * @param hwmgr the address of the hardware manager | ||
185 | * @param table the SMC DPM table structure to be populated | ||
186 | * @return always 0 | ||
187 | */ | ||
188 | static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, | ||
189 | SMU72_Discrete_DpmTable *table) | ||
190 | { | ||
191 | unsigned int count; | ||
192 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
193 | |||
194 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { | ||
195 | table->VddGfxLevelCount = data->vddgfx_voltage_table.count; | ||
196 | for (count = 0; count < data->vddgfx_voltage_table.count; count++) { | ||
197 | table->VddGfxTable[count] = | ||
198 | PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE); | ||
199 | } | ||
200 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount); | ||
201 | } | ||
202 | return 0; | ||
203 | } | ||
204 | |||
205 | /** | ||
206 | * Vddci table preparation for SMC. | ||
207 | * | ||
208 | * @param *hwmgr The address of the hardware manager. | ||
209 | * @param *table The SMC DPM table structure to be populated. | ||
210 | * @return 0 | ||
211 | */ | ||
212 | static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, | ||
213 | SMU72_Discrete_DpmTable *table) | ||
214 | { | ||
215 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
216 | uint32_t count; | ||
217 | |||
218 | table->VddciLevelCount = data->vddci_voltage_table.count; | ||
219 | for (count = 0; count < table->VddciLevelCount; count++) { | ||
220 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { | ||
221 | table->VddciTable[count] = | ||
222 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); | ||
223 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { | ||
224 | table->SmioTable1.Pattern[count].Voltage = | ||
225 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); | ||
226 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ | ||
227 | table->SmioTable1.Pattern[count].Smio = | ||
228 | (uint8_t) count; | ||
229 | table->Smio[count] |= | ||
230 | data->vddci_voltage_table.entries[count].smio_low; | ||
231 | table->VddciTable[count] = | ||
232 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); | ||
233 | } | ||
234 | } | ||
235 | |||
236 | table->SmioMask1 = data->vddci_voltage_table.mask_low; | ||
237 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); | ||
238 | |||
239 | return 0; | ||
240 | } | ||
241 | |||
242 | /** | ||
243 | * Mvdd table preparation for SMC. | ||
244 | * | ||
245 | * @param *hwmgr The address of the hardware manager. | ||
246 | * @param *table The SMC DPM table structure to be populated. | ||
247 | * @return 0 | ||
248 | */ | ||
249 | static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, | ||
250 | SMU72_Discrete_DpmTable *table) | ||
251 | { | ||
252 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
253 | uint32_t count; | ||
254 | |||
255 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { | ||
256 | table->MvddLevelCount = data->mvdd_voltage_table.count; | ||
257 | for (count = 0; count < table->MvddLevelCount; count++) { | ||
258 | table->SmioTable2.Pattern[count].Voltage = | ||
259 | PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); | ||
260 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ | ||
261 | table->SmioTable2.Pattern[count].Smio = | ||
262 | (uint8_t) count; | ||
263 | table->Smio[count] |= | ||
264 | data->mvdd_voltage_table.entries[count].smio_low; | ||
265 | } | ||
266 | table->SmioMask2 = data->mvdd_voltage_table.mask_low; | ||
267 | |||
268 | CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); | ||
269 | } | ||
270 | |||
271 | return 0; | ||
272 | } | ||
273 | |||
274 | /** | ||
275 | * Preparation of vddc and vddgfx CAC tables for SMC. | ||
276 | * | ||
277 | * @param hwmgr the address of the hardware manager | ||
278 | * @param table the SMC DPM table structure to be populated | ||
279 | * @return always 0 | ||
280 | */ | ||
281 | static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, | ||
282 | SMU72_Discrete_DpmTable *table) | ||
283 | { | ||
284 | uint32_t count; | ||
285 | uint8_t index = 0; | ||
286 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
287 | struct phm_ppt_v1_information *pptable_info = | ||
288 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
289 | struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = | ||
290 | pptable_info->vddgfx_lookup_table; | ||
291 | struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = | ||
292 | pptable_info->vddc_lookup_table; | ||
293 | |||
294 | /* table is already swapped, so in order to use the value from it | ||
295 | * we need to swap it back. | ||
296 | */ | ||
297 | uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount); | ||
298 | uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount); | ||
299 | |||
300 | for (count = 0; count < vddc_level_count; count++) { | ||
301 | /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ | ||
302 | index = phm_get_voltage_index(vddc_lookup_table, | ||
303 | data->vddc_voltage_table.entries[count].value); | ||
304 | table->BapmVddcVidLoSidd[count] = | ||
305 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); | ||
306 | table->BapmVddcVidHiSidd[count] = | ||
307 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); | ||
308 | table->BapmVddcVidHiSidd2[count] = | ||
309 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); | ||
310 | } | ||
311 | |||
312 | if ((data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2)) { | ||
313 | /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ | ||
314 | for (count = 0; count < vddgfx_level_count; count++) { | ||
315 | index = phm_get_voltage_index(vddgfx_lookup_table, | ||
316 | convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid)); | ||
317 | table->BapmVddGfxVidHiSidd2[count] = | ||
318 | convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); | ||
319 | } | ||
320 | } else { | ||
321 | for (count = 0; count < vddc_level_count; count++) { | ||
322 | index = phm_get_voltage_index(vddc_lookup_table, | ||
323 | data->vddc_voltage_table.entries[count].value); | ||
324 | table->BapmVddGfxVidLoSidd[count] = | ||
325 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); | ||
326 | table->BapmVddGfxVidHiSidd[count] = | ||
327 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); | ||
328 | table->BapmVddGfxVidHiSidd2[count] = | ||
329 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); | ||
330 | } | ||
331 | } | ||
332 | |||
333 | return 0; | ||
334 | } | ||
335 | |||
336 | /** | ||
337 | * Preparation of voltage tables for SMC. | ||
338 | * | ||
339 | * @param hwmgr the address of the hardware manager | ||
340 | * @param table the SMC DPM table structure to be populated | ||
341 | * @return always 0 | ||
342 | */ | ||
343 | |||
344 | static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, | ||
345 | SMU72_Discrete_DpmTable *table) | ||
346 | { | ||
347 | int result; | ||
348 | |||
349 | result = tonga_populate_smc_vddc_table(hwmgr, table); | ||
350 | PP_ASSERT_WITH_CODE(0 == result, | ||
351 | "can not populate VDDC voltage table to SMC", | ||
352 | return -EINVAL); | ||
353 | |||
354 | result = tonga_populate_smc_vdd_ci_table(hwmgr, table); | ||
355 | PP_ASSERT_WITH_CODE(0 == result, | ||
356 | "can not populate VDDCI voltage table to SMC", | ||
357 | return -EINVAL); | ||
358 | |||
359 | result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); | ||
360 | PP_ASSERT_WITH_CODE(0 == result, | ||
361 | "can not populate VDDGFX voltage table to SMC", | ||
362 | return -EINVAL); | ||
363 | |||
364 | result = tonga_populate_smc_mvdd_table(hwmgr, table); | ||
365 | PP_ASSERT_WITH_CODE(0 == result, | ||
366 | "can not populate MVDD voltage table to SMC", | ||
367 | return -EINVAL); | ||
368 | |||
369 | result = tonga_populate_cac_tables(hwmgr, table); | ||
370 | PP_ASSERT_WITH_CODE(0 == result, | ||
371 | "can not populate CAC voltage tables to SMC", | ||
372 | return -EINVAL); | ||
373 | |||
374 | return 0; | ||
375 | } | ||
376 | |||
377 | static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr, | ||
378 | struct SMU72_Discrete_Ulv *state) | ||
379 | { | ||
380 | struct phm_ppt_v1_information *table_info = | ||
381 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
382 | |||
383 | state->CcPwrDynRm = 0; | ||
384 | state->CcPwrDynRm1 = 0; | ||
385 | |||
386 | state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; | ||
387 | state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * | ||
388 | VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); | ||
389 | |||
390 | state->VddcPhase = 1; | ||
391 | |||
392 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); | ||
393 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); | ||
394 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); | ||
395 | |||
396 | return 0; | ||
397 | } | ||
398 | |||
399 | static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr, | ||
400 | struct SMU72_Discrete_DpmTable *table) | ||
401 | { | ||
402 | return tonga_populate_ulv_level(hwmgr, &table->Ulv); | ||
403 | } | ||
404 | |||
405 | static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) | ||
406 | { | ||
407 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
408 | struct smu7_dpm_table *dpm_table = &data->dpm_table; | ||
409 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
410 | uint32_t i; | ||
411 | |||
412 | /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ | ||
413 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { | ||
414 | table->LinkLevel[i].PcieGenSpeed = | ||
415 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; | ||
416 | table->LinkLevel[i].PcieLaneCount = | ||
417 | (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); | ||
418 | table->LinkLevel[i].EnabledForActivity = | ||
419 | 1; | ||
420 | table->LinkLevel[i].SPC = | ||
421 | (uint8_t)(data->pcie_spc_cap & 0xff); | ||
422 | table->LinkLevel[i].DownThreshold = | ||
423 | PP_HOST_TO_SMC_UL(5); | ||
424 | table->LinkLevel[i].UpThreshold = | ||
425 | PP_HOST_TO_SMC_UL(30); | ||
426 | } | ||
427 | |||
428 | smu_data->smc_state_table.LinkLevelCount = | ||
429 | (uint8_t)dpm_table->pcie_speed_table.count; | ||
430 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = | ||
431 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); | ||
432 | |||
433 | return 0; | ||
434 | } | ||
435 | |||
436 | /** | ||
437 | * Calculates the SCLK dividers using the provided engine clock | ||
438 | * | ||
439 | * @param hwmgr the address of the hardware manager | ||
440 | * @param engine_clock the engine clock to use to populate the structure | ||
441 | * @param sclk the SMC SCLK structure to be populated | ||
442 | */ | ||
443 | static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, | ||
444 | uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) | ||
445 | { | ||
446 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
447 | pp_atomctrl_clock_dividers_vi dividers; | ||
448 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; | ||
449 | uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; | ||
450 | uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; | ||
451 | uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; | ||
452 | uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; | ||
453 | uint32_t reference_clock; | ||
454 | uint32_t reference_divider; | ||
455 | uint32_t fbdiv; | ||
456 | int result; | ||
457 | |||
458 | /* get the engine clock dividers for this clock value*/ | ||
459 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); | ||
460 | |||
461 | PP_ASSERT_WITH_CODE(result == 0, | ||
462 | "Error retrieving Engine Clock dividers from VBIOS.", return result); | ||
463 | |||
464 | /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ | ||
465 | reference_clock = atomctrl_get_reference_clock(hwmgr); | ||
466 | |||
467 | reference_divider = 1 + dividers.uc_pll_ref_div; | ||
468 | |||
469 | /* low 14 bits is fraction and high 12 bits is divider*/ | ||
470 | fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; | ||
471 | |||
472 | /* SPLL_FUNC_CNTL setup*/ | ||
473 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, | ||
474 | CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); | ||
475 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, | ||
476 | CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); | ||
477 | |||
478 | /* SPLL_FUNC_CNTL_3 setup*/ | ||
479 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, | ||
480 | CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); | ||
481 | |||
482 | /* set to use fractional accumulation*/ | ||
483 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, | ||
484 | CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); | ||
485 | |||
486 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
487 | PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { | ||
488 | pp_atomctrl_internal_ss_info ss_info; | ||
489 | |||
490 | uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; | ||
491 | if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { | ||
492 | /* | ||
493 | * ss_info.speed_spectrum_percentage -- in unit of 0.01% | ||
494 | * ss_info.speed_spectrum_rate -- in unit of khz | ||
495 | */ | ||
496 | /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ | ||
497 | uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); | ||
498 | |||
499 | /* clkv = 2 * D * fbdiv / NS */ | ||
500 | uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); | ||
501 | |||
502 | cg_spll_spread_spectrum = | ||
503 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); | ||
504 | cg_spll_spread_spectrum = | ||
505 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); | ||
506 | cg_spll_spread_spectrum_2 = | ||
507 | PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); | ||
508 | } | ||
509 | } | ||
510 | |||
511 | sclk->SclkFrequency = engine_clock; | ||
512 | sclk->CgSpllFuncCntl3 = spll_func_cntl_3; | ||
513 | sclk->CgSpllFuncCntl4 = spll_func_cntl_4; | ||
514 | sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; | ||
515 | sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; | ||
516 | sclk->SclkDid = (uint8_t)dividers.pll_post_divider; | ||
517 | |||
518 | return 0; | ||
519 | } | ||
520 | |||
521 | /** | ||
522 | * Populates single SMC SCLK structure using the provided engine clock | ||
523 | * | ||
524 | * @param hwmgr the address of the hardware manager | ||
525 | * @param engine_clock the engine clock to use to populate the structure | ||
526 | * @param sclk the SMC SCLK structure to be populated | ||
527 | */ | ||
528 | static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, | ||
529 | uint32_t engine_clock, | ||
530 | uint16_t sclk_activity_level_threshold, | ||
531 | SMU72_Discrete_GraphicsLevel *graphic_level) | ||
532 | { | ||
533 | int result; | ||
534 | uint32_t mvdd; | ||
535 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
536 | struct phm_ppt_v1_information *pptable_info = | ||
537 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
538 | |||
539 | result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); | ||
540 | |||
541 | /* populate graphics levels*/ | ||
542 | result = tonga_get_dependecy_volt_by_clk(hwmgr, | ||
543 | pptable_info->vdd_dep_on_sclk, engine_clock, | ||
544 | &graphic_level->MinVoltage, &mvdd); | ||
545 | PP_ASSERT_WITH_CODE((0 == result), | ||
546 | "can not find VDDC voltage value for VDDC " | ||
547 | "engine clock dependency table", return result); | ||
548 | |||
549 | /* SCLK frequency in units of 10KHz*/ | ||
550 | graphic_level->SclkFrequency = engine_clock; | ||
551 | /* Indicates maximum activity level for this performance level. 50% for now*/ | ||
552 | graphic_level->ActivityLevel = sclk_activity_level_threshold; | ||
553 | |||
554 | graphic_level->CcPwrDynRm = 0; | ||
555 | graphic_level->CcPwrDynRm1 = 0; | ||
556 | /* this level can be used if activity is high enough.*/ | ||
557 | graphic_level->EnabledForActivity = 0; | ||
558 | /* this level can be used for throttling.*/ | ||
559 | graphic_level->EnabledForThrottle = 1; | ||
560 | graphic_level->UpHyst = 0; | ||
561 | graphic_level->DownHyst = 0; | ||
562 | graphic_level->VoltageDownHyst = 0; | ||
563 | graphic_level->PowerThrottle = 0; | ||
564 | |||
565 | data->display_timing.min_clock_in_sr = | ||
566 | hwmgr->display_config.min_core_set_clock_in_sr; | ||
567 | |||
568 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
569 | PHM_PlatformCaps_SclkDeepSleep)) | ||
570 | graphic_level->DeepSleepDivId = | ||
571 | smu7_get_sleep_divider_id_from_clock(engine_clock, | ||
572 | data->display_timing.min_clock_in_sr); | ||
573 | |||
574 | /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ | ||
575 | graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; | ||
576 | |||
577 | if (0 == result) { | ||
578 | /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ | ||
579 | /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ | ||
