aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/arm64
diff options
context:
space:
mode:
authorMark Rutland <mark.rutland@arm.com>2014-06-24 11:51:36 -0400
committerCatalin Marinas <catalin.marinas@arm.com>2014-07-10 07:36:40 -0400
commita2c1d73b94ed49f5fac12e95052d7b140783f800 (patch)
treeb76a97b6a9d024eb4975484aa47bccf3c24a9cb8 /Documentation/arm64
parentbd00cd5f8c8c3c282bb1e1eac6a6679a4f808091 (diff)
arm64: Update the Image header
Currently the kernel Image is stripped of everything past the initial stack, and at runtime the memory is initialised and used by the kernel. This makes the effective minimum memory footprint of the kernel larger than the size of the loaded binary, though bootloaders have no mechanism to identify how large this minimum memory footprint is. This makes it difficult to choose safe locations to place both the kernel and other binaries required at boot (DTB, initrd, etc), such that the kernel won't clobber said binaries or other reserved memory during initialisation. Additionally when big endian support was added the image load offset was overlooked, and is currently of an arbitrary endianness, which makes it difficult for bootloaders to make use of it. It seems that bootloaders aren't respecting the image load offset at present anyway, and are assuming that offset 0x80000 will always be correct. This patch adds an effective image size to the kernel header which describes the amount of memory from the start of the kernel Image binary which the kernel expects to use before detecting memory and handling any memory reservations. This can be used by bootloaders to choose suitable locations to load the kernel and/or other binaries such that the kernel will not clobber any memory unexpectedly. As before, memory reservations are required to prevent the kernel from clobbering these locations later. Both the image load offset and the effective image size are forced to be little-endian regardless of the native endianness of the kernel to enable bootloaders to load a kernel of arbitrary endianness. Bootloaders which wish to make use of the load offset can inspect the effective image size field for a non-zero value to determine if the offset is of a known endianness. To enable software to determine the endinanness of the kernel as may be required for certain use-cases, a new flags field (also little-endian) is added to the kernel header to export this information. The documentation is updated to clarify these details. To discourage future assumptions regarding the value of text_offset, the value at this point in time is removed from the main flow of the documentation (though kept as a compatibility note). Some minor formatting issues in the documentation are also corrected. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Tom Rini <trini@ti.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Kevin Hilman <kevin.hilman@linaro.org> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Diffstat (limited to 'Documentation/arm64')
-rw-r--r--Documentation/arm64/booting.txt43
1 files changed, 35 insertions, 8 deletions
diff --git a/Documentation/arm64/booting.txt b/Documentation/arm64/booting.txt
index 37fc4f632176..85af34d55cee 100644
--- a/Documentation/arm64/booting.txt
+++ b/Documentation/arm64/booting.txt
@@ -72,27 +72,54 @@ The decompressed kernel image contains a 64-byte header as follows:
72 72
73 u32 code0; /* Executable code */ 73 u32 code0; /* Executable code */
74 u32 code1; /* Executable code */ 74 u32 code1; /* Executable code */
75 u64 text_offset; /* Image load offset */ 75 u64 text_offset; /* Image load offset, little endian */
76 u64 res0 = 0; /* reserved */ 76 u64 image_size; /* Effective Image size, little endian */
77 u64 res1 = 0; /* reserved */ 77 u64 flags; /* kernel flags, little endian */
78 u64 res2 = 0; /* reserved */ 78 u64 res2 = 0; /* reserved */
79 u64 res3 = 0; /* reserved */ 79 u64 res3 = 0; /* reserved */
80 u64 res4 = 0; /* reserved */ 80 u64 res4 = 0; /* reserved */
81 u32 magic = 0x644d5241; /* Magic number, little endian, "ARM\x64" */ 81 u32 magic = 0x644d5241; /* Magic number, little endian, "ARM\x64" */
82 u32 res5 = 0; /* reserved */ 82 u32 res5; /* reserved (used for PE COFF offset) */
83 83
84 84
85Header notes: 85Header notes:
86 86
87- As of v3.17, all fields are little endian unless stated otherwise.
88
87- code0/code1 are responsible for branching to stext. 89- code0/code1 are responsible for branching to stext.
90
88- when booting through EFI, code0/code1 are initially skipped. 91- when booting through EFI, code0/code1 are initially skipped.
89 res5 is an offset to the PE header and the PE header has the EFI 92 res5 is an offset to the PE header and the PE header has the EFI
90 entry point (efi_stub_entry). When the stub has done its work, it 93 entry point (efi_stub_entry). When the stub has done its work, it
91 jumps to code0 to resume the normal boot process. 94 jumps to code0 to resume the normal boot process.
92 95
93The image must be placed at the specified offset (currently 0x80000) 96- Prior to v3.17, the endianness of text_offset was not specified. In
94from the start of the system RAM and called there. The start of the 97 these cases image_size is zero and text_offset is 0x80000 in the
95system RAM must be aligned to 2MB. 98 endianness of the kernel. Where image_size is non-zero image_size is
99 little-endian and must be respected. Where image_size is zero,
100 text_offset can be assumed to be 0x80000.
101
102- The flags field (introduced in v3.17) is a little-endian 64-bit field
103 composed as follows:
104 Bit 0: Kernel endianness. 1 if BE, 0 if LE.
105 Bits 1-63: Reserved.
106
107- When image_size is zero, a bootloader should attempt to keep as much
108 memory as possible free for use by the kernel immediately after the
109 end of the kernel image. The amount of space required will vary
110 depending on selected features, and is effectively unbound.
111
112The Image must be placed text_offset bytes from a 2MB aligned base
113address near the start of usable system RAM and called there. Memory
114below that base address is currently unusable by Linux, and therefore it
115is strongly recommended that this location is the start of system RAM.
116At least image_size bytes from the start of the image must be free for
117use by the kernel.
118
119Any memory described to the kernel (even that below the 2MB aligned base
120address) which is not marked as reserved from the kernel e.g. with a
121memreserve region in the device tree) will be considered as available to
122the kernel.
96 123
97Before jumping into the kernel, the following conditions must be met: 124Before jumping into the kernel, the following conditions must be met:
98 125