diff options
| author | Stephan Mueller <smueller@chronox.de> | 2016-10-20 22:57:00 -0400 |
|---|---|---|
| committer | Jonathan Corbet <corbet@lwn.net> | 2016-12-13 18:38:04 -0500 |
| commit | c441a4781ff1c5b78db1410f708aa96dceec5fa2 (patch) | |
| tree | ccd31f1748b0c54ec33925e3ac9d48437dc80e8b | |
| parent | 3b72c814a8e8cd638e1ba0da4dfce501e9dff5af (diff) | |
crypto: doc - remove crypto API DocBook
With the conversion of the documentation to Sphinx, the old DocBook is
now stale.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
| -rw-r--r-- | Documentation/DocBook/Makefile | 2 | ||||
| -rw-r--r-- | Documentation/DocBook/crypto-API.tmpl | 2092 |
2 files changed, 1 insertions, 2093 deletions
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index caab9039362f..c75e5d6b8fa8 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile | |||
| @@ -13,7 +13,7 @@ DOCBOOKS := z8530book.xml \ | |||
| 13 | gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ | 13 | gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ |
| 14 | genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \ | 14 | genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \ |
| 15 | 80211.xml sh.xml regulator.xml w1.xml \ | 15 | 80211.xml sh.xml regulator.xml w1.xml \ |
| 16 | writing_musb_glue_layer.xml crypto-API.xml iio.xml | 16 | writing_musb_glue_layer.xml iio.xml |
| 17 | 17 | ||
| 18 | ifeq ($(DOCBOOKS),) | 18 | ifeq ($(DOCBOOKS),) |
| 19 | 19 | ||
diff --git a/Documentation/DocBook/crypto-API.tmpl b/Documentation/DocBook/crypto-API.tmpl deleted file mode 100644 index 088b79c341ff..000000000000 --- a/Documentation/DocBook/crypto-API.tmpl +++ /dev/null | |||
| @@ -1,2092 +0,0 @@ | |||
| 1 | <?xml version="1.0" encoding="UTF-8"?> | ||
| 2 | <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" | ||
| 3 | "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> | ||
| 4 | |||
| 5 | <book id="KernelCryptoAPI"> | ||
| 6 | <bookinfo> | ||
| 7 | <title>Linux Kernel Crypto API</title> | ||
| 8 | |||
| 9 | <authorgroup> | ||
| 10 | <author> | ||
| 11 | <firstname>Stephan</firstname> | ||
| 12 | <surname>Mueller</surname> | ||
| 13 | <affiliation> | ||
| 14 | <address> | ||
| 15 | <email>smueller@chronox.de</email> | ||
| 16 | </address> | ||
| 17 | </affiliation> | ||
| 18 | </author> | ||
| 19 | <author> | ||
| 20 | <firstname>Marek</firstname> | ||
| 21 | <surname>Vasut</surname> | ||
| 22 | <affiliation> | ||
| 23 | <address> | ||
| 24 | <email>marek@denx.de</email> | ||
| 25 | </address> | ||
| 26 | </affiliation> | ||
| 27 | </author> | ||
| 28 | </authorgroup> | ||
| 29 | |||
| 30 | <copyright> | ||
| 31 | <year>2014</year> | ||
| 32 | <holder>Stephan Mueller</holder> | ||
| 33 | </copyright> | ||
| 34 | |||
| 35 | |||
| 36 | <legalnotice> | ||
| 37 | <para> | ||
| 38 | This documentation is free software; you can redistribute | ||
| 39 | it and/or modify it under the terms of the GNU General Public | ||
| 40 | License as published by the Free Software Foundation; either | ||
| 41 | version 2 of the License, or (at your option) any later | ||
| 42 | version. | ||
| 43 | </para> | ||
| 44 | |||
| 45 | <para> | ||
| 46 | This program is distributed in the hope that it will be | ||
| 47 | useful, but WITHOUT ANY WARRANTY; without even the implied | ||
| 48 | warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | ||
| 49 | See the GNU General Public License for more details. | ||
| 50 | </para> | ||
| 51 | |||
| 52 | <para> | ||
| 53 | You should have received a copy of the GNU General Public | ||
| 54 | License along with this program; if not, write to the Free | ||
| 55 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, | ||
| 56 | MA 02111-1307 USA | ||
| 57 | </para> | ||
| 58 | |||
| 59 | <para> | ||
| 60 | For more details see the file COPYING in the source | ||
| 61 | distribution of Linux. | ||
| 62 | </para> | ||
| 63 | </legalnotice> | ||
| 64 | </bookinfo> | ||
| 65 | |||
| 66 | <toc></toc> | ||
| 67 | |||
| 68 | <chapter id="Intro"> | ||
| 69 | <title>Kernel Crypto API Interface Specification</title> | ||
| 70 | |||
| 71 | <sect1><title>Introduction</title> | ||
| 72 | |||
| 73 | <para> | ||
| 74 | The kernel crypto API offers a rich set of cryptographic ciphers as | ||
| 75 | well as other data transformation mechanisms and methods to invoke | ||
| 76 | these. This document contains a description of the API and provides | ||
| 77 | example code. | ||
| 78 | </para> | ||
| 79 | |||
| 80 | <para> | ||
| 81 | To understand and properly use the kernel crypto API a brief | ||
| 82 | explanation of its structure is given. Based on the architecture, | ||
| 83 | the API can be separated into different components. Following the | ||
| 84 | architecture specification, hints to developers of ciphers are | ||
| 85 | provided. Pointers to the API function call documentation are | ||
| 86 | given at the end. | ||
| 87 | </para> | ||
| 88 | |||
| 89 | <para> | ||
| 90 | The kernel crypto API refers to all algorithms as "transformations". | ||
| 91 | Therefore, a cipher handle variable usually has the name "tfm". | ||
| 92 | Besides cryptographic operations, the kernel crypto API also knows | ||
| 93 | compression transformations and handles them the same way as ciphers. | ||
| 94 | </para> | ||
| 95 | |||
| 96 | <para> | ||
| 97 | The kernel crypto API serves the following entity types: | ||
| 98 | |||
| 99 | <itemizedlist> | ||
| 100 | <listitem> | ||
| 101 | <para>consumers requesting cryptographic services</para> | ||
| 102 | </listitem> | ||
| 103 | <listitem> | ||
| 104 | <para>data transformation implementations (typically ciphers) | ||
| 105 | that can be called by consumers using the kernel crypto | ||
| 106 | API</para> | ||
| 107 | </listitem> | ||
| 108 | </itemizedlist> | ||
| 109 | </para> | ||
| 110 | |||
| 111 | <para> | ||
| 112 | This specification is intended for consumers of the kernel crypto | ||
| 113 | API as well as for developers implementing ciphers. This API | ||
| 114 | specification, however, does not discuss all API calls available | ||
| 115 | to data transformation implementations (i.e. implementations of | ||
| 116 | ciphers and other transformations (such as CRC or even compression | ||
| 117 | algorithms) that can register with the kernel crypto API). | ||
| 118 | </para> | ||
| 119 | |||
| 120 | <para> | ||
| 121 | Note: The terms "transformation" and cipher algorithm are used | ||
| 122 | interchangeably. | ||
| 123 | </para> | ||
| 124 | </sect1> | ||
| 125 | |||
| 126 | <sect1><title>Terminology</title> | ||
| 127 | <para> | ||
| 128 | The transformation implementation is an actual code or interface | ||
| 129 | to hardware which implements a certain transformation with precisely | ||
| 130 | defined behavior. | ||
| 131 | </para> | ||
| 132 | |||
| 133 | <para> | ||
| 134 | The transformation object (TFM) is an instance of a transformation | ||
| 135 | implementation. There can be multiple transformation objects | ||
| 136 | associated with a single transformation implementation. Each of | ||
| 137 | those transformation objects is held by a crypto API consumer or | ||
| 138 | another transformation. Transformation object is allocated when a | ||
| 139 | crypto API consumer requests a transformation implementation. | ||
| 140 | The consumer is then provided with a structure, which contains | ||
| 141 | a transformation object (TFM). | ||
| 142 | </para> | ||
| 143 | |||
| 144 | <para> | ||