580 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); | ||
581 | CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); | ||
582 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); | ||
583 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); | ||
584 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); | ||
585 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); | ||
586 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); | ||
587 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); | ||
588 | } | ||
589 | |||
590 | return result; | ||
591 | } | ||
592 | |||
593 | /** | ||
594 | * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states | ||
595 | * | ||
596 | * @param hwmgr the address of the hardware manager | ||
597 | */ | ||
598 | int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) | ||
599 | { | ||
600 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
601 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
602 | struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
603 | struct smu7_dpm_table *dpm_table = &data->dpm_table; | ||
604 | struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; | ||
605 | uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; | ||
606 | uint32_t level_array_address = smu_data->dpm_table_start + | ||
607 | offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); | ||
608 | |||
609 | uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * | ||
610 | SMU72_MAX_LEVELS_GRAPHICS; | ||
611 | |||
612 | SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; | ||
613 | |||
614 | uint32_t i, max_entry; | ||
615 | uint8_t highest_pcie_level_enabled = 0; | ||
616 | uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; | ||
617 | uint8_t count = 0; | ||
618 | int result = 0; | ||
619 | |||
620 | memset(levels, 0x00, level_array_size); | ||
621 | |||
622 | for (i = 0; i < dpm_table->sclk_table.count; i++) { | ||
623 | result = tonga_populate_single_graphic_level(hwmgr, | ||
624 | dpm_table->sclk_table.dpm_levels[i].value, | ||
625 | (uint16_t)smu_data->activity_target[i], | ||
626 | &(smu_data->smc_state_table.GraphicsLevel[i])); | ||
627 | if (result != 0) | ||
628 | return result; | ||
629 | |||
630 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ | ||
631 | if (i > 1) | ||
632 | smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; | ||
633 | } | ||
634 | |||
635 | /* Only enable level 0 for now. */ | ||
636 | smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; | ||
637 | |||
638 | /* set highest level watermark to high */ | ||
639 | if (dpm_table->sclk_table.count > 1) | ||
640 | smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = | ||
641 | PPSMC_DISPLAY_WATERMARK_HIGH; | ||
642 | |||
643 | smu_data->smc_state_table.GraphicsDpmLevelCount = | ||
644 | (uint8_t)dpm_table->sclk_table.count; | ||
645 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = | ||
646 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); | ||
647 | |||
648 | if (pcie_table != NULL) { | ||
649 | PP_ASSERT_WITH_CODE((pcie_entry_count >= 1), | ||
650 | "There must be 1 or more PCIE levels defined in PPTable.", | ||
651 | return -EINVAL); | ||
652 | max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ | ||
653 | for (i = 0; i < dpm_table->sclk_table.count; i++) { | ||
654 | smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = | ||
655 | (uint8_t) ((i < max_entry) ? i : max_entry); | ||
656 | } | ||
657 | } else { | ||
658 | if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) | ||
659 | printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0 !"); | ||
660 | |||
661 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && | ||
662 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & | ||
663 | (1<<(highest_pcie_level_enabled+1))) != 0)) { | ||
664 | highest_pcie_level_enabled++; | ||
665 | } | ||
666 | |||
667 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && | ||
668 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & | ||
669 | (1<<lowest_pcie_level_enabled)) == 0)) { | ||
670 | lowest_pcie_level_enabled++; | ||
671 | } | ||
672 | |||
673 | while ((count < highest_pcie_level_enabled) && | ||
674 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & | ||
675 | (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { | ||
676 | count++; | ||
677 | } | ||
678 | mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? | ||
679 | (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; | ||
680 | |||
681 | |||
682 | /* set pcieDpmLevel to highest_pcie_level_enabled*/ | ||
683 | for (i = 2; i < dpm_table->sclk_table.count; i++) | ||
684 | smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; | ||
685 | |||
686 | /* set pcieDpmLevel to lowest_pcie_level_enabled*/ | ||
687 | smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; | ||
688 | |||
689 | /* set pcieDpmLevel to mid_pcie_level_enabled*/ | ||
690 | smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; | ||
691 | } | ||
692 | /* level count will send to smc once at init smc table and never change*/ | ||
693 | result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_address, | ||
694 | (uint8_t *)levels, (uint32_t)level_array_size, | ||
695 | SMC_RAM_END); | ||
696 | |||
697 | return result; | ||
698 | } | ||
699 | |||
700 | /** | ||
701 | * Populates the SMC MCLK structure using the provided memory clock | ||
702 | * | ||
703 | * @param hwmgr the address of the hardware manager | ||
704 | * @param memory_clock the memory clock to use to populate the structure | ||
705 | * @param sclk the SMC SCLK structure to be populated | ||
706 | */ | ||
707 | static int tonga_calculate_mclk_params( | ||
708 | struct pp_hwmgr *hwmgr, | ||
709 | uint32_t memory_clock, | ||
710 | SMU72_Discrete_MemoryLevel *mclk, | ||
711 | bool strobe_mode, | ||
712 | bool dllStateOn | ||
713 | ) | ||
714 | { | ||
715 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
716 | |||
717 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; | ||
718 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; | ||
719 | uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; | ||
720 | uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; | ||
721 | uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; | ||
722 | uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; | ||
723 | uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; | ||
724 | uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; | ||
725 | uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; | ||
726 | |||
727 | pp_atomctrl_memory_clock_param mpll_param; | ||
728 | int result; | ||
729 | |||
730 | result = atomctrl_get_memory_pll_dividers_si(hwmgr, | ||
731 | memory_clock, &mpll_param, strobe_mode); | ||
732 | PP_ASSERT_WITH_CODE( | ||
733 | 0 == result, | ||
734 | "Error retrieving Memory Clock Parameters from VBIOS.", | ||
735 | return result); | ||
736 | |||
737 | /* MPLL_FUNC_CNTL setup*/ | ||
738 | mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, | ||
739 | mpll_param.bw_ctrl); | ||
740 | |||
741 | /* MPLL_FUNC_CNTL_1 setup*/ | ||
742 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, | ||
743 | MPLL_FUNC_CNTL_1, CLKF, | ||
744 | mpll_param.mpll_fb_divider.cl_kf); | ||
745 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, | ||
746 | MPLL_FUNC_CNTL_1, CLKFRAC, | ||
747 | mpll_param.mpll_fb_divider.clk_frac); | ||
748 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, | ||
749 | MPLL_FUNC_CNTL_1, VCO_MODE, | ||
750 | mpll_param.vco_mode); | ||
751 | |||
752 | /* MPLL_AD_FUNC_CNTL setup*/ | ||
753 | mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, | ||
754 | MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, | ||
755 | mpll_param.mpll_post_divider); | ||
756 | |||
757 | if (data->is_memory_gddr5) { | ||
758 | /* MPLL_DQ_FUNC_CNTL setup*/ | ||
759 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, | ||
760 | MPLL_DQ_FUNC_CNTL, YCLK_SEL, | ||
761 | mpll_param.yclk_sel); | ||
762 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, | ||
763 | MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, | ||
764 | mpll_param.mpll_post_divider); | ||
765 | } | ||
766 | |||
767 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
768 | PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { | ||
769 | /* | ||
770 | ************************************ | ||
771 | Fref = Reference Frequency | ||
772 | NF = Feedback divider ratio | ||
773 | NR = Reference divider ratio | ||
774 | Fnom = Nominal VCO output frequency = Fref * NF / NR | ||
775 | Fs = Spreading Rate | ||
776 | D = Percentage down-spread / 2 | ||
777 | Fint = Reference input frequency to PFD = Fref / NR | ||
778 | NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) | ||
779 | CLKS = NS - 1 = ISS_STEP_NUM[11:0] | ||
780 | NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) | ||
781 | CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] | ||
782 | ************************************* | ||
783 | */ | ||
784 | pp_atomctrl_internal_ss_info ss_info; | ||
785 | uint32_t freq_nom; | ||
786 | uint32_t tmp; | ||
787 | uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); | ||
788 | |||
789 | /* for GDDR5 for all modes and DDR3 */ | ||
790 | if (1 == mpll_param.qdr) | ||
791 | freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); | ||
792 | else | ||
793 | freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); | ||
794 | |||
795 | /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ | ||
796 | tmp = (freq_nom / reference_clock); | ||
797 | tmp = tmp * tmp; | ||
798 | |||
799 | if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { | ||
800 | /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ | ||
801 | /* ss.Info.speed_spectrum_rate -- in unit of khz */ | ||
802 | /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ | ||
803 | /* = reference_clock * 5 / speed_spectrum_rate */ | ||
804 | uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; | ||
805 | |||
806 | /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ | ||
807 | /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ | ||
808 | uint32_t clkv = | ||
809 | (uint32_t)((((131 * ss_info.speed_spectrum_percentage * | ||
810 | ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); | ||
811 | |||
812 | mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); | ||
813 | mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); | ||
814 | } | ||
815 | } | ||
816 | |||
817 | /* MCLK_PWRMGT_CNTL setup */ | ||
818 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, | ||
819 | MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); | ||
820 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, | ||
821 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); | ||
822 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, | ||
823 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); | ||
824 | |||
825 | /* Save the result data to outpupt memory level structure */ | ||
826 | mclk->MclkFrequency = memory_clock; | ||
827 | mclk->MpllFuncCntl = mpll_func_cntl; | ||
828 | mclk->MpllFuncCntl_1 = mpll_func_cntl_1; | ||
829 | mclk->MpllFuncCntl_2 = mpll_func_cntl_2; | ||
830 | mclk->MpllAdFuncCntl = mpll_ad_func_cntl; | ||
831 | mclk->MpllDqFuncCntl = mpll_dq_func_cntl; | ||
832 | mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; | ||
833 | mclk->DllCntl = dll_cntl; | ||
834 | mclk->MpllSs1 = mpll_ss1; | ||
835 | mclk->MpllSs2 = mpll_ss2; | ||
836 | |||
837 | return 0; | ||
838 | } | ||
839 | |||
840 | static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, | ||
841 | bool strobe_mode) | ||
842 | { | ||
843 | uint8_t mc_para_index; | ||
844 | |||
845 | if (strobe_mode) { | ||
846 | if (memory_clock < 12500) | ||
847 | mc_para_index = 0x00; | ||
848 | else if (memory_clock > 47500) | ||
849 | mc_para_index = 0x0f; | ||
850 | else | ||
851 | mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); | ||
852 | } else { | ||
853 | if (memory_clock < 65000) | ||
854 | mc_para_index = 0x00; | ||
855 | else if (memory_clock > 135000) | ||
856 | mc_para_index = 0x0f; | ||
857 | else | ||
858 | mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); | ||
859 | } | ||
860 | |||
861 | return mc_para_index; | ||
862 | } | ||
863 | |||
864 | static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) | ||
865 | { | ||
866 | uint8_t mc_para_index; | ||
867 | |||
868 | if (memory_clock < 10000) | ||
869 | mc_para_index = 0; | ||
870 | else if (memory_clock >= 80000) | ||
871 | mc_para_index = 0x0f; | ||
872 | else | ||
873 | mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); | ||
874 | |||
875 | return mc_para_index; | ||
876 | } | ||
877 | |||
878 | |||
879 | static int tonga_populate_single_memory_level( | ||
880 | struct pp_hwmgr *hwmgr, | ||
881 | uint32_t memory_clock, | ||
882 | SMU72_Discrete_MemoryLevel *memory_level | ||
883 | ) | ||
884 | { | ||
885 | uint32_t mvdd = 0; | ||
886 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
887 | struct phm_ppt_v1_information *pptable_info = | ||
888 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
889 | int result = 0; | ||
890 | bool dll_state_on; | ||
891 | struct cgs_display_info info = {0}; | ||
892 | uint32_t mclk_edc_wr_enable_threshold = 40000; | ||
893 | uint32_t mclk_stutter_mode_threshold = 30000; | ||
894 | uint32_t mclk_edc_enable_threshold = 40000; | ||
895 | uint32_t mclk_strobe_mode_threshold = 40000; | ||
896 | |||
897 | if (NULL != pptable_info->vdd_dep_on_mclk) { | ||
898 | result = tonga_get_dependecy_volt_by_clk(hwmgr, | ||
899 | pptable_info->vdd_dep_on_mclk, | ||
900 | memory_clock, | ||
901 | &memory_level->MinVoltage, &mvdd); | ||
902 | PP_ASSERT_WITH_CODE( | ||
903 | 0 == result, | ||
904 | "can not find MinVddc voltage value from memory VDDC " | ||
905 | "voltage dependency table", | ||
906 | return result); | ||
907 | } | ||
908 | |||
909 | if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) | ||
910 | memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; | ||
911 | else | ||
912 | memory_level->MinMvdd = mvdd; | ||
913 | |||
914 | memory_level->EnabledForThrottle = 1; | ||
915 | memory_level->EnabledForActivity = 0; | ||
916 | memory_level->UpHyst = 0; | ||
917 | memory_level->DownHyst = 100; | ||
918 | memory_level->VoltageDownHyst = 0; | ||
919 | |||
920 | /* Indicates maximum activity level for this performance level.*/ | ||
921 | memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target; | ||
922 | memory_level->StutterEnable = 0; | ||
923 | memory_level->StrobeEnable = 0; | ||
924 | memory_level->EdcReadEnable = 0; | ||
925 | memory_level->EdcWriteEnable = 0; | ||
926 | memory_level->RttEnable = 0; | ||
927 | |||
928 | /* default set to low watermark. Highest level will be set to high later.*/ | ||
929 | memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; | ||
930 | |||
931 | cgs_get_active_displays_info(hwmgr->device, &info); | ||
932 | data->display_timing.num_existing_displays = info.display_count; | ||
933 | |||
934 | if ((mclk_stutter_mode_threshold != 0) && | ||
935 | (memory_clock <= mclk_stutter_mode_threshold) && | ||
936 | (!data->is_uvd_enabled) | ||
937 | && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) | ||
938 | && (data->display_timing.num_existing_displays <= 2) | ||
939 | && (data->display_timing.num_existing_displays != 0)) | ||
940 | memory_level->StutterEnable = 1; | ||
941 | |||
942 | /* decide strobe mode*/ | ||
943 | memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && | ||
944 | (memory_clock <= mclk_strobe_mode_threshold); | ||
945 | |||
946 | /* decide EDC mode and memory clock ratio*/ | ||
947 | if (data->is_memory_gddr5) { | ||
948 | memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, | ||
949 | memory_level->StrobeEnable); | ||
950 | |||
951 | if ((mclk_edc_enable_threshold != 0) && | ||
952 | (memory_clock > mclk_edc_enable_threshold)) { | ||
953 | memory_level->EdcReadEnable = 1; | ||
954 | } | ||
955 | |||
956 | if ((mclk_edc_wr_enable_threshold != 0) && | ||
957 | (memory_clock > mclk_edc_wr_enable_threshold)) { | ||
958 | memory_level->EdcWriteEnable = 1; | ||
959 | } | ||
960 | |||
961 | if (memory_level->StrobeEnable) { | ||
962 | if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= | ||
963 | ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { | ||
964 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; | ||
965 | } else { | ||
966 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; | ||
967 | } | ||
968 | |||
969 | } else { | ||
970 | dll_state_on = data->dll_default_on; | ||
971 | } | ||
972 | } else { | ||
973 | memory_level->StrobeRatio = | ||
974 | tonga_get_ddr3_mclk_frequency_ratio(memory_clock); | ||
975 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; | ||
976 | } | ||
977 | |||
978 | result = tonga_calculate_mclk_params(hwmgr, | ||
979 | memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); | ||
980 | |||
981 | if (!result) { | ||
982 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd); | ||
983 | /* MCLK frequency in units of 10KHz*/ | ||
984 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); | ||
985 | /* Indicates maximum activity level for this performance level.*/ | ||
986 | CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); | ||
987 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); | ||
988 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); | ||
989 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); | ||
990 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); | ||
991 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); | ||
992 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); | ||
993 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); | ||
994 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); | ||
995 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); | ||
996 | } | ||
997 | |||
998 | return result; | ||
999 | } | ||
1000 | |||
1001 | int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) | ||
1002 | { | ||
1003 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1004 | struct tonga_smumgr *smu_data = | ||
1005 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1006 | struct smu7_dpm_table *dpm_table = &data->dpm_table; | ||
1007 | int result; | ||
1008 | |||
1009 | /* populate MCLK dpm table to SMU7 */ | ||
1010 | uint32_t level_array_address = | ||
1011 | smu_data->dpm_table_start + | ||
1012 | offsetof(SMU72_Discrete_DpmTable, MemoryLevel); | ||
1013 | uint32_t level_array_size = | ||
1014 | sizeof(SMU72_Discrete_MemoryLevel) * | ||
1015 | SMU72_MAX_LEVELS_MEMORY; | ||
1016 | SMU72_Discrete_MemoryLevel *levels = | ||
1017 | smu_data->smc_state_table.MemoryLevel; | ||
1018 | uint32_t i; | ||
1019 | |||
1020 | memset(levels, 0x00, level_array_size); | ||
1021 | |||
1022 | for (i = 0; i < dpm_table->mclk_table.count; i++) { | ||
1023 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), | ||
1024 | "can not populate memory level as memory clock is zero", | ||
1025 | return -EINVAL); | ||
1026 | result = tonga_populate_single_memory_level( | ||
1027 | hwmgr, | ||
1028 | dpm_table->mclk_table.dpm_levels[i].value, | ||
1029 | &(smu_data->smc_state_table.MemoryLevel[i])); | ||
1030 | if (result) | ||
1031 | return result; | ||
1032 | } | ||
1033 | |||
1034 | /* Only enable level 0 for now.*/ | ||
1035 | smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; | ||
1036 | |||
1037 | /* | ||
1038 | * in order to prevent MC activity from stutter mode to push DPM up. | ||
1039 | * the UVD change complements this by putting the MCLK in a higher state | ||
1040 | * by default such that we are not effected by up threshold or and MCLK DPM latency. | ||
1041 | */ | ||
1042 | smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; | ||
1043 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); | ||
1044 | |||
1045 | smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; | ||
1046 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); | ||
1047 | /* set highest level watermark to high*/ | ||
1048 | smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; | ||
1049 | |||
1050 | /* level count will send to smc once at init smc table and never change*/ | ||
1051 | result = tonga_copy_bytes_to_smc(hwmgr->smumgr, | ||
1052 | level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, | ||
1053 | SMC_RAM_END); | ||
1054 | |||
1055 | |||
1056 | return result; | ||
1057 | } | ||
1058 | |||
1059 | static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, | ||
1060 | uint32_t mclk, SMIO_Pattern *smio_pattern) | ||
1061 | { | ||
1062 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1063 | struct phm_ppt_v1_information *table_info = | ||
1064 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1065 | uint32_t i = 0; | ||
1066 | |||
1067 | if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { | ||
1068 | /* find mvdd value which clock is more than request */ | ||
1069 | for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { | ||
1070 | if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { | ||
1071 | /* Always round to higher voltage. */ | ||
1072 | smio_pattern->Voltage = | ||
1073 | data->mvdd_voltage_table.entries[i].value; | ||
1074 | break; | ||
1075 | } | ||
1076 | } | ||
1077 | |||
1078 | PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, | ||
1079 | "MVDD Voltage is outside the supported range.", | ||
1080 | return -EINVAL); | ||
1081 | } else { | ||
1082 | return -EINVAL; | ||
1083 | } | ||
1084 | |||
1085 | return 0; | ||
1086 | } | ||
1087 | |||
1088 | |||
1089 | static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, | ||
1090 | SMU72_Discrete_DpmTable *table) | ||
1091 | { | ||
1092 | int result = 0; | ||
1093 | struct tonga_smumgr *smu_data = | ||
1094 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1095 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1096 | struct pp_atomctrl_clock_dividers_vi dividers; | ||
1097 | |||
1098 | SMIO_Pattern voltage_level; | ||
1099 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; | ||
1100 | uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; | ||
1101 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; | ||
1102 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; | ||
1103 | |||
1104 | /* The ACPI state should not do DPM on DC (or ever).*/ | ||
1105 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; | ||
1106 | |||
1107 | table->ACPILevel.MinVoltage = | ||
1108 | smu_data->smc_state_table.GraphicsLevel[0].MinVoltage; | ||
1109 | |||
1110 | /* assign zero for now*/ | ||
1111 | table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); | ||
1112 | |||
1113 | /* get the engine clock dividers for this clock value*/ | ||
1114 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, | ||
1115 | table->ACPILevel.SclkFrequency, ÷rs); | ||
1116 | |||
1117 | PP_ASSERT_WITH_CODE(result == 0, | ||
1118 | "Error retrieving Engine Clock dividers from VBIOS.", | ||
1119 | return result); | ||
1120 | |||
1121 | /* divider ID for required SCLK*/ | ||
1122 | table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; | ||
1123 | table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; | ||
1124 | table->ACPILevel.DeepSleepDivId = 0; | ||
1125 | |||
1126 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, | ||
1127 | SPLL_PWRON, 0); | ||
1128 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, | ||
1129 | SPLL_RESET, 1); | ||
1130 | spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, | ||
1131 | SCLK_MUX_SEL, 4); | ||
1132 | |||
1133 | table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; | ||
1134 | table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; | ||
1135 | table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; | ||
1136 | table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; | ||
1137 | table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; | ||
1138 | table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; | ||
1139 | table->ACPILevel.CcPwrDynRm = 0; | ||
1140 | table->ACPILevel.CcPwrDynRm1 = 0; | ||
1141 | |||
1142 | |||
1143 | /* For various features to be enabled/disabled while this level is active.*/ | ||
1144 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); | ||
1145 | /* SCLK frequency in units of 10KHz*/ | ||
1146 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); | ||
1147 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); | ||
1148 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); | ||
1149 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); | ||
1150 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); | ||
1151 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); | ||
1152 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); | ||
1153 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); | ||
1154 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); | ||
1155 | |||
1156 | /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ | ||
1157 | table->MemoryACPILevel.MinVoltage = | ||
1158 | smu_data->smc_state_table.MemoryLevel[0].MinVoltage; | ||
1159 | |||
1160 | /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ | ||
1161 | |||
1162 | if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) | ||
1163 | table->MemoryACPILevel.MinMvdd = | ||
1164 | PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); | ||
1165 | else | ||
1166 | table->MemoryACPILevel.MinMvdd = 0; | ||
1167 | |||
1168 | /* Force reset on DLL*/ | ||
1169 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, | ||
1170 | MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); | ||
1171 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, | ||
1172 | MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); | ||
1173 | |||
1174 | /* Disable DLL in ACPIState*/ | ||
1175 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, | ||
1176 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); | ||
1177 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, | ||
1178 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); | ||
1179 | |||
1180 | /* Enable DLL bypass signal*/ | ||
1181 | dll_cntl = PHM_SET_FIELD(dll_cntl, | ||
1182 | DLL_CNTL, MRDCK0_BYPASS, 0); | ||
1183 | dll_cntl = PHM_SET_FIELD(dll_cntl, | ||
1184 | DLL_CNTL, MRDCK1_BYPASS, 0); | ||
1185 | |||
1186 | table->MemoryACPILevel.DllCntl = | ||
1187 | PP_HOST_TO_SMC_UL(dll_cntl); | ||
1188 | table->MemoryACPILevel.MclkPwrmgtCntl = | ||
1189 | PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); | ||
1190 | table->MemoryACPILevel.MpllAdFuncCntl = | ||
1191 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); | ||
1192 | table->MemoryACPILevel.MpllDqFuncCntl = | ||
1193 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); | ||
1194 | table->MemoryACPILevel.MpllFuncCntl = | ||
1195 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); | ||
1196 | table->MemoryACPILevel.MpllFuncCntl_1 = | ||
1197 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); | ||
1198 | table->MemoryACPILevel.MpllFuncCntl_2 = | ||
1199 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); | ||
1200 | table->MemoryACPILevel.MpllSs1 = | ||
1201 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); | ||
1202 | table->MemoryACPILevel.MpllSs2 = | ||
1203 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); | ||
1204 | |||
1205 | table->MemoryACPILevel.EnabledForThrottle = 0; | ||
1206 | table->MemoryACPILevel.EnabledForActivity = 0; | ||
1207 | table->MemoryACPILevel.UpHyst = 0; | ||
1208 | table->MemoryACPILevel.DownHyst = 100; | ||
1209 | table->MemoryACPILevel.VoltageDownHyst = 0; | ||
1210 | /* Indicates maximum activity level for this performance level.*/ | ||
1211 | table->MemoryACPILevel.ActivityLevel = | ||
1212 | PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); | ||
1213 | |||
1214 | table->MemoryACPILevel.StutterEnable = 0; | ||
1215 | table->MemoryACPILevel.StrobeEnable = 0; | ||
1216 | table->MemoryACPILevel.EdcReadEnable = 0; | ||
1217 | table->MemoryACPILevel.EdcWriteEnable = 0; | ||
1218 | table->MemoryACPILevel.RttEnable = 0; | ||
1219 | |||
1220 | return result; | ||
1221 | } | ||
1222 | |||
1223 | static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, | ||
1224 | SMU72_Discrete_DpmTable *table) | ||
1225 | { | ||
1226 | int result = 0; | ||
1227 | |||
1228 | uint8_t count; | ||
1229 | pp_atomctrl_clock_dividers_vi dividers; | ||
1230 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1231 | struct phm_ppt_v1_information *pptable_info = | ||
1232 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1233 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | ||
1234 | pptable_info->mm_dep_table; | ||
1235 | |||
1236 | table->UvdLevelCount = (uint8_t) (mm_table->count); | ||
1237 | table->UvdBootLevel = 0; | ||
1238 | |||
1239 | for (count = 0; count < table->UvdLevelCount; count++) { | ||
1240 | table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; | ||
1241 | table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; | ||
1242 | table->UvdLevel[count].MinVoltage.Vddc = | ||
1243 | phm_get_voltage_index(pptable_info->vddc_lookup_table, | ||
1244 | mm_table->entries[count].vddc); | ||
1245 | table->UvdLevel[count].MinVoltage.VddGfx = | ||
1246 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? | ||
1247 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, | ||
1248 | mm_table->entries[count].vddgfx) : 0; | ||
1249 | table->UvdLevel[count].MinVoltage.Vddci = | ||
1250 | phm_get_voltage_id(&data->vddci_voltage_table, | ||
1251 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); | ||
1252 | table->UvdLevel[count].MinVoltage.Phases = 1; | ||
1253 | |||
1254 | /* retrieve divider value for VBIOS */ | ||
1255 | result = atomctrl_get_dfs_pll_dividers_vi( | ||
1256 | hwmgr, | ||
1257 | table->UvdLevel[count].VclkFrequency, | ||
1258 | ÷rs); | ||
1259 | |||
1260 | PP_ASSERT_WITH_CODE((0 == result), | ||
1261 | "can not find divide id for Vclk clock", | ||
1262 | return result); | ||
1263 | |||
1264 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; | ||
1265 | |||
1266 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | ||
1267 | table->UvdLevel[count].DclkFrequency, ÷rs); | ||
1268 | PP_ASSERT_WITH_CODE((0 == result), | ||
1269 | "can not find divide id for Dclk clock", | ||
1270 | return result); | ||
1271 | |||
1272 | table->UvdLevel[count].DclkDivider = | ||
1273 | (uint8_t)dividers.pll_post_divider; | ||
1274 | |||
1275 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); | ||
1276 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); | ||
1277 | } | ||
1278 | |||
1279 | return result; | ||
1280 | |||
1281 | } | ||
1282 | |||
1283 | static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, | ||
1284 | SMU72_Discrete_DpmTable *table) | ||
1285 | { | ||
1286 | int result = 0; | ||
1287 | |||
1288 | uint8_t count; | ||
1289 | pp_atomctrl_clock_dividers_vi dividers; | ||
1290 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1291 | struct phm_ppt_v1_information *pptable_info = | ||
1292 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1293 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | ||
1294 | pptable_info->mm_dep_table; | ||
1295 | |||
1296 | table->VceLevelCount = (uint8_t) (mm_table->count); | ||
1297 | table->VceBootLevel = 0; | ||
1298 | |||
1299 | for (count = 0; count < table->VceLevelCount; count++) { | ||
1300 | table->VceLevel[count].Frequency = | ||
1301 | mm_table->entries[count].eclk; | ||
1302 | table->VceLevel[count].MinVoltage.Vddc = | ||
1303 | phm_get_voltage_index(pptable_info->vddc_lookup_table, | ||
1304 | mm_table->entries[count].vddc); | ||
1305 | table->VceLevel[count].MinVoltage.VddGfx = | ||
1306 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? | ||
1307 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, | ||
1308 | mm_table->entries[count].vddgfx) : 0; | ||
1309 | table->VceLevel[count].MinVoltage.Vddci = | ||
1310 | phm_get_voltage_id(&data->vddci_voltage_table, | ||
1311 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); | ||
1312 | table->VceLevel[count].MinVoltage.Phases = 1; | ||
1313 | |||
1314 | /* retrieve divider value for VBIOS */ | ||
1315 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | ||
1316 | table->VceLevel[count].Frequency, ÷rs); | ||
1317 | PP_ASSERT_WITH_CODE((0 == result), | ||
1318 | "can not find divide id for VCE engine clock", | ||
1319 | return result); | ||
1320 | |||
1321 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; | ||
1322 | |||
1323 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); | ||
1324 | } | ||
1325 | |||
1326 | return result; | ||
1327 | } | ||
1328 | |||
1329 | static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, | ||
1330 | SMU72_Discrete_DpmTable *table) | ||
1331 | { | ||
1332 | int result = 0; | ||
1333 | uint8_t count; | ||
1334 | pp_atomctrl_clock_dividers_vi dividers; | ||
1335 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1336 | struct phm_ppt_v1_information *pptable_info = | ||
1337 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1338 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | ||
1339 | pptable_info->mm_dep_table; | ||
1340 | |||
1341 | table->AcpLevelCount = (uint8_t) (mm_table->count); | ||
1342 | table->AcpBootLevel = 0; | ||
1343 | |||
1344 | for (count = 0; count < table->AcpLevelCount; count++) { | ||
1345 | table->AcpLevel[count].Frequency = | ||
1346 | pptable_info->mm_dep_table->entries[count].aclk; | ||
1347 | table->AcpLevel[count].MinVoltage.Vddc = | ||
1348 | phm_get_voltage_index(pptable_info->vddc_lookup_table, | ||
1349 | mm_table->entries[count].vddc); | ||
1350 | table->AcpLevel[count].MinVoltage.VddGfx = | ||
1351 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? | ||
1352 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, | ||
1353 | mm_table->entries[count].vddgfx) : 0; | ||
1354 | table->AcpLevel[count].MinVoltage.Vddci = | ||