| 145 | The structure that contains transformation objects may also be | ||
| 146 | referred to as a "cipher handle". Such a cipher handle is always | ||
| 147 | subject to the following phases that are reflected in the API calls | ||
| 148 | applicable to such a cipher handle: | ||
| 149 | </para> | ||
| 150 | |||
| 151 | <orderedlist> | ||
| 152 | <listitem> | ||
| 153 | <para>Initialization of a cipher handle.</para> | ||
| 154 | </listitem> | ||
| 155 | <listitem> | ||
| 156 | <para>Execution of all intended cipher operations applicable | ||
| 157 | for the handle where the cipher handle must be furnished to | ||
| 158 | every API call.</para> | ||
| 159 | </listitem> | ||
| 160 | <listitem> | ||
| 161 | <para>Destruction of a cipher handle.</para> | ||
| 162 | </listitem> | ||
| 163 | </orderedlist> | ||
| 164 | |||
| 165 | <para> | ||
| 166 | When using the initialization API calls, a cipher handle is | ||
| 167 | created and returned to the consumer. Therefore, please refer | ||
| 168 | to all initialization API calls that refer to the data | ||
| 169 | structure type a consumer is expected to receive and subsequently | ||
| 170 | to use. The initialization API calls have all the same naming | ||
| 171 | conventions of crypto_alloc_*. | ||
| 172 | </para> | ||
| 173 | |||
| 174 | <para> | ||
| 175 | The transformation context is private data associated with | ||
| 176 | the transformation object. | ||
| 177 | </para> | ||
| 178 | </sect1> | ||
| 179 | </chapter> | ||
| 180 | |||
| 181 | <chapter id="Architecture"><title>Kernel Crypto API Architecture</title> | ||
| 182 | <sect1><title>Cipher algorithm types</title> | ||
| 183 | <para> | ||
| 184 | The kernel crypto API provides different API calls for the | ||
| 185 | following cipher types: | ||
| 186 | |||
| 187 | <itemizedlist> | ||
| 188 | <listitem><para>Symmetric ciphers</para></listitem> | ||
| 189 | <listitem><para>AEAD ciphers</para></listitem> | ||
| 190 | <listitem><para>Message digest, including keyed message digest</para></listitem> | ||
| 191 | <listitem><para>Random number generation</para></listitem> | ||
| 192 | <listitem><para>User space interface</para></listitem> | ||
| 193 | </itemizedlist> | ||
| 194 | </para> | ||
| 195 | </sect1> | ||
| 196 | |||
| 197 | <sect1><title>Ciphers And Templates</title> | ||
| 198 | <para> | ||
| 199 | The kernel crypto API provides implementations of single block | ||
| 200 | ciphers and message digests. In addition, the kernel crypto API | ||
| 201 | provides numerous "templates" that can be used in conjunction | ||
| 202 | with the single block ciphers and message digests. Templates | ||
| 203 | include all types of block chaining mode, the HMAC mechanism, etc. | ||
| 204 | </para> | ||
| 205 | |||
| 206 | <para> | ||
| 207 | Single block ciphers and message digests can either be directly | ||
| 208 | used by a caller or invoked together with a template to form | ||
| 209 | multi-block ciphers or keyed message digests. | ||
| 210 | </para> | ||
| 211 | |||
| 212 | <para> | ||
| 213 | A single block cipher may even be called with multiple templates. | ||
| 214 | However, templates cannot be used without a single cipher. | ||
| 215 | </para> | ||
| 216 | |||
| 217 | <para> | ||
| 218 | See /proc/crypto and search for "name". For example: | ||
| 219 | |||
| 220 | <itemizedlist> | ||
| 221 | <listitem><para>aes</para></listitem> | ||
| 222 | <listitem><para>ecb(aes)</para></listitem> | ||
| 223 | <listitem><para>cmac(aes)</para></listitem> | ||
| 224 | <listitem><para>ccm(aes)</para></listitem> | ||
| 225 | <listitem><para>rfc4106(gcm(aes))</para></listitem> | ||
| 226 | <listitem><para>sha1</para></listitem> | ||
| 227 | <listitem><para>hmac(sha1)</para></listitem> | ||
| 228 | <listitem><para>authenc(hmac(sha1),cbc(aes))</para></listitem> | ||
| 229 | </itemizedlist> | ||
| 230 | </para> | ||
| 231 | |||
| 232 | <para> | ||
| 233 | In these examples, "aes" and "sha1" are the ciphers and all | ||
| 234 | others are the templates. | ||
| 235 | </para> | ||
| 236 | </sect1> | ||
| 237 | |||
| 238 | <sect1><title>Synchronous And Asynchronous Operation</title> | ||
| 239 | <para> | ||
| 240 | The kernel crypto API provides synchronous and asynchronous | ||
| 241 | API operations. | ||
| 242 | </para> | ||
| 243 | |||
| 244 | <para> | ||
| 245 | When using the synchronous API operation, the caller invokes | ||
| 246 | a cipher operation which is performed synchronously by the | ||
| 247 | kernel crypto API. That means, the caller waits until the | ||
| 248 | cipher operation completes. Therefore, the kernel crypto API | ||
| 249 | calls work like regular function calls. For synchronous | ||
| 250 | operation, the set of API calls is small and conceptually | ||
| 251 | similar to any other crypto library. | ||
| 252 | </para> | ||
| 253 | |||
| 254 | <para> | ||
| 255 | Asynchronous operation is provided by the kernel crypto API | ||
| 256 | which implies that the invocation of a cipher operation will | ||
| 257 | complete almost instantly. That invocation triggers the | ||
| 258 | cipher operation but it does not signal its completion. Before | ||
| 259 | invoking a cipher operation, the caller must provide a callback | ||
| 260 | function the kernel crypto API can invoke to signal the | ||
| 261 | completion of the cipher operation. Furthermore, the caller | ||
| 262 | must ensure it can handle such asynchronous events by applying | ||
| 263 | appropriate locking around its data. The kernel crypto API | ||
| 264 | does not perform any special serialization operation to protect | ||
| 265 | the caller's data integrity. | ||
| 266 | </para> | ||
| 267 | </sect1> | ||
| 268 | |||
| 269 | <sect1><title>Crypto API Cipher References And Priority</title> | ||
| 270 | <para> | ||
| 271 | A cipher is referenced by the caller with a string. That string | ||
| 272 | has the following semantics: | ||
| 273 | |||
| 274 | <programlisting> | ||
| 275 | template(single block cipher) | ||
| 276 | </programlisting> | ||
| 277 | |||
| 278 | where "template" and "single block cipher" is the aforementioned | ||
| 279 | template and single block cipher, respectively. If applicable, | ||
| 280 | additional templates may enclose other templates, such as | ||
| 281 | |||
| 282 | <programlisting> | ||
| 283 | template1(template2(single block cipher))) | ||
| 284 | </programlisting> | ||
| 285 | </para> | ||
| 286 | |||
| 287 | <para> | ||
| 288 | The kernel crypto API may provide multiple implementations of a | ||
| 289 | template or a single block cipher. For example, AES on newer | ||
| 290 | Intel hardware has the following implementations: AES-NI, | ||
| 291 | assembler implementation, or straight C. Now, when using the | ||
| 292 | string "aes" with the kernel crypto API, which cipher | ||
| 293 | implementation is used? The answer to that question is the | ||
| 294 | priority number assigned to each cipher implementation by the | ||
| 295 | kernel crypto API. When a caller uses the string to refer to a | ||
| 296 | cipher during initialization of a cipher handle, the kernel | ||
| 297 | crypto API looks up all implementations providing an | ||
| 298 | implementation with that name and selects the implementation | ||
| 299 | with the highest priority. | ||
| 300 | </para> | ||
| 301 | |||
| 302 | <para> | ||
| 303 | Now, a caller may have the need to refer to a specific cipher | ||