1355 | phm_get_voltage_id(&data->vddci_voltage_table, | ||
1356 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); | ||
1357 | table->AcpLevel[count].MinVoltage.Phases = 1; | ||
1358 | |||
1359 | /* retrieve divider value for VBIOS */ | ||
1360 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | ||
1361 | table->AcpLevel[count].Frequency, ÷rs); | ||
1362 | PP_ASSERT_WITH_CODE((0 == result), | ||
1363 | "can not find divide id for engine clock", return result); | ||
1364 | |||
1365 | table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; | ||
1366 | |||
1367 | CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); | ||
1368 | } | ||
1369 | |||
1370 | return result; | ||
1371 | } | ||
1372 | |||
1373 | static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr, | ||
1374 | SMU72_Discrete_DpmTable *table) | ||
1375 | { | ||
1376 | int result = 0; | ||
1377 | uint8_t count; | ||
1378 | pp_atomctrl_clock_dividers_vi dividers; | ||
1379 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1380 | struct phm_ppt_v1_information *pptable_info = | ||
1381 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1382 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | ||
1383 | pptable_info->mm_dep_table; | ||
1384 | |||
1385 | table->SamuBootLevel = 0; | ||
1386 | table->SamuLevelCount = (uint8_t) (mm_table->count); | ||
1387 | |||
1388 | for (count = 0; count < table->SamuLevelCount; count++) { | ||
1389 | /* not sure whether we need evclk or not */ | ||
1390 | table->SamuLevel[count].Frequency = | ||
1391 | pptable_info->mm_dep_table->entries[count].samclock; | ||
1392 | table->SamuLevel[count].MinVoltage.Vddc = | ||
1393 | phm_get_voltage_index(pptable_info->vddc_lookup_table, | ||
1394 | mm_table->entries[count].vddc); | ||
1395 | table->SamuLevel[count].MinVoltage.VddGfx = | ||
1396 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? | ||
1397 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, | ||
1398 | mm_table->entries[count].vddgfx) : 0; | ||
1399 | table->SamuLevel[count].MinVoltage.Vddci = | ||
1400 | phm_get_voltage_id(&data->vddci_voltage_table, | ||
1401 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); | ||
1402 | table->SamuLevel[count].MinVoltage.Phases = 1; | ||
1403 | |||
1404 | /* retrieve divider value for VBIOS */ | ||
1405 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | ||
1406 | table->SamuLevel[count].Frequency, ÷rs); | ||
1407 | PP_ASSERT_WITH_CODE((0 == result), | ||
1408 | "can not find divide id for samu clock", return result); | ||
1409 | |||
1410 | table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; | ||
1411 | |||
1412 | CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); | ||
1413 | } | ||
1414 | |||
1415 | return result; | ||
1416 | } | ||
1417 | |||
1418 | static int tonga_populate_memory_timing_parameters( | ||
1419 | struct pp_hwmgr *hwmgr, | ||
1420 | uint32_t engine_clock, | ||
1421 | uint32_t memory_clock, | ||
1422 | struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs | ||
1423 | ) | ||
1424 | { | ||
1425 | uint32_t dramTiming; | ||
1426 | uint32_t dramTiming2; | ||
1427 | uint32_t burstTime; | ||
1428 | int result; | ||
1429 | |||
1430 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, | ||
1431 | engine_clock, memory_clock); | ||
1432 | |||
1433 | PP_ASSERT_WITH_CODE(result == 0, | ||
1434 | "Error calling VBIOS to set DRAM_TIMING.", return result); | ||
1435 | |||
1436 | dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); | ||
1437 | dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); | ||
1438 | burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); | ||
1439 | |||
1440 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); | ||
1441 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); | ||
1442 | arb_regs->McArbBurstTime = (uint8_t)burstTime; | ||
1443 | |||
1444 | return 0; | ||
1445 | } | ||
1446 | |||
1447 | /** | ||
1448 | * Setup parameters for the MC ARB. | ||
1449 | * | ||
1450 | * @param hwmgr the address of the powerplay hardware manager. | ||
1451 | * @return always 0 | ||
1452 | * This function is to be called from the SetPowerState table. | ||
1453 | */ | ||
1454 | static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) | ||
1455 | { | ||
1456 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1457 | struct tonga_smumgr *smu_data = | ||
1458 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1459 | int result = 0; | ||
1460 | SMU72_Discrete_MCArbDramTimingTable arb_regs; | ||
1461 | uint32_t i, j; | ||
1462 | |||
1463 | memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable)); | ||
1464 | |||
1465 | for (i = 0; i < data->dpm_table.sclk_table.count; i++) { | ||
1466 | for (j = 0; j < data->dpm_table.mclk_table.count; j++) { | ||
1467 | result = tonga_populate_memory_timing_parameters | ||
1468 | (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, | ||
1469 | data->dpm_table.mclk_table.dpm_levels[j].value, | ||
1470 | &arb_regs.entries[i][j]); | ||
1471 | |||
1472 | if (result) | ||
1473 | break; | ||
1474 | } | ||
1475 | } | ||
1476 | |||
1477 | if (0 == result) { | ||
1478 | result = tonga_copy_bytes_to_smc( | ||
1479 | hwmgr->smumgr, | ||
1480 | smu_data->arb_table_start, | ||
1481 | (uint8_t *)&arb_regs, | ||
1482 | sizeof(SMU72_Discrete_MCArbDramTimingTable), | ||
1483 | SMC_RAM_END | ||
1484 | ); | ||
1485 | } | ||
1486 | |||
1487 | return result; | ||
1488 | } | ||
1489 | |||
1490 | static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, | ||
1491 | SMU72_Discrete_DpmTable *table) | ||
1492 | { | ||
1493 | int result = 0; | ||
1494 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1495 | struct tonga_smumgr *smu_data = | ||
1496 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1497 | table->GraphicsBootLevel = 0; | ||
1498 | table->MemoryBootLevel = 0; | ||
1499 | |||
1500 | /* find boot level from dpm table*/ | ||
1501 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), | ||
1502 | data->vbios_boot_state.sclk_bootup_value, | ||
1503 | (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); | ||
1504 | |||
1505 | if (0 != result) { | ||
1506 | smu_data->smc_state_table.GraphicsBootLevel = 0; | ||
1507 | printk(KERN_ERR "[powerplay] VBIOS did not find boot engine " | ||
1508 | "clock value in dependency table. " | ||
1509 | "Using Graphics DPM level 0 !"); | ||
1510 | result = 0; | ||
1511 | } | ||
1512 | |||
1513 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), | ||
1514 | data->vbios_boot_state.mclk_bootup_value, | ||
1515 | (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); | ||
1516 | |||
1517 | if (0 != result) { | ||
1518 | smu_data->smc_state_table.MemoryBootLevel = 0; | ||
1519 | printk(KERN_ERR "[powerplay] VBIOS did not find boot " | ||
1520 | "engine clock value in dependency table." | ||
1521 | "Using Memory DPM level 0 !"); | ||
1522 | result = 0; | ||
1523 | } | ||
1524 | |||
1525 | table->BootVoltage.Vddc = | ||
1526 | phm_get_voltage_id(&(data->vddc_voltage_table), | ||
1527 | data->vbios_boot_state.vddc_bootup_value); | ||
1528 | table->BootVoltage.VddGfx = | ||
1529 | phm_get_voltage_id(&(data->vddgfx_voltage_table), | ||
1530 | data->vbios_boot_state.vddgfx_bootup_value); | ||
1531 | table->BootVoltage.Vddci = | ||
1532 | phm_get_voltage_id(&(data->vddci_voltage_table), | ||
1533 | data->vbios_boot_state.vddci_bootup_value); | ||
1534 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; | ||
1535 | |||
1536 | CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); | ||
1537 | |||
1538 | return result; | ||
1539 | } | ||
1540 | |||
1541 | |||
1542 | static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) | ||
1543 | { | ||
1544 | uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, | ||
1545 | volt_with_cks, value; | ||
1546 | uint16_t clock_freq_u16; | ||
1547 | struct tonga_smumgr *smu_data = | ||
1548 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1549 | uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, | ||
1550 | volt_offset = 0; | ||
1551 | struct phm_ppt_v1_information *table_info = | ||
1552 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1553 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = | ||
1554 | table_info->vdd_dep_on_sclk; | ||
1555 | uint32_t hw_revision, dev_id; | ||
1556 | struct cgs_system_info sys_info = {0}; | ||
1557 | |||
1558 | stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; | ||
1559 | |||
1560 | sys_info.size = sizeof(struct cgs_system_info); | ||
1561 | |||
1562 | sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV; | ||
1563 | cgs_query_system_info(hwmgr->device, &sys_info); | ||
1564 | hw_revision = (uint32_t)sys_info.value; | ||
1565 | |||
1566 | sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV; | ||
1567 | cgs_query_system_info(hwmgr->device, &sys_info); | ||
1568 | dev_id = (uint32_t)sys_info.value; | ||
1569 | |||
1570 | /* Read SMU_Eefuse to read and calculate RO and determine | ||
1571 | * if the part is SS or FF. if RO >= 1660MHz, part is FF. | ||
1572 | */ | ||
1573 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1574 | ixSMU_EFUSE_0 + (146 * 4)); | ||
1575 | efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1576 | ixSMU_EFUSE_0 + (148 * 4)); | ||
1577 | efuse &= 0xFF000000; | ||
1578 | efuse = efuse >> 24; | ||
1579 | efuse2 &= 0xF; | ||
1580 | |||
1581 | if (efuse2 == 1) | ||
1582 | ro = (2300 - 1350) * efuse / 255 + 1350; | ||
1583 | else | ||
1584 | ro = (2500 - 1000) * efuse / 255 + 1000; | ||
1585 | |||
1586 | if (ro >= 1660) | ||
1587 | type = 0; | ||
1588 | else | ||
1589 | type = 1; | ||
1590 | |||
1591 | /* Populate Stretch amount */ | ||
1592 | smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; | ||
1593 | |||
1594 | /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ | ||
1595 | for (i = 0; i < sclk_table->count; i++) { | ||
1596 | smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= | ||
1597 | sclk_table->entries[i].cks_enable << i; | ||
1598 | if (ASICID_IS_TONGA_P(dev_id, hw_revision)) { | ||
1599 | volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 * | ||
1600 | (sclk_table->entries[i].clk/100) / 10000) * 1000 / | ||
1601 | (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000))); | ||
1602 | volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 * | ||
1603 | (sclk_table->entries[i].clk/100) / 100000) * 1000 / | ||
1604 | (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000))); | ||
1605 | } else { | ||
1606 | volt_without_cks = (uint32_t)((14041 * | ||
1607 | (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / | ||
1608 | (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); | ||
1609 | volt_with_cks = (uint32_t)((13946 * | ||
1610 | (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / | ||
1611 | (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); | ||
1612 | } | ||
1613 | if (volt_without_cks >= volt_with_cks) | ||
1614 | volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + | ||
1615 | sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); | ||
1616 | smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; | ||
1617 | } | ||
1618 | |||
1619 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, | ||
1620 | STRETCH_ENABLE, 0x0); | ||
1621 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, | ||
1622 | masterReset, 0x1); | ||
1623 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, | ||
1624 | staticEnable, 0x1); | ||
1625 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, | ||
1626 | masterReset, 0x0); | ||
1627 | |||
1628 | /* Populate CKS Lookup Table */ | ||
1629 | if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) | ||
1630 | stretch_amount2 = 0; | ||
1631 | else if (stretch_amount == 3 || stretch_amount == 4) | ||
1632 | stretch_amount2 = 1; | ||
1633 | else { | ||
1634 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
1635 | PHM_PlatformCaps_ClockStretcher); | ||
1636 | PP_ASSERT_WITH_CODE(false, | ||
1637 | "Stretch Amount in PPTable not supported\n", | ||
1638 | return -EINVAL); | ||
1639 | } | ||
1640 | |||
1641 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1642 | ixPWR_CKS_CNTL); | ||
1643 | value &= 0xFFC2FF87; | ||
1644 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = | ||
1645 | tonga_clock_stretcher_lookup_table[stretch_amount2][0]; | ||
1646 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = | ||
1647 | tonga_clock_stretcher_lookup_table[stretch_amount2][1]; | ||
1648 | clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. | ||
1649 | GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. | ||
1650 | SclkFrequency) / 100); | ||
1651 | if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] < | ||
1652 | clock_freq_u16 && | ||
1653 | tonga_clock_stretcher_lookup_table[stretch_amount2][1] > | ||
1654 | clock_freq_u16) { | ||
1655 | /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ | ||
1656 | value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; | ||
1657 | /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ | ||
1658 | value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; | ||
1659 | /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ | ||
1660 | value |= (tonga_clock_stretch_amount_conversion | ||
1661 | [tonga_clock_stretcher_lookup_table[stretch_amount2][3]] | ||
1662 | [stretch_amount]) << 3; | ||
1663 | } | ||
1664 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. | ||
1665 | CKS_LOOKUPTableEntry[0].minFreq); | ||
1666 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. | ||
1667 | CKS_LOOKUPTableEntry[0].maxFreq); | ||
1668 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = | ||
1669 | tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; | ||
1670 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= | ||
1671 | (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; | ||
1672 | |||
1673 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1674 | ixPWR_CKS_CNTL, value); | ||
1675 | |||
1676 | /* Populate DDT Lookup Table */ | ||
1677 | for (i = 0; i < 4; i++) { | ||
1678 | /* Assign the minimum and maximum VID stored | ||
1679 | * in the last row of Clock Stretcher Voltage Table. | ||
1680 | */ | ||
1681 | smu_data->smc_state_table.ClockStretcherDataTable. | ||
1682 | ClockStretcherDataTableEntry[i].minVID = | ||
1683 | (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2]; | ||
1684 | smu_data->smc_state_table.ClockStretcherDataTable. | ||
1685 | ClockStretcherDataTableEntry[i].maxVID = | ||
1686 | (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3]; | ||
1687 | /* Loop through each SCLK and check the frequency | ||
1688 | * to see if it lies within the frequency for clock stretcher. | ||
1689 | */ | ||
1690 | for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { | ||
1691 | cks_setting = 0; | ||
1692 | clock_freq = PP_SMC_TO_HOST_UL( | ||
1693 | smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); | ||
1694 | /* Check the allowed frequency against the sclk level[j]. | ||
1695 | * Sclk's endianness has already been converted, | ||
1696 | * and it's in 10Khz unit, | ||
1697 | * as opposed to Data table, which is in Mhz unit. | ||
1698 | */ | ||
1699 | if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) { | ||
1700 | cks_setting |= 0x2; | ||
1701 | if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100) | ||
1702 | cks_setting |= 0x1; | ||
1703 | } | ||
1704 | smu_data->smc_state_table.ClockStretcherDataTable. | ||
1705 | ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); | ||
1706 | } | ||
1707 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. | ||
1708 | ClockStretcherDataTable. | ||
1709 | ClockStretcherDataTableEntry[i].setting); | ||
1710 | } | ||
1711 | |||
1712 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1713 | ixPWR_CKS_CNTL); | ||
1714 | value &= 0xFFFFFFFE; | ||
1715 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1716 | ixPWR_CKS_CNTL, value); | ||
1717 | |||
1718 | return 0; | ||
1719 | } | ||
1720 | |||
1721 | /** | ||
1722 | * Populates the SMC VRConfig field in DPM table. | ||
1723 | * | ||
1724 | * @param hwmgr the address of the hardware manager | ||
1725 | * @param table the SMC DPM table structure to be populated | ||
1726 | * @return always 0 | ||
1727 | */ | ||
1728 | static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, | ||
1729 | SMU72_Discrete_DpmTable *table) | ||
1730 | { | ||
1731 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
1732 | uint16_t config; | ||
1733 | |||
1734 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { | ||
1735 | /* Splitted mode */ | ||
1736 | config = VR_SVI2_PLANE_1; | ||
1737 | table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); | ||
1738 | |||
1739 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { | ||
1740 | config = VR_SVI2_PLANE_2; | ||
1741 | table->VRConfig |= config; | ||
1742 | } else { | ||
1743 | printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should " | ||