| 304 | implementation and thus does not want to rely on the | ||
| 305 | priority-based selection. To accommodate this scenario, the | ||
| 306 | kernel crypto API allows the cipher implementation to register | ||
| 307 | a unique name in addition to common names. When using that | ||
| 308 | unique name, a caller is therefore always sure to refer to | ||
| 309 | the intended cipher implementation. | ||
| 310 | </para> | ||
| 311 | |||
| 312 | <para> | ||
| 313 | The list of available ciphers is given in /proc/crypto. However, | ||
| 314 | that list does not specify all possible permutations of | ||
| 315 | templates and ciphers. Each block listed in /proc/crypto may | ||
| 316 | contain the following information -- if one of the components | ||
| 317 | listed as follows are not applicable to a cipher, it is not | ||
| 318 | displayed: | ||
| 319 | </para> | ||
| 320 | |||
| 321 | <itemizedlist> | ||
| 322 | <listitem> | ||
| 323 | <para>name: the generic name of the cipher that is subject | ||
| 324 | to the priority-based selection -- this name can be used by | ||
| 325 | the cipher allocation API calls (all names listed above are | ||
| 326 | examples for such generic names)</para> | ||
| 327 | </listitem> | ||
| 328 | <listitem> | ||
| 329 | <para>driver: the unique name of the cipher -- this name can | ||
| 330 | be used by the cipher allocation API calls</para> | ||
| 331 | </listitem> | ||
| 332 | <listitem> | ||
| 333 | <para>module: the kernel module providing the cipher | ||
| 334 | implementation (or "kernel" for statically linked ciphers)</para> | ||
| 335 | </listitem> | ||
| 336 | <listitem> | ||
| 337 | <para>priority: the priority value of the cipher implementation</para> | ||
| 338 | </listitem> | ||
| 339 | <listitem> | ||
| 340 | <para>refcnt: the reference count of the respective cipher | ||
| 341 | (i.e. the number of current consumers of this cipher)</para> | ||
| 342 | </listitem> | ||
| 343 | <listitem> | ||
| 344 | <para>selftest: specification whether the self test for the | ||
| 345 | cipher passed</para> | ||
| 346 | </listitem> | ||
| 347 | <listitem> | ||
| 348 | <para>type: | ||
| 349 | <itemizedlist> | ||
| 350 | <listitem> | ||
| 351 | <para>skcipher for symmetric key ciphers</para> | ||
| 352 | </listitem> | ||
| 353 | <listitem> | ||
| 354 | <para>cipher for single block ciphers that may be used with | ||
| 355 | an additional template</para> | ||
| 356 | </listitem> | ||
| 357 | <listitem> | ||
| 358 | <para>shash for synchronous message digest</para> | ||
| 359 | </listitem> | ||
| 360 | <listitem> | ||
| 361 | <para>ahash for asynchronous message digest</para> | ||
| 362 | </listitem> | ||
| 363 | <listitem> | ||
| 364 | <para>aead for AEAD cipher type</para> | ||
| 365 | </listitem> | ||
| 366 | <listitem> | ||
| 367 | <para>compression for compression type transformations</para> | ||
| 368 | </listitem> | ||
| 369 | <listitem> | ||
| 370 | <para>rng for random number generator</para> | ||
| 371 | </listitem> | ||
| 372 | <listitem> | ||
| 373 | <para>givcipher for cipher with associated IV generator | ||
| 374 | (see the geniv entry below for the specification of the | ||
| 375 | IV generator type used by the cipher implementation)</para> | ||
| 376 | </listitem> | ||
| 377 | </itemizedlist> | ||
| 378 | </para> | ||
| 379 | </listitem> | ||
| 380 | <listitem> | ||
| 381 | <para>blocksize: blocksize of cipher in bytes</para> | ||
| 382 | </listitem> | ||
| 383 | <listitem> | ||
| 384 | <para>keysize: key size in bytes</para> | ||
| 385 | </listitem> | ||
| 386 | <listitem> | ||
| 387 | <para>ivsize: IV size in bytes</para> | ||
| 388 | </listitem> | ||
| 389 | <listitem> | ||
| 390 | <para>seedsize: required size of seed data for random number | ||
| 391 | generator</para> | ||
| 392 | </listitem> | ||
| 393 | <listitem> | ||
| 394 | <para>digestsize: output size of the message digest</para> | ||
| 395 | </listitem> | ||
| 396 | <listitem> | ||
| 397 | <para>geniv: IV generation type: | ||
| 398 | <itemizedlist> | ||
| 399 | <listitem> | ||
| 400 | <para>eseqiv for encrypted sequence number based IV | ||
| 401 | generation</para> | ||
| 402 | </listitem> | ||
| 403 | <listitem> | ||
| 404 | <para>seqiv for sequence number based IV generation</para> | ||
| 405 | </listitem> | ||
| 406 | <listitem> | ||
| 407 | <para>chainiv for chain iv generation</para> | ||
| 408 | </listitem> | ||
| 409 | <listitem> | ||
| 410 | <para><builtin> is a marker that the cipher implements | ||
| 411 | IV generation and handling as it is specific to the given | ||
| 412 | cipher</para> | ||
| 413 | </listitem> | ||
| 414 | </itemizedlist> | ||
| 415 | </para> | ||
| 416 | </listitem> | ||
| 417 | </itemizedlist> | ||
| 418 | </sect1> | ||
| 419 | |||
| 420 | <sect1><title>Key Sizes</title> | ||
| 421 | <para> | ||
| 422 | When allocating a cipher handle, the caller only specifies the | ||
| 423 | cipher type. Symmetric ciphers, however, typically support | ||
| 424 | multiple key sizes (e.g. AES-128 vs. AES-192 vs. AES-256). | ||
| 425 | These key sizes are determined with the length of the provided | ||
| 426 | key. Thus, the kernel crypto API does not provide a separate | ||
| 427 | way to select the particular symmetric cipher key size. | ||
| 428 | </para> | ||
| 429 | </sect1> | ||
| 430 | |||
| 431 | <sect1><title>Cipher Allocation Type And Masks</title> | ||
| 432 | <para> | ||
| 433 | The different cipher handle allocation functions allow the | ||
| 434 | specification of a type and mask flag. Both parameters have | ||
| 435 | the following meaning (and are therefore not covered in the | ||
| 436 | subsequent sections). | ||
| 437 | </para> | ||
| 438 | |||
| 439 | <para> | ||
| 440 | The type flag specifies the type of the cipher algorithm. | ||
| 441 | The caller usually provides a 0 when the caller wants the | ||
| 442 | default handling. Otherwise, the caller may provide the | ||
| 443 | following selections which match the aforementioned cipher | ||
| 444 | types: | ||
| 445 | </para> | ||
| 446 | |||
| 447 | <itemizedlist> | ||
| 448 | <listitem> | ||
| 449 | <para>CRYPTO_ALG_TYPE_CIPHER Single block cipher</para> | ||
| 450 | </listitem> | ||
| 451 | <listitem> | ||
| 452 | <para>CRYPTO_ALG_TYPE_COMPRESS Compression</para> | ||
| 453 | </listitem> | ||
| 454 | <listitem> | ||
| 455 | <para>CRYPTO_ALG_TYPE_AEAD Authenticated Encryption with | ||
| 456 | Associated Data (MAC)</para> | ||
| 457 | </listitem> | ||
| 458 | <listitem> | ||
| 459 | <para>CRYPTO_ALG_TYPE_BLKCIPHER Synchronous multi-block cipher</para> | ||
| 460 | </listitem> | ||
| 461 | <listitem> | ||
| 462 | <para>CRYPTO_ALG_TYPE_ABLKCIPHER Asynchronous multi-block cipher</para> | ||
| 463 | </listitem> | ||
| 464 | <listitem> | ||
| 465 | <para>CRYPTO_ALG_TYPE_GIVCIPHER Asynchronous multi-block | ||
| 466 | cipher packed together with an IV generator (see geniv field | ||
| 467 | in the /proc/crypto listing for the known IV generators)</para> | ||
| 468 | </listitem> | ||
| 469 | <listitem> | ||
| 470 | <para>CRYPTO_ALG_TYPE_DIGEST Raw message digest</para> | ||
| 471 | </listitem> | ||
| 472 | <listitem> | ||
| 473 | <para>CRYPTO_ALG_TYPE_HASH Alias for CRYPTO_ALG_TYPE_DIGEST</para> | ||
| 474 | </listitem> | ||
| 475 | <listitem> | ||
| 476 | <para>CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash</para> | ||
| 477 | </listitem> | ||
| 478 | <listitem> | ||
| 479 | <para>CRYPTO_ALG_TYPE_AHASH Asynchronous multi-block hash</para> | ||
| 480 | </listitem> | ||
| 481 | <listitem> | ||
| 482 | <para>CRYPTO_ALG_TYPE_RNG Random Number Generation</para> | ||
| 483 | </listitem> | ||
| 484 | <listitem> | ||
| 485 | <para>CRYPTO_ALG_TYPE_AKCIPHER Asymmetric cipher</para> | ||
| 486 | </listitem> | ||
| 487 | <listitem> | ||
| 488 | <para>CRYPTO_ALG_TYPE_PCOMPRESS Enhanced version of | ||
| 489 | CRYPTO_ALG_TYPE_COMPRESS allowing for segmented compression / | ||
| 490 | decompression instead of performing the operation on one | ||
| 491 | segment only. CRYPTO_ALG_TYPE_PCOMPRESS is intended to replace | ||
| 492 | CRYPTO_ALG_TYPE_COMPRESS once existing consumers are converted.</para> | ||
| 493 | </listitem> | ||
| 494 | </itemizedlist> | ||
| 495 | |||
| 496 | <para> | ||
| 497 | The mask flag restricts the type of cipher. The only allowed | ||
| 498 | flag is CRYPTO_ALG_ASYNC to restrict the cipher lookup function | ||
| 499 | to asynchronous ciphers. Usually, a caller provides a 0 for the | ||
| 500 | mask flag. | ||
| 501 | </para> | ||
| 502 | |||
| 503 | <para> | ||
| 504 | When the caller provides a mask and type specification, the | ||
| 505 | caller limits the search the kernel crypto API can perform for | ||
| 506 | a suitable cipher implementation for the given cipher name. | ||
| 507 | That means, even when a caller uses a cipher name that exists | ||
| 508 | during its initialization call, the kernel crypto API may not | ||
| 509 | select it due to the used type and mask field. | ||
| 510 | </para> | ||
| 511 | </sect1> | ||
| 512 | |||
| 513 | <sect1><title>Internal Structure of Kernel Crypto API</title> | ||
| 514 | |||
| 515 | <para> | ||
| 516 | The kernel crypto API has an internal structure where a cipher | ||
| 517 | implementation may use many layers and indirections. This section | ||
| 518 | shall help to clarify how the kernel crypto API uses | ||
| 519 | various components to implement the complete cipher. | ||
| 520 | </para> | ||
| 521 | |||
| 522 | <para> | ||
| 523 | The following subsections explain the internal structure based | ||
| 524 | on existing cipher implementations. The first section addresses | ||
| 525 | the most complex scenario where all other scenarios form a logical | ||
| 526 | subset. | ||
| 527 | </para> | ||
| 528 | |||
| 529 | <sect2><title>Generic AEAD Cipher Structure</title> | ||
| 530 | |||
| 531 | <para> | ||
| 532 | The following ASCII art decomposes the kernel crypto API layers | ||
| 533 | when using the AEAD cipher with the automated IV generation. The | ||
| 534 | shown example is used by the IPSEC layer. | ||
| 535 | </para> | ||
| 536 | |||
| 537 | <para> | ||
| 538 | For other use cases of AEAD ciphers, the ASCII art applies as | ||
| 539 | well, but the caller may not use the AEAD cipher with a separate | ||
| 540 | IV generator. In this case, the caller must generate the IV. | ||
| 541 | </para> | ||
| 542 | |||
| 543 | <para> | ||
| 544 | The depicted example decomposes the AEAD cipher of GCM(AES) based | ||
| 545 | on the generic C implementations (gcm.c, aes-generic.c, ctr.c, | ||
| 546 | ghash-generic.c, seqiv.c). The generic implementation serves as an | ||
| 547 | example showing the complete logic of the kernel crypto API. | ||
| 548 | </para> | ||
| 549 | |||
| 550 | <para> | ||
| 551 | It is possible that some streamlined cipher implementations (like | ||
| 552 | AES-NI) provide implementations merging aspects which in the view | ||
| 553 | of the kernel crypto API cannot be decomposed into layers any more. | ||
| 554 | In case of the AES-NI implementation, the CTR mode, the GHASH | ||
| 555 | implementation and the AES cipher are all merged into one cipher | ||
| 556 | implementation registered with the kernel crypto API. In this case, | ||
| 557 | the concept described by the following ASCII art applies too. However, | ||
| 558 | the decomposition of GCM into the individual sub-components | ||
| 559 | by the kernel crypto API is not done any more. | ||
| 560 | </para> | ||
| 561 | |||
| 562 | <para> | ||
| 563 | Each block in the following ASCII art is an independent cipher | ||
| 564 | instance obtained from the kernel crypto API. Each block | ||
| 565 | is accessed by the caller or by other blocks using the API functions | ||
| 566 | defined by the kernel crypto API for the cipher implementation type. | ||
| 567 | </para> | ||
| 568 | |||
| 569 | <para> | ||
| 570 | The blocks below indicate the cipher type as well as the specific | ||
| 571 | logic implemented in the cipher. | ||
| 572 | </para> | ||
| 573 | |||
| 574 | <para> | ||
| 575 | The ASCII art picture also indicates the call structure, i.e. who | ||
| 576 | calls which component. The arrows point to the invoked block | ||
| 577 | where the caller uses the API applicable to the cipher type | ||
| 578 | specified for the block. | ||
| 579 | </para> | ||
| 580 | |||
| 581 | <programlisting> | ||
| 582 | <![CDATA[ | ||
| 583 | kernel crypto API | IPSEC Layer | ||
| 584 | | | ||
| 585 | +-----------+ | | ||
| 586 | | | (1) | ||
| 587 | | aead | <----------------------------------- esp_output | ||
| 588 | | (seqiv) | ---+ | ||
| 589 | +-----------+ | | ||
| 590 | | (2) | ||
| 591 | +-----------+ | | ||
| 592 | | | <--+ (2) | ||
| 593 | | aead | <----------------------------------- esp_input | ||
| 594 | | (gcm) | ------------+ | ||
| 595 | +-----------+ | | ||
| 596 | | (3) | (5) | ||
| 597 | v v | ||
| 598 | +-----------+ +-----------+ | ||
| 599 | | | | | | ||
| 600 | | skcipher | | ahash | | ||
| 601 | | (ctr) | ---+ | (ghash) | | ||
| 602 | +-----------+ | +-----------+ | ||
| 603 | | | ||
| 604 | +-----------+ | (4) | ||
| 605 | | | <--+ | ||
| 606 | | cipher | | ||
| 607 | | (aes) | | ||
| 608 | +-----------+ | ||
| 609 | ]]> | ||
| 610 | </programlisting> | ||
| 611 | |||
| 612 | <para> | ||
| 613 | The following call sequence is applicable when the IPSEC layer | ||
| 614 | triggers an encryption operation with the esp_output function. During | ||
| 615 | configuration, the administrator set up the use of rfc4106(gcm(aes)) as | ||
| 616 | the cipher for ESP. The following call sequence is now depicted in the | ||
| 617 | ASCII art above: | ||
| 618 | </para> | ||
| 619 | |||
| 620 | <orderedlist> | ||
| 621 | <listitem> | ||
| 622 | <para> | ||
| 623 | esp_output() invokes crypto_aead_encrypt() to trigger an encryption | ||
| 624 | operation of the AEAD cipher with IV generator. | ||
| 625 | </para> | ||
| 626 | |||
| 627 | <para> | ||
| 628 | In case of GCM, the SEQIV implementation is registered as GIVCIPHER | ||
| 629 | in crypto_rfc4106_alloc(). | ||
| 630 | </para> | ||
| 631 | |||
| 632 | <para> | ||
| 633 | The SEQIV performs its operation to generate an IV where the core | ||
| 634 | function is seqiv_geniv(). | ||
| 635 | </para> | ||
| 636 | </listitem> | ||
| 637 | |||
| 638 | <listitem> | ||
| 639 | <para> | ||
| 640 | Now, SEQIV uses the AEAD API function calls to invoke the associated | ||
| 641 | AEAD cipher. In our case, during the instantiation of SEQIV, the | ||
| 642 | cipher handle for GCM is provided to SEQIV. This means that SEQIV | ||
| 643 | invokes AEAD cipher operations with the GCM cipher handle. | ||
| 644 | </para> | ||
| 645 | |||
| 646 | <para> | ||
| 647 | During instantiation of the GCM handle, the CTR(AES) and GHASH | ||
| 648 | ciphers are instantiated. The cipher handles for CTR(AES) and GHASH | ||
| 649 | are retained for later use. | ||
| 650 | </para> | ||