1744 | "be both on SVI2 control in splitted mode !\n"); | ||
1745 | } | ||
1746 | } else { | ||
1747 | /* Merged mode */ | ||
1748 | config = VR_MERGED_WITH_VDDC; | ||
1749 | table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); | ||
1750 | |||
1751 | /* Set Vddc Voltage Controller */ | ||
1752 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { | ||
1753 | config = VR_SVI2_PLANE_1; | ||
1754 | table->VRConfig |= config; | ||
1755 | } else { | ||
1756 | printk(KERN_ERR "[ powerplay ] VDDC should be on " | ||
1757 | "SVI2 control in merged mode !\n"); | ||
1758 | } | ||
1759 | } | ||
1760 | |||
1761 | /* Set Vddci Voltage Controller */ | ||
1762 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { | ||
1763 | config = VR_SVI2_PLANE_2; /* only in merged mode */ | ||
1764 | table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); | ||
1765 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { | ||
1766 | config = VR_SMIO_PATTERN_1; | ||
1767 | table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); | ||
1768 | } | ||
1769 | |||
1770 | /* Set Mvdd Voltage Controller */ | ||
1771 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { | ||
1772 | config = VR_SMIO_PATTERN_2; | ||
1773 | table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); | ||
1774 | } | ||
1775 | |||
1776 | return 0; | ||
1777 | } | ||
1778 | |||
1779 | |||
1780 | /** | ||
1781 | * Initialize the ARB DRAM timing table's index field. | ||
1782 | * | ||
1783 | * @param hwmgr the address of the powerplay hardware manager. | ||
1784 | * @return always 0 | ||
1785 | */ | ||
1786 | static int tonga_init_arb_table_index(struct pp_smumgr *smumgr) | ||
1787 | { | ||
1788 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); | ||
1789 | uint32_t tmp; | ||
1790 | int result; | ||
1791 | |||
1792 | /* | ||
1793 | * This is a read-modify-write on the first byte of the ARB table. | ||
1794 | * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure | ||
1795 | * is the field 'current'. | ||
1796 | * This solution is ugly, but we never write the whole table only | ||
1797 | * individual fields in it. | ||
1798 | * In reality this field should not be in that structure | ||
1799 | * but in a soft register. | ||
1800 | */ | ||
1801 | result = tonga_read_smc_sram_dword(smumgr, | ||
1802 | smu_data->arb_table_start, &tmp, SMC_RAM_END); | ||
1803 | |||
1804 | if (0 != result) | ||
1805 | return result; | ||
1806 | |||
1807 | tmp &= 0x00FFFFFF; | ||
1808 | tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; | ||
1809 | |||
1810 | return tonga_write_smc_sram_dword(smumgr, | ||
1811 | smu_data->arb_table_start, tmp, SMC_RAM_END); | ||
1812 | } | ||
1813 | |||
1814 | |||
1815 | static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) | ||
1816 | { | ||
1817 | struct tonga_smumgr *smu_data = | ||
1818 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1819 | struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; | ||
1820 | SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); | ||
1821 | struct phm_ppt_v1_information *table_info = | ||
1822 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1823 | struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; | ||
1824 | int i, j, k; | ||
1825 | uint16_t *pdef1; | ||
1826 | uint16_t *pdef2; | ||
1827 | |||
1828 | dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( | ||
1829 | (uint16_t)(cac_dtp_table->usTDP * 256)); | ||
1830 | dpm_table->TargetTdp = PP_HOST_TO_SMC_US( | ||
1831 | (uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); | ||
1832 | |||
1833 | PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, | ||
1834 | "Target Operating Temp is out of Range !", | ||
1835 | ); | ||
1836 | |||
1837 | dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); | ||
1838 | dpm_table->GpuTjHyst = 8; | ||
1839 | |||
1840 | dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; | ||
1841 | |||
1842 | dpm_table->BAPM_TEMP_GRADIENT = | ||
1843 | PP_HOST_TO_SMC_UL(defaults->bamp_temp_gradient); | ||
1844 | pdef1 = defaults->bapmti_r; | ||
1845 | pdef2 = defaults->bapmti_rc; | ||
1846 | |||
1847 | for (i = 0; i < SMU72_DTE_ITERATIONS; i++) { | ||
1848 | for (j = 0; j < SMU72_DTE_SOURCES; j++) { | ||
1849 | for (k = 0; k < SMU72_DTE_SINKS; k++) { | ||
1850 | dpm_table->BAPMTI_R[i][j][k] = | ||
1851 | PP_HOST_TO_SMC_US(*pdef1); | ||
1852 | dpm_table->BAPMTI_RC[i][j][k] = | ||
1853 | PP_HOST_TO_SMC_US(*pdef2); | ||
1854 | pdef1++; | ||
1855 | pdef2++; | ||
1856 | } | ||
1857 | } | ||
1858 | } | ||
1859 | |||
1860 | return 0; | ||
1861 | } | ||
1862 | |||
1863 | static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr) | ||
1864 | { | ||
1865 | struct tonga_smumgr *smu_data = | ||
1866 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1867 | struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; | ||
1868 | |||
1869 | smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; | ||
1870 | smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC; | ||
1871 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; | ||
1872 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; | ||
1873 | |||
1874 | return 0; | ||
1875 | } | ||
1876 | |||
1877 | static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr) | ||
1878 | { | ||
1879 | uint16_t tdc_limit; | ||
1880 | struct tonga_smumgr *smu_data = | ||
1881 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1882 | struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; | ||
1883 | struct phm_ppt_v1_information *table_info = | ||
1884 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1885 | |||
1886 | /* TDC number of fraction bits are changed from 8 to 7 | ||
1887 | * for Fiji as requested by SMC team | ||
1888 | */ | ||
1889 | tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256); | ||
1890 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = | ||
1891 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); | ||
1892 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = | ||
1893 | defaults->tdc_vddc_throttle_release_limit_perc; | ||
1894 | smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; | ||
1895 | |||
1896 | return 0; | ||
1897 | } | ||
1898 | |||
1899 | static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) | ||
1900 | { | ||
1901 | struct tonga_smumgr *smu_data = | ||
1902 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1903 | struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; | ||
1904 | uint32_t temp; | ||
1905 | |||
1906 | if (tonga_read_smc_sram_dword(hwmgr->smumgr, | ||
1907 | fuse_table_offset + | ||
1908 | offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl), | ||
1909 | (uint32_t *)&temp, SMC_RAM_END)) | ||
1910 | PP_ASSERT_WITH_CODE(false, | ||
1911 | "Attempt to read PmFuses.DW6 " | ||
1912 | "(SviLoadLineEn) from SMC Failed !", | ||
1913 | return -EINVAL); | ||
1914 | else | ||
1915 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; | ||
1916 | |||
1917 | return 0; | ||
1918 | } | ||
1919 | |||
1920 | static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr) | ||
1921 | { | ||
1922 | int i; | ||
1923 | struct tonga_smumgr *smu_data = | ||
1924 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1925 | |||
1926 | /* Currently not used. Set all to zero. */ | ||
1927 | for (i = 0; i < 16; i++) | ||
1928 | smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; | ||
1929 | |||
1930 | return 0; | ||
1931 | } | ||
1932 | |||
1933 | static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) | ||
1934 | { | ||
1935 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1936 | |||
1937 | if ((hwmgr->thermal_controller.advanceFanControlParameters. | ||
1938 | usFanOutputSensitivity & (1 << 15)) || | ||
1939 | (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0)) | ||
1940 | hwmgr->thermal_controller.advanceFanControlParameters. | ||
1941 | usFanOutputSensitivity = hwmgr->thermal_controller. | ||
1942 | advanceFanControlParameters.usDefaultFanOutputSensitivity; | ||
1943 | |||
1944 | smu_data->power_tune_table.FuzzyFan_PwmSetDelta = | ||
1945 | PP_HOST_TO_SMC_US(hwmgr->thermal_controller. | ||
1946 | advanceFanControlParameters.usFanOutputSensitivity); | ||
1947 | return 0; | ||
1948 | } | ||
1949 | |||
1950 | static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr) | ||
1951 | { | ||
1952 | int i; | ||
1953 | struct tonga_smumgr *smu_data = | ||
1954 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1955 | |||
1956 | /* Currently not used. Set all to zero. */ | ||
1957 | for (i = 0; i < 16; i++) | ||
1958 | smu_data->power_tune_table.GnbLPML[i] = 0; | ||
1959 | |||
1960 | return 0; | ||
1961 | } | ||
1962 | |||
1963 | static int tonga_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr) | ||
1964 | { | ||
1965 | return 0; | ||
1966 | } | ||
1967 | |||
1968 | static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) | ||
1969 | { | ||
1970 | struct tonga_smumgr *smu_data = | ||
1971 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1972 | struct phm_ppt_v1_information *table_info = | ||
1973 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1974 | uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; | ||
1975 | uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; | ||
1976 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; | ||
1977 | |||
1978 | hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); | ||
1979 | lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); | ||
1980 | |||
1981 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = | ||
1982 | CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); | ||
1983 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = | ||
1984 | CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); | ||
1985 | |||
1986 | return 0; | ||
1987 | } | ||
1988 | |||
1989 | static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr) | ||
1990 | { | ||
1991 | struct tonga_smumgr *smu_data = | ||
1992 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
1993 | uint32_t pm_fuse_table_offset; | ||
1994 | |||
1995 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
1996 | PHM_PlatformCaps_PowerContainment)) { | ||
1997 | if (tonga_read_smc_sram_dword(hwmgr->smumgr, | ||
1998 | SMU72_FIRMWARE_HEADER_LOCATION + | ||
1999 | offsetof(SMU72_Firmware_Header, PmFuseTable), | ||
2000 | &pm_fuse_table_offset, SMC_RAM_END)) | ||
2001 | PP_ASSERT_WITH_CODE(false, | ||
2002 | "Attempt to get pm_fuse_table_offset Failed !", | ||
2003 | return -EINVAL); | ||
2004 | |||
2005 | /* DW6 */ | ||
2006 | if (tonga_populate_svi_load_line(hwmgr)) | ||
2007 | PP_ASSERT_WITH_CODE(false, | ||
2008 | "Attempt to populate SviLoadLine Failed !", | ||
2009 | return -EINVAL); | ||
2010 | /* DW7 */ | ||
2011 | if (tonga_populate_tdc_limit(hwmgr)) | ||
2012 | PP_ASSERT_WITH_CODE(false, | ||
2013 | "Attempt to populate TDCLimit Failed !", | ||
2014 | return -EINVAL); | ||
2015 | /* DW8 */ | ||
2016 | if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset)) | ||
2017 | PP_ASSERT_WITH_CODE(false, | ||
2018 | "Attempt to populate TdcWaterfallCtl Failed !", | ||
2019 | return -EINVAL); | ||
2020 | |||
2021 | /* DW9-DW12 */ | ||
2022 | if (tonga_populate_temperature_scaler(hwmgr) != 0) | ||
2023 | PP_ASSERT_WITH_CODE(false, | ||
2024 | "Attempt to populate LPMLTemperatureScaler Failed !", | ||
2025 | return -EINVAL); | ||
2026 | |||
2027 | /* DW13-DW14 */ | ||
2028 | if (tonga_populate_fuzzy_fan(hwmgr)) | ||
2029 | PP_ASSERT_WITH_CODE(false, | ||
2030 | "Attempt to populate Fuzzy Fan " | ||
2031 | "Control parameters Failed !", | ||
2032 | return -EINVAL); | ||
2033 | |||
2034 | /* DW15-DW18 */ | ||
2035 | if (tonga_populate_gnb_lpml(hwmgr)) | ||
2036 | PP_ASSERT_WITH_CODE(false, | ||
2037 | "Attempt to populate GnbLPML Failed !", | ||
2038 | return -EINVAL); | ||
2039 | |||
2040 | /* DW19 */ | ||
2041 | if (tonga_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr)) | ||
2042 | PP_ASSERT_WITH_CODE(false, | ||
2043 | "Attempt to populate GnbLPML " | ||
2044 | "Min and Max Vid Failed !", | ||
2045 | return -EINVAL); | ||
2046 | |||
2047 | /* DW20 */ | ||
2048 | if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr)) | ||
2049 | PP_ASSERT_WITH_CODE( | ||
2050 | false, | ||
2051 | "Attempt to populate BapmVddCBaseLeakage " | ||
2052 | "Hi and Lo Sidd Failed !", | ||
2053 | return -EINVAL); | ||
2054 | |||
2055 | if (tonga_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset, | ||
2056 | (uint8_t *)&smu_data->power_tune_table, | ||
2057 | sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END)) | ||
2058 | PP_ASSERT_WITH_CODE(false, | ||
2059 | "Attempt to download PmFuseTable Failed !", | ||
2060 | return -EINVAL); | ||
2061 | } | ||
2062 | return 0; | ||
2063 | } | ||
2064 | |||
2065 | static int tonga_populate_mc_reg_address(struct pp_smumgr *smumgr, | ||
2066 | SMU72_Discrete_MCRegisters *mc_reg_table) | ||
2067 | { | ||
2068 | const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)smumgr->backend; | ||
2069 | |||
2070 | uint32_t i, j; | ||
2071 | |||
2072 | for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { | ||
2073 | if (smu_data->mc_reg_table.validflag & 1<<j) { | ||
2074 | PP_ASSERT_WITH_CODE( | ||
2075 | i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE, | ||
2076 | "Index of mc_reg_table->address[] array " | ||
2077 | "out of boundary", | ||
2078 | return -EINVAL); | ||
2079 | mc_reg_table->address[i].s0 = | ||
2080 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); | ||
2081 | mc_reg_table->address[i].s1 = | ||
2082 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); | ||
2083 | i++; | ||
2084 | } | ||
2085 | } | ||
2086 | |||
2087 | mc_reg_table->last = (uint8_t)i; | ||
2088 | |||
2089 | return 0; | ||
2090 | } | ||
2091 | |||
2092 | /*convert register values from driver to SMC format */ | ||
2093 | static void tonga_convert_mc_registers( | ||
2094 | const struct tonga_mc_reg_entry *entry, | ||
2095 | SMU72_Discrete_MCRegisterSet *data, | ||
2096 | uint32_t num_entries, uint32_t valid_flag) | ||
2097 | { | ||
2098 | uint32_t i, j; | ||
2099 | |||
2100 | for (i = 0, j = 0; j < num_entries; j++) { | ||
2101 | if (valid_flag & 1<<j) { | ||
2102 | data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); | ||
2103 | i++; | ||
2104 | } | ||
2105 | } | ||
2106 | } | ||
2107 | |||
2108 | static int tonga_convert_mc_reg_table_entry_to_smc( | ||
2109 | struct pp_smumgr *smumgr, | ||
2110 | const uint32_t memory_clock, | ||
2111 | SMU72_Discrete_MCRegisterSet *mc_reg_table_data | ||
2112 | ) | ||
2113 | { | ||
2114 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); | ||
2115 | uint32_t i = 0; | ||
2116 | |||
2117 | for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { | ||
2118 | if (memory_clock <= | ||
2119 | smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { | ||
2120 | break; | ||
2121 | } | ||
2122 | } | ||
2123 | |||
2124 | if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) | ||
2125 | --i; | ||
2126 | |||
2127 | tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], | ||
2128 | mc_reg_table_data, smu_data->mc_reg_table.last, | ||
2129 | smu_data->mc_reg_table.validflag); | ||
2130 | |||
2131 | return 0; | ||
2132 | } | ||
2133 | |||
2134 | static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, | ||
2135 | SMU72_Discrete_MCRegisters *mc_regs) | ||
2136 | { | ||
2137 | int result = 0; | ||
2138 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
2139 | int res; | ||
2140 | uint32_t i; | ||
2141 | |||
2142 | for (i = 0; i < data->dpm_table.mclk_table.count; i++) { | ||
2143 | res = tonga_convert_mc_reg_table_entry_to_smc( | ||
2144 | hwmgr->smumgr, | ||
2145 | data->dpm_table.mclk_table.dpm_levels[i].value, | ||
2146 | &mc_regs->data[i] | ||
2147 | ); | ||
2148 | |||
2149 | if (0 != res) | ||
2150 | result = res; | ||
2151 | } | ||
2152 | |||
2153 | return result; | ||
2154 | } | ||
2155 | |||
2156 | static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) | ||
2157 | { | ||
2158 | struct pp_smumgr *smumgr = hwmgr->smumgr; | ||
2159 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); | ||
2160 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
2161 | uint32_t address; | ||
2162 | int32_t result; | ||
2163 | |||
2164 | if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) | ||
2165 | return 0; | ||
2166 | |||
2167 | |||
2168 | memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters)); | ||
2169 | |||
2170 | result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); | ||
2171 | |||
2172 | if (result != 0) | ||
2173 | return result; | ||
2174 | |||
2175 | |||
2176 | address = smu_data->mc_reg_table_start + | ||
2177 | (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]); | ||
2178 | |||
2179 | return tonga_copy_bytes_to_smc( | ||
2180 | hwmgr->smumgr, address, | ||
2181 | (uint8_t *)&smu_data->mc_regs.data[0], | ||
2182 | sizeof(SMU72_Discrete_MCRegisterSet) * | ||
2183 | data->dpm_table.mclk_table.count, | ||
2184 | SMC_RAM_END); | ||
2185 | } | ||
2186 | |||
2187 | static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) | ||
2188 | { | ||
2189 | int result; | ||
2190 | struct pp_smumgr *smumgr = hwmgr->smumgr; | ||
2191 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend); | ||
2192 | |||
2193 | memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters)); | ||
2194 | result = tonga_populate_mc_reg_address(smumgr, &(smu_data->mc_regs)); | ||
2195 | PP_ASSERT_WITH_CODE(0 == result, | ||
2196 | "Failed to initialize MCRegTable for the MC register addresses !", | ||
2197 | return result;); | ||
2198 | |||
2199 | result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); | ||
2200 | PP_ASSERT_WITH_CODE(0 == result, | ||
2201 | "Failed to initialize MCRegTable for driver state !", | ||
2202 | return result;); | ||
2203 | |||
2204 | return tonga_copy_bytes_to_smc(smumgr, smu_data->mc_reg_table_start, | ||
2205 | (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END); | ||
2206 | } | ||
2207 | |||
2208 | static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) | ||
2209 | { | ||
2210 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
2211 | struct phm_ppt_v1_information *table_info = | ||
2212 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
2213 | |||
2214 | if (table_info && | ||
2215 | table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && | ||
2216 | table_info->cac_dtp_table->usPowerTuneDataSetID) | ||
2217 | smu_data->power_tune_defaults = | ||
2218 | &tonga_power_tune_data_set_array | ||
2219 | [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; | ||
2220 | else | ||
2221 | smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0]; | ||
2222 | } | ||
2223 | |||
2224 | /** | ||
2225 | * Initializes the SMC table and uploads it | ||
2226 | * | ||
2227 | * @param hwmgr the address of the powerplay hardware manager. | ||
2228 | * @param pInput the pointer to input data (PowerState) | ||
2229 | * @return always 0 | ||
2230 | */ | ||
2231 | int tonga_init_smc_table(struct pp_hwmgr *hwmgr) | ||
2232 | { | ||
2233 | int result; | ||
2234 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
2235 | struct tonga_smumgr *smu_data = | ||
2236 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
2237 | SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table); | ||
2238 | struct phm_ppt_v1_information *table_info = | ||
2239 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
2240 | |||
2241 | uint8_t i; | ||
2242 | pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; | ||
2243 | |||
2244 | |||
2245 | memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); | ||
2246 | |||
2247 | tonga_initialize_power_tune_defaults(hwmgr); | ||
2248 | |||
2249 | if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) | ||
2250 | tonga_populate_smc_voltage_tables(hwmgr, table); | ||
2251 | |||
2252 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2253 | PHM_PlatformCaps_AutomaticDCTransition)) | ||
2254 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; | ||
2255 | |||
2256 | |||
2257 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2258 | PHM_PlatformCaps_StepVddc)) | ||
2259 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; | ||
2260 | |||
2261 | if (data->is_memory_gddr5) | ||
2262 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; | ||
2263 | |||
2264 | i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN); | ||
2265 | |||
2266 | if (i == 1 || i == 0) | ||
2267 | table->SystemFlags |= 0x40; | ||
2268 | |||
2269 | if (data->ulv_supported && table_info->us_ulv_voltage_offset) { | ||
2270 | result = tonga_populate_ulv_state(hwmgr, table); | ||
2271 | PP_ASSERT_WITH_CODE(0 == result, | ||
2272 | "Failed to initialize ULV state !", | ||
2273 | return result;); | ||
2274 | |||
2275 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
2276 | ixCG_ULV_PARAMETER, 0x40035); | ||
2277 | } | ||
2278 | |||
2279 | result = tonga_populate_smc_link_level(hwmgr, table); | ||
2280 | PP_ASSERT_WITH_CODE(0 == result, | ||
2281 | "Failed to initialize Link Level !", return result); | ||
2282 | |||
2283 | result = tonga_populate_all_graphic_levels(hwmgr); | ||
2284 | PP_ASSERT_WITH_CODE(0 == result, | ||
2285 | "Failed to initialize Graphics Level !", return result); | ||
2286 | |||
2287 | result = tonga_populate_all_memory_levels(hwmgr); | ||
2288 | PP_ASSERT_WITH_CODE(0 == result, | ||
2289 | "Failed to initialize Memory Level !", return result); | ||
2290 | |||
2291 | result = tonga_populate_smc_acpi_level(hwmgr, table); | ||
2292 | PP_ASSERT_WITH_CODE(0 == result, | ||
2293 | "Failed to initialize ACPI Level !", return result); | ||
2294 | |||
2295 | result = tonga_populate_smc_vce_level(hwmgr, table); | ||
2296 | PP_ASSERT_WITH_CODE(0 == result, | ||
2297 | "Failed to initialize VCE Level !", return result); | ||
2298 | |||
2299 | result = tonga_populate_smc_acp_level(hwmgr, table); | ||
2300 | PP_ASSERT_WITH_CODE(0 == result, | ||
2301 | "Failed to initialize ACP Level !", return result); | ||
2302 | |||
2303 | result = tonga_populate_smc_samu_level(hwmgr, table); | ||
2304 | PP_ASSERT_WITH_CODE(0 == result, | ||
2305 | "Failed to initialize SAMU Level !", return result); | ||
2306 | |||
2307 | /* Since only the initial state is completely set up at this | ||
2308 | * point (the other states are just copies of the boot state) we only | ||
2309 | * need to populate the ARB settings for the initial state. | ||
2310 | */ | ||
2311 | result = tonga_program_memory_timing_parameters(hwmgr); | ||
2312 | PP_ASSERT_WITH_CODE(0 == result, | ||
2313 | "Failed to Write ARB settings for the initial state.", | ||
2314 | return result;); | ||
2315 | |||
2316 | result = tonga_populate_smc_uvd_level(hwmgr, table); | ||
2317 | PP_ASSERT_WITH_CODE(0 == result, | ||
2318 | "Failed to initialize UVD Level !", return result); | ||
2319 | |||
2320 | result = tonga_populate_smc_boot_level(hwmgr, table); | ||
2321 | PP_ASSERT_WITH_CODE(0 == result, | ||
2322 | "Failed to initialize Boot Level !", return result); | ||
2323 | |||
2324 | tonga_populate_bapm_parameters_in_dpm_table(hwmgr); | ||
2325 | PP_ASSERT_WITH_CODE(0 == result, | ||
2326 | "Failed to populate BAPM Parameters !", return result); | ||
2327 | |||
2328 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2329 | PHM_PlatformCaps_ClockStretcher)) { | ||
2330 | result = tonga_populate_clock_stretcher_data_table(hwmgr); | ||
2331 | PP_ASSERT_WITH_CODE(0 == result, | ||
2332 | "Failed to populate Clock Stretcher Data Table !", | ||
2333 | return result;); | ||
2334 | } | ||
2335 | table->GraphicsVoltageChangeEnable = 1; | ||
2336 | table->GraphicsThermThrottleEnable = 1; | ||
2337 | table->GraphicsInterval = 1; | ||
2338 | table->VoltageInterval = 1; | ||
2339 | table->ThermalInterval = 1; | ||
2340 | table->TemperatureLimitHigh = | ||
2341 | table_info->cac_dtp_table->usTargetOperatingTemp * | ||
2342 | SMU7_Q88_FORMAT_CONVERSION_UNIT; | ||
2343 | table->TemperatureLimitLow = | ||
2344 | (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * | ||
2345 | SMU7_Q88_FORMAT_CONVERSION_UNIT; | ||
2346 | table->MemoryVoltageChangeEnable = 1; | ||
2347 | table->MemoryInterval = 1; | ||
2348 | table->VoltageResponseTime = 0; | ||
2349 | table->PhaseResponseTime = 0; | ||
2350 | table->MemoryThermThrottleEnable = 1; | ||
2351 | |||
2352 | /* | ||
2353 | * Cail reads current link status and reports it as cap (we cannot | ||
2354 | * change this due to some previous issues we had) | ||
2355 | * SMC drops the link status to lowest level after enabling | ||
2356 | * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again | ||
2357 | * but this time Cail reads current link status which was set to low by | ||
2358 | * SMC and reports it as cap to powerplay | ||
2359 | * To avoid it, we set PCIeBootLinkLevel to highest dpm level | ||
2360 | */ | ||
2361 | PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), | ||
2362 | "There must be 1 or more PCIE levels defined in PPTable.", | ||
2363 | return -EINVAL); | ||
2364 | |||
2365 | table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); | ||
2366 | |||
2367 | table->PCIeGenInterval = 1; | ||
2368 | |||
2369 | result = tonga_populate_vr_config(hwmgr, table); | ||
2370 | PP_ASSERT_WITH_CODE(0 == result, | ||
2371 | "Failed to populate VRConfig setting !", return result); | ||
2372 | |||
2373 | table->ThermGpio = 17; | ||
2374 | table->SclkStepSize = 0x4000; | ||
2375 | |||
2376 | if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, | ||
2377 | &gpio_pin_assignment)) { | ||
2378 | table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; | ||
2379 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2380 | PHM_PlatformCaps_RegulatorHot); | ||
2381 | } else { | ||
2382 | table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; | ||
2383 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2384 | PHM_PlatformCaps_RegulatorHot); | ||
2385 | } | ||
2386 | |||
2387 | if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, | ||
2388 | &gpio_pin_assignment)) { | ||
2389 | table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; | ||
2390 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2391 | PHM_PlatformCaps_AutomaticDCTransition); | ||
2392 | } else { | ||
2393 | table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; | ||
2394 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2395 | PHM_PlatformCaps_AutomaticDCTransition); | ||
2396 | } | ||
2397 | |||
2398 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2399 | PHM_PlatformCaps_Falcon_QuickTransition); | ||
2400 | |||
2401 | if (0) { | ||
2402 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2403 | PHM_PlatformCaps_AutomaticDCTransition); | ||
2404 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2405 | PHM_PlatformCaps_Falcon_QuickTransition); | ||
2406 | } | ||
2407 | |||
2408 | if (atomctrl_get_pp_assign_pin(hwmgr, | ||
2409 | THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) { | ||
2410 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2411 | PHM_PlatformCaps_ThermalOutGPIO); | ||
2412 | |||
2413 | table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; | ||
2414 | |||
2415 | table->ThermOutPolarity = | ||
2416 | (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & | ||
2417 | (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0; | ||
2418 | |||
2419 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; | ||
2420 | |||
2421 | /* if required, combine VRHot/PCC with thermal out GPIO*/ | ||
2422 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2423 | PHM_PlatformCaps_RegulatorHot) && | ||
2424 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2425 | PHM_PlatformCaps_CombinePCCWithThermalSignal)){ | ||
2426 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; | ||
2427 | } | ||
2428 | } else { | ||
2429 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2430 | PHM_PlatformCaps_ThermalOutGPIO); | ||
2431 | |||
2432 | table->ThermOutGpio = 17; | ||
2433 | table->ThermOutPolarity = 1; | ||
2434 | table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; | ||
2435 | } | ||
2436 | |||
2437 | for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) | ||
2438 | table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); | ||
2439 | |||
2440 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); | ||
2441 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); | ||
2442 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); | ||
2443 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); | ||
2444 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); | ||
2445 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); | ||
2446 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); | ||
2447 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); | ||
2448 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); | ||
2449 | |||
2450 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ | ||
2451 | result = tonga_copy_bytes_to_smc( | ||
2452 | hwmgr->smumgr, | ||
2453 | smu_data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags), | ||
2454 | (uint8_t *)&(table->SystemFlags), | ||
2455 | sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController), | ||
2456 | SMC_RAM_END); | ||
2457 | |||
2458 | PP_ASSERT_WITH_CODE(0 == result, | ||
2459 | "Failed to upload dpm data to SMC memory !", return result;); | ||
2460 | |||
2461 | result = tonga_init_arb_table_index(hwmgr->smumgr); | ||
2462 | PP_ASSERT_WITH_CODE(0 == result, | ||
2463 | "Failed to upload arb data to SMC memory !", return result); | ||
2464 | |||
2465 | tonga_populate_pm_fuses(hwmgr); | ||
2466 | PP_ASSERT_WITH_CODE((0 == result), | ||
2467 | "Failed to populate initialize pm fuses !", return result); | ||
2468 | |||
2469 | result = tonga_populate_initial_mc_reg_table(hwmgr); | ||
2470 | PP_ASSERT_WITH_CODE((0 == result), | ||
2471 | "Failed to populate initialize MC Reg table !", return result); | ||
2472 | |||
2473 | return 0; | ||
2474 | } | ||
2475 | |||
2476 | /** | ||
2477 | * Set up the fan table to control the fan using the SMC. | ||
2478 | * @param hwmgr the address of the powerplay hardware manager. | ||
2479 | * @param pInput the pointer to input data | ||
2480 | * @param pOutput the pointer to output data | ||
2481 | * @param pStorage the pointer to temporary storage | ||
2482 | * @param Result the last failure code | ||
2483 | * @return result from set temperature range routine | ||
2484 | */ | ||
2485 | int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) | ||
2486 | { | ||
2487 | struct tonga_smumgr *smu_data = | ||
2488 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
2489 | SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; | ||
2490 | uint32_t duty100; | ||
2491 | uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; | ||
2492 | uint16_t fdo_min, slope1, slope2; | ||
2493 | uint32_t reference_clock; | ||
2494 | int res; | ||
2495 | uint64_t tmp64; | ||
2496 | |||
2497 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2498 | PHM_PlatformCaps_MicrocodeFanControl)) | ||
2499 | return 0; | ||
2500 | |||
2501 | if (0 == smu_data->fan_table_start) { | ||
2502 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2503 | PHM_PlatformCaps_MicrocodeFanControl); | ||
2504 | return 0; | ||
2505 | } | ||
2506 | |||
2507 | duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, | ||
2508 | CGS_IND_REG__SMC, | ||
2509 | CG_FDO_CTRL1, FMAX_DUTY100); | ||
2510 | |||
2511 | if (0 == duty100) { | ||
2512 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2513 | PHM_PlatformCaps_MicrocodeFanControl); | ||
2514 | return 0; | ||
2515 | } | ||
2516 | |||
2517 | tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; | ||
2518 | do_div(tmp64, 10000); | ||
2519 | fdo_min = (uint16_t)tmp64; | ||
2520 | |||
2521 | t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - | ||
2522 | hwmgr->thermal_controller.advanceFanControlParameters.usTMin; | ||
2523 | t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - | ||
2524 | hwmgr->thermal_controller.advanceFanControlParameters.usTMed; | ||
2525 | |||
2526 | pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - | ||
2527 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; | ||
2528 | pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - | ||
2529 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; | ||
2530 | |||
2531 | slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); | ||
2532 | slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); | ||
2533 | |||
2534 | fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); | ||
2535 | fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); | ||
2536 | fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); | ||
2537 | |||
2538 | fan_table.Slope1 = cpu_to_be16(slope1); | ||
2539 | fan_table.Slope2 = cpu_to_be16(slope2); | ||
2540 | |||
2541 | fan_table.FdoMin = cpu_to_be16(fdo_min); | ||
2542 | |||
2543 | fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); | ||
2544 | |||
2545 | fan_table.HystUp = cpu_to_be16(1); | ||
2546 | |||
2547 | fan_table.HystSlope = cpu_to_be16(1); | ||
2548 | |||
2549 | fan_table.TempRespLim = cpu_to_be16(5); | ||
2550 | |||
2551 | reference_clock = smu7_get_xclk(hwmgr); | ||
2552 | |||
2553 | fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); | ||
2554 | |||
2555 | fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); | ||
2556 | |||
2557 | fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); | ||
2558 | |||
2559 | fan_table.FanControl_GL_Flag = 1; | ||
2560 | |||
2561 | res = tonga_copy_bytes_to_smc(hwmgr->smumgr, smu_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); | ||
2562 | /* TO DO FOR SOME DEVICE ID 0X692b, send this msg return invalid command. | ||
2563 | if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit != 0) | ||
2564 | res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanMinPwm, \ | ||
2565 | hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit) ? 0 : -1); | ||