| 651 | |||
| 652 | <para> | ||
| 653 | The GCM implementation is responsible to invoke the CTR mode AES and | ||
| 654 | the GHASH cipher in the right manner to implement the GCM | ||
| 655 | specification. | ||
| 656 | </para> | ||
| 657 | </listitem> | ||
| 658 | |||
| 659 | <listitem> | ||
| 660 | <para> | ||
| 661 | The GCM AEAD cipher type implementation now invokes the SKCIPHER API | ||
| 662 | with the instantiated CTR(AES) cipher handle. | ||
| 663 | </para> | ||
| 664 | |||
| 665 | <para> | ||
| 666 | During instantiation of the CTR(AES) cipher, the CIPHER type | ||
| 667 | implementation of AES is instantiated. The cipher handle for AES is | ||
| 668 | retained. | ||
| 669 | </para> | ||
| 670 | |||
| 671 | <para> | ||
| 672 | That means that the SKCIPHER implementation of CTR(AES) only | ||
| 673 | implements the CTR block chaining mode. After performing the block | ||
| 674 | chaining operation, the CIPHER implementation of AES is invoked. | ||
| 675 | </para> | ||
| 676 | </listitem> | ||
| 677 | |||
| 678 | <listitem> | ||
| 679 | <para> | ||
| 680 | The SKCIPHER of CTR(AES) now invokes the CIPHER API with the AES | ||
| 681 | cipher handle to encrypt one block. | ||
| 682 | </para> | ||
| 683 | </listitem> | ||
| 684 | |||
| 685 | <listitem> | ||
| 686 | <para> | ||
| 687 | The GCM AEAD implementation also invokes the GHASH cipher | ||
| 688 | implementation via the AHASH API. | ||
| 689 | </para> | ||
| 690 | </listitem> | ||
| 691 | </orderedlist> | ||
| 692 | |||
| 693 | <para> | ||
| 694 | When the IPSEC layer triggers the esp_input() function, the same call | ||
| 695 | sequence is followed with the only difference that the operation starts | ||
| 696 | with step (2). | ||
| 697 | </para> | ||
| 698 | </sect2> | ||
| 699 | |||
| 700 | <sect2><title>Generic Block Cipher Structure</title> | ||
| 701 | <para> | ||
| 702 | Generic block ciphers follow the same concept as depicted with the ASCII | ||
| 703 | art picture above. | ||
| 704 | </para> | ||
| 705 | |||
| 706 | <para> | ||
| 707 | For example, CBC(AES) is implemented with cbc.c, and aes-generic.c. The | ||
| 708 | ASCII art picture above applies as well with the difference that only | ||
| 709 | step (4) is used and the SKCIPHER block chaining mode is CBC. | ||
| 710 | </para> | ||
| 711 | </sect2> | ||
| 712 | |||
| 713 | <sect2><title>Generic Keyed Message Digest Structure</title> | ||
| 714 | <para> | ||
| 715 | Keyed message digest implementations again follow the same concept as | ||
| 716 | depicted in the ASCII art picture above. | ||
| 717 | </para> | ||
| 718 | |||
| 719 | <para> | ||
| 720 | For example, HMAC(SHA256) is implemented with hmac.c and | ||
| 721 | sha256_generic.c. The following ASCII art illustrates the | ||
| 722 | implementation: | ||
| 723 | </para> | ||
| 724 | |||
| 725 | <programlisting> | ||
| 726 | <![CDATA[ | ||
| 727 | kernel crypto API | Caller | ||
| 728 | | | ||
| 729 | +-----------+ (1) | | ||
| 730 | | | <------------------ some_function | ||
| 731 | | ahash | | ||
| 732 | | (hmac) | ---+ | ||
| 733 | +-----------+ | | ||
| 734 | | (2) | ||
| 735 | +-----------+ | | ||
| 736 | | | <--+ | ||
| 737 | | shash | | ||
| 738 | | (sha256) | | ||
| 739 | +-----------+ | ||
| 740 | ]]> | ||
| 741 | </programlisting> | ||
| 742 | |||
| 743 | <para> | ||
| 744 | The following call sequence is applicable when a caller triggers | ||
| 745 | an HMAC operation: | ||
| 746 | </para> | ||
| 747 | |||
| 748 | <orderedlist> | ||
| 749 | <listitem> | ||
| 750 | <para> | ||
| 751 | The AHASH API functions are invoked by the caller. The HMAC | ||
| 752 | implementation performs its operation as needed. | ||
| 753 | </para> | ||
| 754 | |||
| 755 | <para> | ||
| 756 | During initialization of the HMAC cipher, the SHASH cipher type of | ||
| 757 | SHA256 is instantiated. The cipher handle for the SHA256 instance is | ||
| 758 | retained. | ||
| 759 | </para> | ||
| 760 | |||
| 761 | <para> | ||
| 762 | At one time, the HMAC implementation requires a SHA256 operation | ||
| 763 | where the SHA256 cipher handle is used. | ||
| 764 | </para> | ||
| 765 | </listitem> | ||
| 766 | |||
| 767 | <listitem> | ||
| 768 | <para> | ||
| 769 | The HMAC instance now invokes the SHASH API with the SHA256 | ||
| 770 | cipher handle to calculate the message digest. | ||
| 771 | </para> | ||
| 772 | </listitem> | ||
| 773 | </orderedlist> | ||
| 774 | </sect2> | ||
| 775 | </sect1> | ||
| 776 | </chapter> | ||
| 777 | |||
| 778 | <chapter id="Development"><title>Developing Cipher Algorithms</title> | ||
| 779 | <sect1><title>Registering And Unregistering Transformation</title> | ||
| 780 | <para> | ||
| 781 | There are three distinct types of registration functions in | ||
| 782 | the Crypto API. One is used to register a generic cryptographic | ||
| 783 | transformation, while the other two are specific to HASH | ||
| 784 | transformations and COMPRESSion. We will discuss the latter | ||
| 785 | two in a separate chapter, here we will only look at the | ||
| 786 | generic ones. | ||
| 787 | </para> | ||
| 788 | |||
| 789 | <para> | ||
| 790 | Before discussing the register functions, the data structure | ||
| 791 | to be filled with each, struct crypto_alg, must be considered | ||
| 792 | -- see below for a description of this data structure. | ||
| 793 | </para> | ||
| 794 | |||
| 795 | <para> | ||
| 796 | The generic registration functions can be found in | ||
| 797 | include/linux/crypto.h and their definition can be seen below. | ||
| 798 | The former function registers a single transformation, while | ||
| 799 | the latter works on an array of transformation descriptions. | ||
| 800 | The latter is useful when registering transformations in bulk, | ||
| 801 | for example when a driver implements multiple transformations. | ||
| 802 | </para> | ||
| 803 | |||
| 804 | <programlisting> | ||
| 805 | int crypto_register_alg(struct crypto_alg *alg); | ||
| 806 | int crypto_register_algs(struct crypto_alg *algs, int count); | ||
| 807 | </programlisting> | ||
| 808 | |||
| 809 | <para> | ||
| 810 | The counterparts to those functions are listed below. | ||
| 811 | </para> | ||
| 812 | |||
| 813 | <programlisting> | ||
| 814 | int crypto_unregister_alg(struct crypto_alg *alg); | ||
| 815 | int crypto_unregister_algs(struct crypto_alg *algs, int count); | ||
| 816 | </programlisting> | ||
| 817 | |||
| 818 | <para> | ||
| 819 | Notice that both registration and unregistration functions | ||
| 820 | do return a value, so make sure to handle errors. A return | ||
| 821 | code of zero implies success. Any return code < 0 implies | ||
| 822 | an error. | ||
| 823 | </para> | ||
| 824 | |||
| 825 | <para> | ||
| 826 | The bulk registration/unregistration functions | ||
| 827 | register/unregister each transformation in the given array of | ||
| 828 | length count. They handle errors as follows: | ||
| 829 | </para> | ||
| 830 | <itemizedlist> | ||
| 831 | <listitem> | ||
| 832 | <para> | ||
| 833 | crypto_register_algs() succeeds if and only if it | ||
| 834 | successfully registers all the given transformations. If an | ||
| 835 | error occurs partway through, then it rolls back successful | ||
| 836 | registrations before returning the error code. Note that if | ||
| 837 | a driver needs to handle registration errors for individual | ||
| 838 | transformations, then it will need to use the non-bulk | ||
| 839 | function crypto_register_alg() instead. | ||
| 840 | </para> | ||
| 841 | </listitem> | ||
| 842 | <listitem> | ||
| 843 | <para> | ||
| 844 | crypto_unregister_algs() tries to unregister all the given | ||
| 845 | transformations, continuing on error. It logs errors and | ||
| 846 | always returns zero. | ||
| 847 | </para> | ||
| 848 | </listitem> | ||
| 849 | </itemizedlist> | ||
| 850 | |||
| 851 | </sect1> | ||
| 852 | |||
| 853 | <sect1><title>Single-Block Symmetric Ciphers [CIPHER]</title> | ||
| 854 | <para> | ||
| 855 | Example of transformations: aes, arc4, ... | ||
| 856 | </para> | ||
| 857 | |||
| 858 | <para> | ||
| 859 | This section describes the simplest of all transformation | ||
| 860 | implementations, that being the CIPHER type used for symmetric | ||
| 861 | ciphers. The CIPHER type is used for transformations which | ||
| 862 | operate on exactly one block at a time and there are no | ||
| 863 | dependencies between blocks at all. | ||
| 864 | </para> | ||
| 865 | |||
| 866 | <sect2><title>Registration specifics</title> | ||
| 867 | <para> | ||
| 868 | The registration of [CIPHER] algorithm is specific in that | ||
| 869 | struct crypto_alg field .cra_type is empty. The .cra_u.cipher | ||
| 870 | has to be filled in with proper callbacks to implement this | ||
| 871 | transformation. | ||
| 872 | </para> | ||
| 873 | |||
| 874 | <para> | ||
| 875 | See struct cipher_alg below. | ||
| 876 | </para> | ||
| 877 | </sect2> | ||
| 878 | |||
| 879 | <sect2><title>Cipher Definition With struct cipher_alg</title> | ||
| 880 | <para> | ||
| 881 | Struct cipher_alg defines a single block cipher. | ||
| 882 | </para> | ||
| 883 | |||
| 884 | <para> | ||
| 885 | Here are schematics of how these functions are called when | ||
| 886 | operated from other part of the kernel. Note that the | ||
| 887 | .cia_setkey() call might happen before or after any of these | ||
| 888 | schematics happen, but must not happen during any of these | ||
| 889 | are in-flight. | ||
| 890 | </para> | ||
| 891 | |||
| 892 | <para> | ||
| 893 | <programlisting> | ||
| 894 | KEY ---. PLAINTEXT ---. | ||
| 895 | v v | ||
| 896 | .cia_setkey() -> .cia_encrypt() | ||
| 897 | | | ||
| 898 | '-----> CIPHERTEXT | ||
| 899 | </programlisting> | ||
| 900 | </para> | ||
| 901 | |||
| 902 | <para> | ||
| 903 | Please note that a pattern where .cia_setkey() is called | ||
| 904 | multiple times is also valid: | ||
| 905 | </para> | ||
| 906 | |||
| 907 | <para> | ||
| 908 | <programlisting> | ||
| 909 | |||
| 910 | KEY1 --. PLAINTEXT1 --. KEY2 --. PLAINTEXT2 --. | ||
| 911 | v v v v | ||
| 912 | .cia_setkey() -> .cia_encrypt() -> .cia_setkey() -> .cia_encrypt() | ||
| 913 | | | | ||
| 914 | '---> CIPHERTEXT1 '---> CIPHERTEXT2 | ||
| 915 | </programlisting> | ||
| 916 | </para> | ||
| 917 | |||
| 918 | </sect2> | ||
| 919 | </sect1> | ||
| 920 | |||
| 921 | <sect1><title>Multi-Block Ciphers</title> | ||
| 922 | <para> | ||
| 923 | Example of transformations: cbc(aes), ecb(arc4), ... | ||
| 924 | </para> | ||
| 925 | |||
| 926 | <para> | ||
| 927 | This section describes the multi-block cipher transformation | ||
| 928 | implementations. The multi-block ciphers are | ||
| 929 | used for transformations which operate on scatterlists of | ||
| 930 | data supplied to the transformation functions. They output | ||
| 931 | the result into a scatterlist of data as well. | ||
| 932 | </para> | ||
| 933 | |||
| 934 | <sect2><title>Registration Specifics</title> | ||
| 935 | |||
| 936 | <para> | ||
| 937 | The registration of multi-block cipher algorithms | ||
| 938 | is one of the most standard procedures throughout the crypto API. | ||
| 939 | </para> | ||
| 940 | |||
| 941 | <para> | ||
| 942 | Note, if a cipher implementation requires a proper alignment | ||
| 943 | of data, the caller should use the functions of | ||
| 944 | crypto_skcipher_alignmask() to identify a memory alignment mask. | ||
| 945 | The kernel crypto API is able to process requests that are unaligned. | ||
| 946 | This implies, however, additional overhead as the kernel | ||
| 947 | crypto API needs to perform the realignment of the data which | ||
| 948 | may imply moving of data. | ||
| 949 | </para> | ||
| 950 | </sect2> | ||
| 951 | |||
| 952 | <sect2><title>Cipher Definition With struct blkcipher_alg and ablkcipher_alg</title> | ||
| 953 | <para> | ||
| 954 | Struct blkcipher_alg defines a synchronous block cipher whereas | ||
| 955 | struct ablkcipher_alg defines an asynchronous block cipher. | ||
| 956 | </para> | ||
| 957 | |||
| 958 | <para> | ||
| 959 | Please refer to the single block cipher description for schematics | ||
| 960 | of the block cipher usage. | ||
| 961 | </para> | ||
| 962 | </sect2> | ||
| 963 | |||
| 964 | <sect2><title>Specifics Of Asynchronous Multi-Block Cipher</title> | ||
| 965 | <para> | ||
| 966 | There are a couple of specifics to the asynchronous interface. | ||
| 967 | </para> | ||
| 968 | |||
| 969 | <para> | ||
| 970 | First of all, some of the drivers will want to use the | ||
| 971 | Generic ScatterWalk in case the hardware needs to be fed | ||
| 972 | separate chunks of the scatterlist which contains the | ||
| 973 | plaintext and will contain the ciphertext. Please refer | ||
| 974 | to the ScatterWalk interface offered by the Linux kernel | ||
| 975 | scatter / gather list implementation. | ||
| 976 | </para> | ||
| 977 | </sect2> | ||
| 978 | </sect1> | ||
| 979 | |||
| 980 | <sect1><title>Hashing [HASH]</title> | ||
| 981 | |||
| 982 | <para> | ||
| 983 | Example of transformations: crc32, md5, sha1, sha256,... | ||
| 984 | </para> | ||
| 985 | |||
| 986 | <sect2><title>Registering And Unregistering The Transformation</title> | ||
| 987 | |||
| 988 | <para> | ||
| 989 | There are multiple ways to register a HASH transformation, | ||
| 990 | depending on whether the transformation is synchronous [SHASH] | ||
| 991 | or asynchronous [AHASH] and the amount of HASH transformations | ||
| 992 | we are registering. You can find the prototypes defined in | ||
| 993 | include/crypto/internal/hash.h: | ||
| 994 | </para> | ||
| 995 | |||
| 996 | <programlisting> | ||
| 997 | int crypto_register_ahash(struct ahash_alg *alg); | ||
| 998 | |||
| 999 | int crypto_register_shash(struct shash_alg *alg); | ||
| 1000 | int crypto_register_shashes(struct shash_alg *algs, int count); | ||
| 1001 | </programlisting> | ||
| 1002 | |||
| 1003 | <para> | ||
| 1004 | The respective counterparts for unregistering the HASH | ||
| 1005 | transformation are as follows: | ||
| 1006 | </para> | ||
| 1007 | |||
| 1008 | <programlisting> | ||
| 1009 | int crypto_unregister_ahash(struct ahash_alg *alg); | ||
| 1010 | |||
| 1011 | int crypto_unregister_shash(struct shash_alg *alg); | ||
| 1012 | int crypto_unregister_shashes(struct shash_alg *algs, int count); | ||
| 1013 | </programlisting> | ||
| 1014 | </sect2> | ||
| 1015 | |||
| 1016 | <sect2><title>Cipher Definition With struct shash_alg and ahash_alg</title> | ||
| 1017 | <para> | ||
| 1018 | Here are schematics of how these functions are called when | ||
| 1019 | operated from other part of the kernel. Note that the .setkey() | ||
| 1020 | call might happen before or after any of these schematics happen, | ||
| 1021 | but must not happen during any of these are in-flight. Please note | ||
| 1022 | that calling .init() followed immediately by .finish() is also a | ||
| 1023 | perfectly valid transformation. | ||