2566 | |||
2567 | if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit != 0) | ||
2568 | res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanSclkTarget, \ | ||
2569 | hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit) ? 0 : -1); | ||
2570 | |||
2571 | if (0 != res) | ||
2572 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); | ||
2573 | */ | ||
2574 | return 0; | ||
2575 | } | ||
2576 | |||
2577 | |||
2578 | static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) | ||
2579 | { | ||
2580 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
2581 | |||
2582 | if (data->need_update_smu7_dpm_table & | ||
2583 | (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) | ||
2584 | return tonga_program_memory_timing_parameters(hwmgr); | ||
2585 | |||
2586 | return 0; | ||
2587 | } | ||
2588 | |||
2589 | int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) | ||
2590 | { | ||
2591 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
2592 | struct tonga_smumgr *smu_data = | ||
2593 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
2594 | |||
2595 | int result = 0; | ||
2596 | uint32_t low_sclk_interrupt_threshold = 0; | ||
2597 | |||
2598 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2599 | PHM_PlatformCaps_SclkThrottleLowNotification) | ||
2600 | && (hwmgr->gfx_arbiter.sclk_threshold != | ||
2601 | data->low_sclk_interrupt_threshold)) { | ||
2602 | data->low_sclk_interrupt_threshold = | ||
2603 | hwmgr->gfx_arbiter.sclk_threshold; | ||
2604 | low_sclk_interrupt_threshold = | ||
2605 | data->low_sclk_interrupt_threshold; | ||
2606 | |||
2607 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); | ||
2608 | |||
2609 | result = tonga_copy_bytes_to_smc( | ||
2610 | hwmgr->smumgr, | ||
2611 | smu_data->dpm_table_start + | ||
2612 | offsetof(SMU72_Discrete_DpmTable, | ||
2613 | LowSclkInterruptThreshold), | ||
2614 | (uint8_t *)&low_sclk_interrupt_threshold, | ||
2615 | sizeof(uint32_t), | ||
2616 | SMC_RAM_END); | ||
2617 | } | ||
2618 | |||
2619 | result = tonga_update_and_upload_mc_reg_table(hwmgr); | ||
2620 | |||
2621 | PP_ASSERT_WITH_CODE((0 == result), | ||
2622 | "Failed to upload MC reg table !", | ||
2623 | return result); | ||
2624 | |||
2625 | result = tonga_program_mem_timing_parameters(hwmgr); | ||
2626 | PP_ASSERT_WITH_CODE((result == 0), | ||
2627 | "Failed to program memory timing parameters !", | ||
2628 | ); | ||
2629 | |||
2630 | return result; | ||
2631 | } | ||
2632 | |||
2633 | uint32_t tonga_get_offsetof(uint32_t type, uint32_t member) | ||
2634 | { | ||
2635 | switch (type) { | ||
2636 | case SMU_SoftRegisters: | ||
2637 | switch (member) { | ||
2638 | case HandshakeDisables: | ||
2639 | return offsetof(SMU72_SoftRegisters, HandshakeDisables); | ||
2640 | case VoltageChangeTimeout: | ||
2641 | return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout); | ||
2642 | case AverageGraphicsActivity: | ||
2643 | return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity); | ||
2644 | case PreVBlankGap: | ||
2645 | return offsetof(SMU72_SoftRegisters, PreVBlankGap); | ||
2646 | case VBlankTimeout: | ||
2647 | return offsetof(SMU72_SoftRegisters, VBlankTimeout); | ||
2648 | } | ||
2649 | case SMU_Discrete_DpmTable: | ||
2650 | switch (member) { | ||
2651 | case UvdBootLevel: | ||
2652 | return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); | ||
2653 | case VceBootLevel: | ||
2654 | return offsetof(SMU72_Discrete_DpmTable, VceBootLevel); | ||
2655 | case SamuBootLevel: | ||
2656 | return offsetof(SMU72_Discrete_DpmTable, SamuBootLevel); | ||
2657 | case LowSclkInterruptThreshold: | ||
2658 | return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold); | ||
2659 | } | ||
2660 | } | ||
2661 | printk("cant't get the offset of type %x member %x\n", type, member); | ||
2662 | return 0; | ||
2663 | } | ||
2664 | |||
2665 | uint32_t tonga_get_mac_definition(uint32_t value) | ||
2666 | { | ||
2667 | switch (value) { | ||
2668 | case SMU_MAX_LEVELS_GRAPHICS: | ||
2669 | return SMU72_MAX_LEVELS_GRAPHICS; | ||
2670 | case SMU_MAX_LEVELS_MEMORY: | ||
2671 | return SMU72_MAX_LEVELS_MEMORY; | ||
2672 | case SMU_MAX_LEVELS_LINK: | ||
2673 | return SMU72_MAX_LEVELS_LINK; | ||
2674 | case SMU_MAX_ENTRIES_SMIO: | ||
2675 | return SMU72_MAX_ENTRIES_SMIO; | ||
2676 | case SMU_MAX_LEVELS_VDDC: | ||
2677 | return SMU72_MAX_LEVELS_VDDC; | ||
2678 | case SMU_MAX_LEVELS_VDDGFX: | ||
2679 | return SMU72_MAX_LEVELS_VDDGFX; | ||
2680 | case SMU_MAX_LEVELS_VDDCI: | ||
2681 | return SMU72_MAX_LEVELS_VDDCI; | ||
2682 | case SMU_MAX_LEVELS_MVDD: | ||
2683 | return SMU72_MAX_LEVELS_MVDD; | ||
2684 | } | ||
2685 | printk("cant't get the mac value %x\n", value); | ||
2686 | |||
2687 | return 0; | ||
2688 | } | ||
2689 | |||
2690 | |||
2691 | static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr) | ||
2692 | { | ||
2693 | struct tonga_smumgr *smu_data = | ||
2694 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
2695 | uint32_t mm_boot_level_offset, mm_boot_level_value; | ||
2696 | struct phm_ppt_v1_information *table_info = | ||
2697 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
2698 | |||
2699 | smu_data->smc_state_table.UvdBootLevel = 0; | ||
2700 | if (table_info->mm_dep_table->count > 0) | ||
2701 | smu_data->smc_state_table.UvdBootLevel = | ||
2702 | (uint8_t) (table_info->mm_dep_table->count - 1); | ||
2703 | mm_boot_level_offset = smu_data->dpm_table_start + | ||
2704 | offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); | ||
2705 | mm_boot_level_offset /= 4; | ||
2706 | mm_boot_level_offset *= 4; | ||
2707 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device, | ||
2708 | CGS_IND_REG__SMC, mm_boot_level_offset); | ||
2709 | mm_boot_level_value &= 0x00FFFFFF; | ||
2710 | mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; | ||
2711 | cgs_write_ind_register(hwmgr->device, | ||
2712 | CGS_IND_REG__SMC, | ||
2713 | mm_boot_level_offset, mm_boot_level_value); | ||
2714 | |||
2715 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2716 | PHM_PlatformCaps_UVDDPM) || | ||
2717 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2718 | PHM_PlatformCaps_StablePState)) | ||
2719 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
2720 | PPSMC_MSG_UVDDPM_SetEnabledMask, | ||
2721 | (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); | ||
2722 | return 0; | ||
2723 | } | ||
2724 | |||
2725 | static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr) | ||
2726 | { | ||
2727 | struct tonga_smumgr *smu_data = | ||
2728 | (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
2729 | uint32_t mm_boot_level_offset, mm_boot_level_value; | ||
2730 | struct phm_ppt_v1_information *table_info = | ||
2731 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
2732 | |||
2733 | |||
2734 | smu_data->smc_state_table.VceBootLevel = | ||
2735 | (uint8_t) (table_info->mm_dep_table->count - 1); | ||
2736 | |||
2737 | mm_boot_level_offset = smu_data->dpm_table_start + | ||
2738 | offsetof(SMU72_Discrete_DpmTable, VceBootLevel); | ||
2739 | mm_boot_level_offset /= 4; | ||
2740 | mm_boot_level_offset *= 4; | ||
2741 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device, | ||
2742 | CGS_IND_REG__SMC, mm_boot_level_offset); | ||
2743 | mm_boot_level_value &= 0xFF00FFFF; | ||
2744 | mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; | ||
2745 | cgs_write_ind_register(hwmgr->device, | ||
2746 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); | ||
2747 | |||
2748 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2749 | PHM_PlatformCaps_StablePState)) | ||
2750 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
2751 | PPSMC_MSG_VCEDPM_SetEnabledMask, | ||
2752 | (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); | ||
2753 | return 0; | ||
2754 | } | ||
2755 | |||
2756 | static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr) | ||
2757 | { | ||
2758 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
2759 | uint32_t mm_boot_level_offset, mm_boot_level_value; | ||
2760 | |||
2761 | smu_data->smc_state_table.SamuBootLevel = 0; | ||
2762 | mm_boot_level_offset = smu_data->dpm_table_start + | ||
2763 | offsetof(SMU72_Discrete_DpmTable, SamuBootLevel); | ||
2764 | |||
2765 | mm_boot_level_offset /= 4; | ||
2766 | mm_boot_level_offset *= 4; | ||
2767 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device, | ||
2768 | CGS_IND_REG__SMC, mm_boot_level_offset); | ||
2769 | mm_boot_level_value &= 0xFFFFFF00; | ||
2770 | mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0; | ||
2771 | cgs_write_ind_register(hwmgr->device, | ||
2772 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); | ||
2773 | |||
2774 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2775 | PHM_PlatformCaps_StablePState)) | ||
2776 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
2777 | PPSMC_MSG_SAMUDPM_SetEnabledMask, | ||
2778 | (uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel)); | ||
2779 | return 0; | ||
2780 | } | ||
2781 | |||
2782 | int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) | ||
2783 | { | ||
2784 | switch (type) { | ||
2785 | case SMU_UVD_TABLE: | ||
2786 | tonga_update_uvd_smc_table(hwmgr); | ||
2787 | break; | ||
2788 | case SMU_VCE_TABLE: | ||
2789 | tonga_update_vce_smc_table(hwmgr); | ||
2790 | break; | ||
2791 | case SMU_SAMU_TABLE: | ||
2792 | tonga_update_samu_smc_table(hwmgr); | ||
2793 | break; | ||
2794 | default: | ||
2795 | break; | ||
2796 | } | ||
2797 | return 0; | ||
2798 | } | ||
2799 | |||
2800 | |||
2801 | /** | ||
2802 | * Get the location of various tables inside the FW image. | ||
2803 | * | ||
2804 | * @param hwmgr the address of the powerplay hardware manager. | ||
2805 | * @return always 0 | ||
2806 | */ | ||
2807 | int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) | ||
2808 | { | ||
2809 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
2810 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
2811 | |||
2812 | uint32_t tmp; | ||
2813 | int result; | ||
2814 | bool error = false; | ||
2815 | |||
2816 | result = tonga_read_smc_sram_dword(hwmgr->smumgr, | ||
2817 | SMU72_FIRMWARE_HEADER_LOCATION + | ||
2818 | offsetof(SMU72_Firmware_Header, DpmTable), | ||
2819 | &tmp, SMC_RAM_END); | ||
2820 | |||
2821 | if (0 == result) | ||
2822 | smu_data->dpm_table_start = tmp; | ||
2823 | |||
2824 | error |= (0 != result); | ||
2825 | |||
2826 | result = tonga_read_smc_sram_dword(hwmgr->smumgr, | ||
2827 | SMU72_FIRMWARE_HEADER_LOCATION + | ||
2828 | offsetof(SMU72_Firmware_Header, SoftRegisters), | ||
2829 | &tmp, SMC_RAM_END); | ||
2830 | |||
2831 | if (0 == result) { | ||
2832 | data->soft_regs_start = tmp; | ||
2833 | smu_data->soft_regs_start = tmp; | ||
2834 | } | ||
2835 | |||
2836 | error |= (0 != result); | ||
2837 | |||
2838 | |||
2839 | result = tonga_read_smc_sram_dword(hwmgr->smumgr, | ||
2840 | SMU72_FIRMWARE_HEADER_LOCATION + | ||
2841 | offsetof(SMU72_Firmware_Header, mcRegisterTable), | ||
2842 | &tmp, SMC_RAM_END); | ||
2843 | |||
2844 | if (0 == result) | ||
2845 | smu_data->mc_reg_table_start = tmp; | ||
2846 | |||
2847 | |||
2848 | result = tonga_read_smc_sram_dword(hwmgr->smumgr, | ||
2849 | SMU72_FIRMWARE_HEADER_LOCATION + | ||
2850 | offsetof(SMU72_Firmware_Header, FanTable), | ||
2851 | &tmp, SMC_RAM_END); | ||
2852 | |||
2853 | if (0 == result) | ||
2854 | smu_data->fan_table_start = tmp; | ||
2855 | |||
2856 | error |= (0 != result); | ||
2857 | |||
2858 | result = tonga_read_smc_sram_dword(hwmgr->smumgr, | ||
2859 | SMU72_FIRMWARE_HEADER_LOCATION + | ||
2860 | offsetof(SMU72_Firmware_Header, mcArbDramTimingTable), | ||
2861 | &tmp, SMC_RAM_END); | ||
2862 | |||
2863 | if (0 == result) | ||
2864 | smu_data->arb_table_start = tmp; | ||
2865 | |||
2866 | error |= (0 != result); | ||
2867 | |||
2868 | result = tonga_read_smc_sram_dword(hwmgr->smumgr, | ||
2869 | SMU72_FIRMWARE_HEADER_LOCATION + | ||
2870 | offsetof(SMU72_Firmware_Header, Version), | ||
2871 | &tmp, SMC_RAM_END); | ||
2872 | |||
2873 | if (0 == result) | ||
2874 | hwmgr->microcode_version_info.SMC = tmp; | ||
2875 | |||
2876 | error |= (0 != result); | ||
2877 | |||
2878 | return error ? 1 : 0; | ||
2879 | } | ||
2880 | |||
2881 | /*---------------------------MC----------------------------*/ | ||
2882 | |||
2883 | static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr) | ||
2884 | { | ||
2885 | return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); | ||
2886 | } | ||
2887 | |||
2888 | static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) | ||
2889 | { | ||
2890 | bool result = true; | ||
2891 | |||
2892 | switch (in_reg) { | ||
2893 | case mmMC_SEQ_RAS_TIMING: | ||
2894 | *out_reg = mmMC_SEQ_RAS_TIMING_LP; | ||
2895 | break; | ||
2896 | |||
2897 | case mmMC_SEQ_DLL_STBY: | ||
2898 | *out_reg = mmMC_SEQ_DLL_STBY_LP; | ||
2899 | break; | ||
2900 | |||
2901 | case mmMC_SEQ_G5PDX_CMD0: | ||
2902 | *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; | ||
2903 | break; | ||
2904 | |||
2905 | case mmMC_SEQ_G5PDX_CMD1: | ||
2906 | *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; | ||
2907 | break; | ||
2908 | |||
2909 | case mmMC_SEQ_G5PDX_CTRL: | ||
2910 | *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; | ||
2911 | break; | ||
2912 | |||
2913 | case mmMC_SEQ_CAS_TIMING: | ||
2914 | *out_reg = mmMC_SEQ_CAS_TIMING_LP; | ||
2915 | break; | ||
2916 | |||
2917 | case mmMC_SEQ_MISC_TIMING: | ||
2918 | *out_reg = mmMC_SEQ_MISC_TIMING_LP; | ||
2919 | break; | ||
2920 | |||
2921 | case mmMC_SEQ_MISC_TIMING2: | ||
2922 | *out_reg = mmMC_SEQ_MISC_TIMING2_LP; | ||
2923 | break; | ||
2924 | |||
2925 | case mmMC_SEQ_PMG_DVS_CMD: | ||
2926 | *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; | ||
2927 | break; | ||
2928 | |||
2929 | case mmMC_SEQ_PMG_DVS_CTL: | ||
2930 | *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; | ||
2931 | break; | ||
2932 | |||
2933 | case mmMC_SEQ_RD_CTL_D0: | ||
2934 | *out_reg = mmMC_SEQ_RD_CTL_D0_LP; | ||
2935 | break; | ||
2936 | |||
2937 | case mmMC_SEQ_RD_CTL_D1: | ||
2938 | *out_reg = mmMC_SEQ_RD_CTL_D1_LP; | ||
2939 | break; | ||
2940 | |||
2941 | case mmMC_SEQ_WR_CTL_D0: | ||
2942 | *out_reg = mmMC_SEQ_WR_CTL_D0_LP; | ||
2943 | break; | ||
2944 | |||
2945 | case mmMC_SEQ_WR_CTL_D1: | ||
2946 | *out_reg = mmMC_SEQ_WR_CTL_D1_LP; | ||
2947 | break; | ||
2948 | |||
2949 | case mmMC_PMG_CMD_EMRS: | ||
2950 | *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; | ||
2951 | break; | ||
2952 | |||
2953 | case mmMC_PMG_CMD_MRS: | ||
2954 | *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; | ||
2955 | break; | ||
2956 | |||
2957 | case mmMC_PMG_CMD_MRS1: | ||
2958 | *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; | ||
2959 | break; | ||
2960 | |||
2961 | case mmMC_SEQ_PMG_TIMING: | ||
2962 | *out_reg = mmMC_SEQ_PMG_TIMING_LP; | ||
2963 | break; | ||
2964 | |||
2965 | case mmMC_PMG_CMD_MRS2: | ||
2966 | *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; | ||
2967 | break; | ||
2968 | |||
2969 | case mmMC_SEQ_WR_CTL_2: | ||
2970 | *out_reg = mmMC_SEQ_WR_CTL_2_LP; | ||
2971 | break; | ||
2972 | |||
2973 | default: | ||
2974 | result = false; | ||
2975 | break; | ||
2976 | } | ||
2977 | |||
2978 | return result; | ||
2979 | } | ||
2980 | |||
2981 | static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table) | ||
2982 | { | ||
2983 | uint32_t i; | ||
2984 | uint16_t address; | ||
2985 | |||
2986 | for (i = 0; i < table->last; i++) { | ||
2987 | table->mc_reg_address[i].s0 = | ||
2988 | tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, | ||
2989 | &address) ? | ||
2990 | address : | ||
2991 | table->mc_reg_address[i].s1; | ||
2992 | } | ||
2993 | return 0; | ||
2994 | } | ||
2995 | |||
2996 | static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, | ||
2997 | struct tonga_mc_reg_table *ni_table) | ||
2998 | { | ||
2999 | uint8_t i, j; | ||
3000 | |||
3001 | PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), | ||
3002 | "Invalid VramInfo table.", return -EINVAL); | ||
3003 | PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), | ||
3004 | "Invalid VramInfo table.", return -EINVAL); | ||
3005 | |||
3006 | for (i = 0; i < table->last; i++) | ||
3007 | ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; | ||
3008 | |||
3009 | ni_table->last = table->last; | ||
3010 | |||
3011 | for (i = 0; i < table->num_entries; i++) { | ||
3012 | ni_table->mc_reg_table_entry[i].mclk_max = | ||
3013 | table->mc_reg_table_entry[i].mclk_max; | ||
3014 | for (j = 0; j < table->last; j++) { | ||
3015 | ni_table->mc_reg_table_entry[i].mc_data[j] = | ||
3016 | table->mc_reg_table_entry[i].mc_data[j]; | ||
3017 | } | ||
3018 | } | ||
3019 | |||
3020 | ni_table->num_entries = table->num_entries; | ||
3021 | |||
3022 | return 0; | ||
3023 | } | ||
3024 | |||
3025 | /** | ||
3026 | * VBIOS omits some information to reduce size, we need to recover them here. | ||