| 1024 | </para> | ||
| 1025 | |||
| 1026 | <programlisting> | ||
| 1027 | I) DATA -----------. | ||
| 1028 | v | ||
| 1029 | .init() -> .update() -> .final() ! .update() might not be called | ||
| 1030 | ^ | | at all in this scenario. | ||
| 1031 | '----' '---> HASH | ||
| 1032 | |||
| 1033 | II) DATA -----------.-----------. | ||
| 1034 | v v | ||
| 1035 | .init() -> .update() -> .finup() ! .update() may not be called | ||
| 1036 | ^ | | at all in this scenario. | ||
| 1037 | '----' '---> HASH | ||
| 1038 | |||
| 1039 | III) DATA -----------. | ||
| 1040 | v | ||
| 1041 | .digest() ! The entire process is handled | ||
| 1042 | | by the .digest() call. | ||
| 1043 | '---------------> HASH | ||
| 1044 | </programlisting> | ||
| 1045 | |||
| 1046 | <para> | ||
| 1047 | Here is a schematic of how the .export()/.import() functions are | ||
| 1048 | called when used from another part of the kernel. | ||
| 1049 | </para> | ||
| 1050 | |||
| 1051 | <programlisting> | ||
| 1052 | KEY--. DATA--. | ||
| 1053 | v v ! .update() may not be called | ||
| 1054 | .setkey() -> .init() -> .update() -> .export() at all in this scenario. | ||
| 1055 | ^ | | | ||
| 1056 | '-----' '--> PARTIAL_HASH | ||
| 1057 | |||
| 1058 | ----------- other transformations happen here ----------- | ||
| 1059 | |||
| 1060 | PARTIAL_HASH--. DATA1--. | ||
| 1061 | v v | ||
| 1062 | .import -> .update() -> .final() ! .update() may not be called | ||
| 1063 | ^ | | at all in this scenario. | ||
| 1064 | '----' '--> HASH1 | ||
| 1065 | |||
| 1066 | PARTIAL_HASH--. DATA2-. | ||
| 1067 | v v | ||
| 1068 | .import -> .finup() | ||
| 1069 | | | ||
| 1070 | '---------------> HASH2 | ||
| 1071 | </programlisting> | ||
| 1072 | </sect2> | ||
| 1073 | |||
| 1074 | <sect2><title>Specifics Of Asynchronous HASH Transformation</title> | ||
| 1075 | <para> | ||
| 1076 | Some of the drivers will want to use the Generic ScatterWalk | ||
| 1077 | in case the implementation needs to be fed separate chunks of the | ||
| 1078 | scatterlist which contains the input data. The buffer containing | ||
| 1079 | the resulting hash will always be properly aligned to | ||
| 1080 | .cra_alignmask so there is no need to worry about this. | ||
| 1081 | </para> | ||
| 1082 | </sect2> | ||
| 1083 | </sect1> | ||
| 1084 | </chapter> | ||
| 1085 | |||
| 1086 | <chapter id="User"><title>User Space Interface</title> | ||
| 1087 | <sect1><title>Introduction</title> | ||
| 1088 | <para> | ||
| 1089 | The concepts of the kernel crypto API visible to kernel space is fully | ||
| 1090 | applicable to the user space interface as well. Therefore, the kernel | ||
| 1091 | crypto API high level discussion for the in-kernel use cases applies | ||
| 1092 | here as well. | ||
| 1093 | </para> | ||
| 1094 | |||
| 1095 | <para> | ||
| 1096 | The major difference, however, is that user space can only act as a | ||
| 1097 | consumer and never as a provider of a transformation or cipher algorithm. | ||
| 1098 | </para> | ||
| 1099 | |||
| 1100 | <para> | ||
| 1101 | The following covers the user space interface exported by the kernel | ||
| 1102 | crypto API. A working example of this description is libkcapi that | ||
| 1103 | can be obtained from [1]. That library can be used by user space | ||
| 1104 | applications that require cryptographic services from the kernel. | ||
| 1105 | </para> | ||
| 1106 | |||
| 1107 | <para> | ||
| 1108 | Some details of the in-kernel kernel crypto API aspects do not | ||
| 1109 | apply to user space, however. This includes the difference between | ||
| 1110 | synchronous and asynchronous invocations. The user space API call | ||
| 1111 | is fully synchronous. | ||
| 1112 | </para> | ||
| 1113 | |||
| 1114 | <para> | ||
| 1115 | [1] <ulink url="http://www.chronox.de/libkcapi.html">http://www.chronox.de/libkcapi.html</ulink> | ||
| 1116 | </para> | ||
| 1117 | |||
| 1118 | </sect1> | ||
| 1119 | |||
| 1120 | <sect1><title>User Space API General Remarks</title> | ||
| 1121 | <para> | ||
| 1122 | The kernel crypto API is accessible from user space. Currently, | ||
| 1123 | the following ciphers are accessible: | ||
| 1124 | </para> | ||
| 1125 | |||
| 1126 | <itemizedlist> | ||
| 1127 | <listitem> | ||
| 1128 | <para>Message digest including keyed message digest (HMAC, CMAC)</para> | ||
| 1129 | </listitem> | ||
| 1130 | |||
| 1131 | <listitem> | ||
| 1132 | <para>Symmetric ciphers</para> | ||
| 1133 | </listitem> | ||
| 1134 | |||
| 1135 | <listitem> | ||
| 1136 | <para>AEAD ciphers</para> | ||
| 1137 | </listitem> | ||
| 1138 | |||
| 1139 | <listitem> | ||
| 1140 | <para>Random Number Generators</para> | ||
| 1141 | </listitem> | ||
| 1142 | </itemizedlist> | ||
| 1143 | |||
| 1144 | <para> | ||
| 1145 | The interface is provided via socket type using the type AF_ALG. | ||
| 1146 | In addition, the setsockopt option type is SOL_ALG. In case the | ||
| 1147 | user space header files do not export these flags yet, use the | ||
| 1148 | following macros: | ||
| 1149 | </para> | ||
| 1150 | |||
| 1151 | <programlisting> | ||
| 1152 | #ifndef AF_ALG | ||
| 1153 | #define AF_ALG 38 | ||
| 1154 | #endif | ||
| 1155 | #ifndef SOL_ALG | ||
| 1156 | #define SOL_ALG 279 | ||
| 1157 | #endif | ||
| 1158 | </programlisting> | ||
| 1159 | |||
| 1160 | <para> | ||
| 1161 | A cipher is accessed with the same name as done for the in-kernel | ||
| 1162 | API calls. This includes the generic vs. unique naming schema for | ||
| 1163 | ciphers as well as the enforcement of priorities for generic names. | ||
| 1164 | </para> | ||
| 1165 | |||
| 1166 | <para> | ||
| 1167 | To interact with the kernel crypto API, a socket must be | ||
| 1168 | created by the user space application. User space invokes the cipher | ||
| 1169 | operation with the send()/write() system call family. The result of the | ||
| 1170 | cipher operation is obtained with the read()/recv() system call family. | ||
| 1171 | </para> | ||
| 1172 | |||
| 1173 | <para> | ||
| 1174 | The following API calls assume that the socket descriptor | ||
| 1175 | is already opened by the user space application and discusses only | ||
| 1176 | the kernel crypto API specific invocations. | ||
| 1177 | </para> | ||
| 1178 | |||
| 1179 | <para> | ||
| 1180 | To initialize the socket interface, the following sequence has to | ||
| 1181 | be performed by the consumer: | ||
| 1182 | </para> | ||
| 1183 | |||
| 1184 | <orderedlist> | ||
| 1185 | <listitem> | ||
| 1186 | <para> | ||
| 1187 | Create a socket of type AF_ALG with the struct sockaddr_alg | ||
| 1188 | parameter specified below for the different cipher types. | ||
| 1189 | </para> | ||
| 1190 | </listitem> | ||
| 1191 | |||
| 1192 | <listitem> | ||
| 1193 | <para> | ||
| 1194 | Invoke bind with the socket descriptor | ||
| 1195 | </para> | ||
| 1196 | </listitem> | ||
| 1197 | |||
| 1198 | <listitem> | ||
| 1199 | <para> | ||
| 1200 | Invoke accept with the socket descriptor. The accept system call | ||
| 1201 | returns a new file descriptor that is to be used to interact with | ||
| 1202 | the particular cipher instance. When invoking send/write or recv/read | ||
| 1203 | system calls to send data to the kernel or obtain data from the | ||
| 1204 | kernel, the file descriptor returned by accept must be used. | ||
| 1205 | </para> | ||
| 1206 | </listitem> | ||
| 1207 | </orderedlist> | ||
| 1208 | </sect1> | ||
| 1209 | |||
| 1210 | <sect1><title>In-place Cipher operation</title> | ||