3027 | * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to | ||
3028 | * mmMC_PMG_CMD_EMRS /_LP[15:0]. Bit[15:0] MRS, need to be update | ||
3029 | * mmMC_PMG_CMD_MRS/_LP[15:0] | ||
3030 | * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to | ||
3031 | * mmMC_PMG_CMD_MRS1/_LP[15:0]. | ||
3032 | * 3. need to set these data for each clock range | ||
3033 | * @param hwmgr the address of the powerplay hardware manager. | ||
3034 | * @param table the address of MCRegTable | ||
3035 | * @return always 0 | ||
3036 | */ | ||
3037 | static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, | ||
3038 | struct tonga_mc_reg_table *table) | ||
3039 | { | ||
3040 | uint8_t i, j, k; | ||
3041 | uint32_t temp_reg; | ||
3042 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | ||
3043 | |||
3044 | for (i = 0, j = table->last; i < table->last; i++) { | ||
3045 | PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), | ||
3046 | "Invalid VramInfo table.", return -EINVAL); | ||
3047 | |||
3048 | switch (table->mc_reg_address[i].s1) { | ||
3049 | |||
3050 | case mmMC_SEQ_MISC1: | ||
3051 | temp_reg = cgs_read_register(hwmgr->device, | ||
3052 | mmMC_PMG_CMD_EMRS); | ||
3053 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; | ||
3054 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; | ||
3055 | for (k = 0; k < table->num_entries; k++) { | ||
3056 | table->mc_reg_table_entry[k].mc_data[j] = | ||
3057 | ((temp_reg & 0xffff0000)) | | ||
3058 | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); | ||
3059 | } | ||
3060 | j++; | ||
3061 | PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), | ||
3062 | "Invalid VramInfo table.", return -EINVAL); | ||
3063 | |||
3064 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); | ||
3065 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; | ||
3066 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; | ||
3067 | for (k = 0; k < table->num_entries; k++) { | ||
3068 | table->mc_reg_table_entry[k].mc_data[j] = | ||
3069 | (temp_reg & 0xffff0000) | | ||
3070 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); | ||
3071 | |||
3072 | if (!data->is_memory_gddr5) | ||
3073 | table->mc_reg_table_entry[k].mc_data[j] |= 0x100; | ||
3074 | } | ||
3075 | j++; | ||
3076 | PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), | ||
3077 | "Invalid VramInfo table.", return -EINVAL); | ||
3078 | |||
3079 | if (!data->is_memory_gddr5) { | ||
3080 | table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; | ||
3081 | table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; | ||
3082 | for (k = 0; k < table->num_entries; k++) | ||
3083 | table->mc_reg_table_entry[k].mc_data[j] = | ||
3084 | (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; | ||
3085 | j++; | ||
3086 | PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), | ||
3087 | "Invalid VramInfo table.", return -EINVAL); | ||
3088 | } | ||
3089 | |||
3090 | break; | ||
3091 | |||
3092 | case mmMC_SEQ_RESERVE_M: | ||
3093 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); | ||
3094 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; | ||
3095 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; | ||
3096 | for (k = 0; k < table->num_entries; k++) { | ||
3097 | table->mc_reg_table_entry[k].mc_data[j] = | ||
3098 | (temp_reg & 0xffff0000) | | ||
3099 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); | ||
3100 | } | ||
3101 | j++; | ||
3102 | PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), | ||
3103 | "Invalid VramInfo table.", return -EINVAL); | ||
3104 | break; | ||
3105 | |||
3106 | default: | ||
3107 | break; | ||
3108 | } | ||
3109 | |||
3110 | } | ||
3111 | |||
3112 | table->last = j; | ||
3113 | |||
3114 | return 0; | ||
3115 | } | ||
3116 | |||
3117 | static int tonga_set_valid_flag(struct tonga_mc_reg_table *table) | ||
3118 | { | ||
3119 | uint8_t i, j; | ||
3120 | |||
3121 | for (i = 0; i < table->last; i++) { | ||
3122 | for (j = 1; j < table->num_entries; j++) { | ||
3123 | if (table->mc_reg_table_entry[j-1].mc_data[i] != | ||
3124 | table->mc_reg_table_entry[j].mc_data[i]) { | ||
3125 | table->validflag |= (1<<i); | ||
3126 | break; | ||
3127 | } | ||
3128 | } | ||
3129 | } | ||
3130 | |||
3131 | return 0; | ||
3132 | } | ||
3133 | |||
3134 | int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) | ||
3135 | { | ||
3136 | int result; | ||
3137 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend); | ||
3138 | pp_atomctrl_mc_reg_table *table; | ||
3139 | struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table; | ||
3140 | uint8_t module_index = tonga_get_memory_modile_index(hwmgr); | ||
3141 | |||
3142 | table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); | ||
3143 | |||
3144 | if (NULL == table) | ||
3145 | return -ENOMEM; | ||
3146 | |||
3147 | /* Program additional LP registers that are no longer programmed by VBIOS */ | ||
3148 | cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, | ||
3149 | cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); | ||
3150 | cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, | ||
3151 | cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); | ||
3152 | cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, | ||
3153 | cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); | ||
3154 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, | ||
3155 | cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); | ||
3156 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, | ||
3157 | cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); | ||
3158 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, | ||
3159 | cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); | ||
3160 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, | ||
3161 | cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); | ||
3162 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, | ||
3163 | cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); | ||
3164 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, | ||
3165 | cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); | ||
3166 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, | ||
3167 | cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); | ||
3168 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, | ||
3169 | cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); | ||
3170 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, | ||
3171 | cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); | ||
3172 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, | ||
3173 | cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); | ||
3174 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, | ||
3175 | cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); | ||
3176 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, | ||
3177 | cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); | ||
3178 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, | ||
3179 | cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); | ||
3180 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, | ||
3181 | cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); | ||
3182 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, | ||
3183 | cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); | ||
3184 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, | ||
3185 | cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); | ||
3186 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, | ||
3187 | cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); | ||
3188 | |||
3189 | memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); | ||
3190 | |||
3191 | result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); | ||
3192 | |||
3193 | if (0 == result) | ||
3194 | result = tonga_copy_vbios_smc_reg_table(table, ni_table); | ||
3195 | |||
3196 | if (0 == result) { | ||
3197 | tonga_set_s0_mc_reg_index(ni_table); | ||
3198 | result = tonga_set_mc_special_registers(hwmgr, ni_table); | ||
3199 | } | ||
3200 | |||
3201 | if (0 == result) | ||
3202 | tonga_set_valid_flag(ni_table); | ||
3203 | |||
3204 | kfree(table); | ||
3205 | |||
3206 | return result; | ||
3207 | } | ||
3208 | |||
3209 | bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr) | ||
3210 | { | ||
3211 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, | ||
3212 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) | ||
3213 | ? true : false; | ||
3214 | } | ||
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h new file mode 100644 index 000000000000..8ae169ff541d --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h | |||
@@ -0,0 +1,60 @@ | |||
1 | /* | ||
2 | * Copyright 2015 Advanced Micro Devices, Inc. | ||
3 | * | ||
4 | * Permission is hereby granted, free of charge, to any person obtaining a | ||
5 | * copy of this software and associated documentation files (the "Software"), | ||
6 | * to deal in the Software without restriction, including without limitation | ||
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
8 | * and/or sell copies of the Software, and to permit persons to whom the | ||
9 | * Software is furnished to do so, subject to the following conditions: | ||
10 | * | ||
11 | * The above copyright notice and this permission notice shall be included in | ||
12 | * all copies or substantial portions of the Software. | ||
13 | * | ||
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | ||
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | ||
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | ||
20 | * OTHER DEALINGS IN THE SOFTWARE. | ||
21 | * | ||
22 | */ | ||
23 | #ifndef _TONGA_SMC_H | ||
24 | #define _TONGA_SMC_H | ||
25 | |||
26 | #include "smumgr.h" | ||
27 | #include "smu72.h" | ||
28 | |||
29 | |||
30 | #define ASICID_IS_TONGA_P(wDID, bRID) \ | ||
31 | (((wDID == 0x6930) && ((bRID == 0xF0) || (bRID == 0xF1) || (bRID == 0xFF))) \ | ||
32 | || ((wDID == 0x6920) && ((bRID == 0) || (bRID == 1)))) | ||
33 | |||
34 | |||
35 | struct tonga_pt_defaults { | ||
36 | uint8_t svi_load_line_en; | ||
37 | uint8_t svi_load_line_vddC; | ||
38 | uint8_t tdc_vddc_throttle_release_limit_perc; | ||
39 | uint8_t tdc_mawt; | ||
40 | uint8_t tdc_waterfall_ctl; | ||
41 | uint8_t dte_ambient_temp_base; | ||
42 | uint32_t display_cac; | ||
43 | uint32_t bamp_temp_gradient; | ||
44 | uint16_t bapmti_r[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS]; | ||
45 | uint16_t bapmti_rc[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS]; | ||
46 | }; | ||
47 | |||
48 | int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr); | ||
49 | int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr); | ||
50 | int tonga_init_smc_table(struct pp_hwmgr *hwmgr); | ||
51 | int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr); | ||
52 | int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type); | ||
53 | int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr); | ||
54 | uint32_t tonga_get_offsetof(uint32_t type, uint32_t member); | ||
55 | uint32_t tonga_get_mac_definition(uint32_t value); | ||
56 | int tonga_process_firmware_header(struct pp_hwmgr *hwmgr); | ||
57 | int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr); | ||
58 | bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr); | ||
59 | #endif | ||
60 | |||
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c index f42c536b3af1..b543d6c0f96a 100644 --- a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c +++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c | |||
@@ -33,6 +33,7 @@ | |||
33 | #include "smu/smu_7_1_2_d.h" | 33 | #include "smu/smu_7_1_2_d.h" |
34 | #include "smu/smu_7_1_2_sh_mask.h" | 34 | #include "smu/smu_7_1_2_sh_mask.h" |
35 | #include "cgs_common.h" | 35 | #include "cgs_common.h" |
36 | #include "tonga_smc.h" | ||
36 | 37 | ||
37 | #define TONGA_SMC_SIZE 0x20000 | 38 | #define TONGA_SMC_SIZE 0x20000 |
38 | #define BUFFER_SIZE 80000 | 39 | #define BUFFER_SIZE 80000 |
@@ -749,6 +750,8 @@ static int tonga_smu_init(struct pp_smumgr *smumgr) | |||
749 | struct tonga_smumgr *tonga_smu; | 750 | struct tonga_smumgr *tonga_smu; |
750 | uint8_t *internal_buf; | 751 | uint8_t *internal_buf; |
751 | uint64_t mc_addr = 0; | 752 | uint64_t mc_addr = 0; |
753 | int i; | ||
754 | |||
752 | /* Allocate memory for backend private data */ | 755 | /* Allocate memory for backend private data */ |
753 | tonga_smu = (struct tonga_smumgr *)(smumgr->backend); | 756 | tonga_smu = (struct tonga_smumgr *)(smumgr->backend); |
754 | tonga_smu->header_buffer.data_size = | 757 | tonga_smu->header_buffer.data_size = |
@@ -793,6 +796,9 @@ static int tonga_smu_init(struct pp_smumgr *smumgr) | |||
793 | (cgs_handle_t)tonga_smu->smu_buffer.handle); | 796 | (cgs_handle_t)tonga_smu->smu_buffer.handle); |
794 | return -1;); | 797 | return -1;); |
795 | 798 | ||
799 | for (i = 0; i < SMU72_MAX_LEVELS_GRAPHICS; i++) | ||
800 | tonga_smu->activity_target[i] = 30; | ||
801 | |||
796 | return 0; | 802 | return 0; |
797 | } | 803 | } |
798 | 804 | ||
@@ -807,6 +813,17 @@ static const struct pp_smumgr_func tonga_smu_funcs = { | |||
807 | .send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter, | 813 | .send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter, |
808 | .download_pptable_settings = NULL, | 814 | .download_pptable_settings = NULL, |
809 | .upload_pptable_settings = NULL, | 815 | .upload_pptable_settings = NULL, |
816 | .update_smc_table = tonga_update_smc_table, | ||
817 | .get_offsetof = tonga_get_offsetof, | ||
818 | .process_firmware_header = tonga_process_firmware_header, | ||
819 | .init_smc_table = tonga_init_smc_table, | ||
820 | .update_sclk_threshold = tonga_update_sclk_threshold, | ||
821 | .thermal_setup_fan_table = tonga_thermal_setup_fan_table, | ||
822 | .populate_all_graphic_levels = tonga_populate_all_graphic_levels, | ||
823 | .populate_all_memory_levels = tonga_populate_all_memory_levels, | ||
824 | .get_mac_definition = tonga_get_mac_definition, | ||
825 | .initialize_mc_reg_table = tonga_initialize_mc_reg_table, | ||
826 | .is_dpm_running = tonga_is_dpm_running, | ||
810 | }; | 827 | }; |
811 | 828 | ||
812 | int tonga_smum_init(struct pp_smumgr *smumgr) | 829 | int tonga_smum_init(struct pp_smumgr *smumgr) |
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h index 33c788d7f05c..b2ad232506c1 100644 --- a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h +++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h | |||
@@ -24,6 +24,10 @@ | |||
24 | #ifndef _TONGA_SMUMGR_H_ | 24 | #ifndef _TONGA_SMUMGR_H_ |
25 | #define _TONGA_SMUMGR_H_ | 25 | #define _TONGA_SMUMGR_H_ |
26 | 26 | ||
27 | #include "smu72_discrete.h" | ||
28 | |||
29 | #define SMC_RAM_END 0x40000 | ||
30 | |||
27 | struct tonga_buffer_entry { | 31 | struct tonga_buffer_entry { |
28 | uint32_t data_size; | 32 | uint32_t data_size; |
29 | uint32_t mc_addr_low; | 33 | uint32_t mc_addr_low; |
@@ -32,13 +36,44 @@ struct tonga_buffer_entry { | |||
32 | unsigned long handle; | 36 | unsigned long handle; |
33 | }; | 37 | }; |
34 | 38 | ||
39 | |||
40 | struct tonga_mc_reg_entry { | ||
41 | uint32_t mclk_max; | ||
42 | uint32_t mc_data[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE]; | ||
43 | }; | ||
44 | |||
45 | struct tonga_mc_reg_table { | ||
46 | uint8_t last; /* number of registers*/ | ||
47 | uint8_t num_entries; /* number of entries in mc_reg_table_entry used*/ | ||
48 | uint16_t validflag; /* indicate the corresponding register is valid or not. 1: valid, 0: invalid. bit0->address[0], bit1->address[1], etc.*/ | ||
49 | struct tonga_mc_reg_entry mc_reg_table_entry[MAX_AC_TIMING_ENTRIES]; | ||
50 | SMU72_Discrete_MCRegisterAddress mc_reg_address[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE]; | ||
51 | }; | ||
52 | |||
53 | |||
35 | struct tonga_smumgr { | 54 | struct tonga_smumgr { |
36 | uint8_t *pHeader; | 55 | uint8_t *pHeader; |
37 | uint8_t *pMecImage; | 56 | uint8_t *pMecImage; |
38 | uint32_t ulSoftRegsStart; | 57 | |
58 | |||
59 | uint32_t soft_regs_start; | ||
60 | uint32_t dpm_table_start; | ||
61 | uint32_t mc_reg_table_start; | ||
62 | uint32_t fan_table_start; | ||
63 | uint32_t arb_table_start; | ||
39 | 64 | ||
40 | struct tonga_buffer_entry header_buffer; | 65 | struct tonga_buffer_entry header_buffer; |
41 | struct tonga_buffer_entry smu_buffer; | 66 | struct tonga_buffer_entry smu_buffer; |
67 | |||
68 | struct SMU72_Discrete_DpmTable smc_state_table; | ||
69 | struct SMU72_Discrete_Ulv ulv_setting; | ||
70 | struct SMU72_Discrete_PmFuses power_tune_table; | ||
71 | struct tonga_pt_defaults *power_tune_defaults; | ||
72 | SMU72_Discrete_MCRegisters mc_regs; | ||
73 | struct tonga_mc_reg_table mc_reg_table; | ||
74 | |||
75 | uint32_t activity_target[SMU72_MAX_LEVELS_GRAPHICS]; | ||
76 | |||
42 | }; | 77 | }; |
43 | 78 | ||
44 | extern int tonga_smum_init(struct pp_smumgr *smumgr); | 79 | extern int tonga_smum_init(struct pp_smumgr *smumgr); |