| 1211 | <para> | ||
| 1212 | Just like the in-kernel operation of the kernel crypto API, the user | ||
| 1213 | space interface allows the cipher operation in-place. That means that | ||
| 1214 | the input buffer used for the send/write system call and the output | ||
| 1215 | buffer used by the read/recv system call may be one and the same. | ||
| 1216 | This is of particular interest for symmetric cipher operations where a | ||
| 1217 | copying of the output data to its final destination can be avoided. | ||
| 1218 | </para> | ||
| 1219 | |||
| 1220 | <para> | ||
| 1221 | If a consumer on the other hand wants to maintain the plaintext and | ||
| 1222 | the ciphertext in different memory locations, all a consumer needs | ||
| 1223 | to do is to provide different memory pointers for the encryption and | ||
| 1224 | decryption operation. | ||
| 1225 | </para> | ||
| 1226 | </sect1> | ||
| 1227 | |||
| 1228 | <sect1><title>Message Digest API</title> | ||
| 1229 | <para> | ||
| 1230 | The message digest type to be used for the cipher operation is | ||
| 1231 | selected when invoking the bind syscall. bind requires the caller | ||
| 1232 | to provide a filled struct sockaddr data structure. This data | ||
| 1233 | structure must be filled as follows: | ||
| 1234 | </para> | ||
| 1235 | |||
| 1236 | <programlisting> | ||
| 1237 | struct sockaddr_alg sa = { | ||
| 1238 | .salg_family = AF_ALG, | ||
| 1239 | .salg_type = "hash", /* this selects the hash logic in the kernel */ | ||
| 1240 | .salg_name = "sha1" /* this is the cipher name */ | ||
| 1241 | }; | ||
| 1242 | </programlisting> | ||
| 1243 | |||
| 1244 | <para> | ||
| 1245 | The salg_type value "hash" applies to message digests and keyed | ||
| 1246 | message digests. Though, a keyed message digest is referenced by | ||
| 1247 | the appropriate salg_name. Please see below for the setsockopt | ||
| 1248 | interface that explains how the key can be set for a keyed message | ||
| 1249 | digest. | ||
| 1250 | </para> | ||
| 1251 | |||
| 1252 | <para> | ||
| 1253 | Using the send() system call, the application provides the data that | ||
| 1254 | should be processed with the message digest. The send system call | ||
| 1255 | allows the following flags to be specified: | ||
| 1256 | </para> | ||
| 1257 | |||
| 1258 | <itemizedlist> | ||
| 1259 | <listitem> | ||
| 1260 | <para> | ||
| 1261 | MSG_MORE: If this flag is set, the send system call acts like a | ||
| 1262 | message digest update function where the final hash is not | ||
| 1263 | yet calculated. If the flag is not set, the send system call | ||
| 1264 | calculates the final message digest immediately. | ||
| 1265 | </para> | ||
| 1266 | </listitem> | ||
| 1267 | </itemizedlist> | ||
| 1268 | |||
| 1269 | <para> | ||
| 1270 | With the recv() system call, the application can read the message | ||
| 1271 | digest from the kernel crypto API. If the buffer is too small for the | ||
| 1272 | message digest, the flag MSG_TRUNC is set by the kernel. | ||
| 1273 | </para> | ||
| 1274 | |||
| 1275 | <para> | ||
| 1276 | In order to set a message digest key, the calling application must use | ||
| 1277 | the setsockopt() option of ALG_SET_KEY. If the key is not set the HMAC | ||
| 1278 | operation is performed without the initial HMAC state change caused by | ||
| 1279 | the key. | ||
| 1280 | </para> | ||
| 1281 | </sect1> | ||
| 1282 | |||
| 1283 | <sect1><title>Symmetric Cipher API</title> | ||
| 1284 | <para> | ||
| 1285 | The operation is very similar to the message digest discussion. | ||
| 1286 | During initialization, the struct sockaddr data structure must be | ||
| 1287 | filled as follows: | ||
| 1288 | </para> | ||
| 1289 | |||
| 1290 | <programlisting> | ||
| 1291 | struct sockaddr_alg sa = { | ||
| 1292 | .salg_family = AF_ALG, | ||
| 1293 | .salg_type = "skcipher", /* this selects the symmetric cipher */ | ||
| 1294 | .salg_name = "cbc(aes)" /* this is the cipher name */ | ||
| 1295 | }; | ||
| 1296 | </programlisting> | ||
| 1297 | |||
| 1298 | <para> | ||
| 1299 | Before data can be sent to the kernel using the write/send system | ||
| 1300 | call family, the consumer must set the key. The key setting is | ||
| 1301 | described with the setsockopt invocation below. | ||
| 1302 | </para> | ||
| 1303 | |||
| 1304 | <para> | ||
| 1305 | Using the sendmsg() system call, the application provides the data that should be processed for encryption or decryption. In addition, the IV is | ||
| 1306 | specified with the data structure provided by the sendmsg() system call. | ||
| 1307 | </para> | ||
| 1308 | |||
| 1309 | <para> | ||
| 1310 | The sendmsg system call parameter of struct msghdr is embedded into the | ||
| 1311 | struct cmsghdr data structure. See recv(2) and cmsg(3) for more | ||
| 1312 | information on how the cmsghdr data structure is used together with the | ||
| 1313 | send/recv system call family. That cmsghdr data structure holds the | ||
| 1314 | following information specified with a separate header instances: | ||
| 1315 | </para> | ||
| 1316 | |||
| 1317 | <itemizedlist> | ||
| 1318 | <listitem> | ||
| 1319 | <para> | ||
| 1320 | specification of the cipher operation type with one of these flags: | ||
| 1321 | </para> | ||
| 1322 | <itemizedlist> | ||
| 1323 | <listitem> | ||
| 1324 | <para>ALG_OP_ENCRYPT - encryption of data</para> | ||
| 1325 | </listitem> | ||
| 1326 | <listitem> | ||
| 1327 | <para>ALG_OP_DECRYPT - decryption of data</para> | ||
| 1328 | </listitem> | ||
| 1329 | </itemizedlist> | ||
| 1330 | </listitem> | ||
| 1331 | |||
| 1332 | <listitem> | ||
| 1333 | <para> | ||
| 1334 | specification of the IV information marked with the flag ALG_SET_IV | ||
| 1335 | </para> | ||
| 1336 | </listitem> | ||
| 1337 | </itemizedlist> | ||
| 1338 | |||
| 1339 | <para> | ||
| 1340 | The send system call family allows the following flag to be specified: | ||
| 1341 | </para> | ||
| 1342 | |||
| 1343 | <itemizedlist> | ||
| 1344 | <listitem> | ||
| 1345 | <para> | ||
| 1346 | MSG_MORE: If this flag is set, the send system call acts like a | ||
| 1347 | cipher update function where more input data is expected | ||
| 1348 | with a subsequent invocation of the send system call. | ||
| 1349 | </para> | ||
| 1350 | </listitem> | ||
| 1351 | </itemizedlist> | ||
| 1352 | |||
| 1353 | <para> | ||
| 1354 | Note: The kernel reports -EINVAL for any unexpected data. The caller | ||
| 1355 | must make sure that all data matches the constraints given in | ||
| 1356 | /proc/crypto for the selected cipher. | ||
| 1357 | </para> | ||
| 1358 | |||
| 1359 | <para> | ||
| 1360 | With the recv() system call, the application can read the result of | ||
| 1361 | the cipher operation from the kernel crypto API. The output buffer | ||
| 1362 | must be at least as large as to hold all blocks of the encrypted or | ||
| 1363 | decrypted data. If the output data size is smaller, only as many | ||
| 1364 | blocks are returned that fit into that output buffer size. | ||
| 1365 | </para> | ||
| 1366 | </sect1> | ||
| 1367 | |||
| 1368 | <sect1><title>AEAD Cipher API</title> | ||
| 1369 | <para> | ||
| 1370 | The operation is very similar to the symmetric cipher discussion. | ||
| 1371 | During initialization, the struct sockaddr data structure must be | ||
| 1372 | filled as follows: | ||
| 1373 | </para> | ||
| 1374 | |||
| 1375 | <programlisting> | ||
| 1376 | struct sockaddr_alg sa = { | ||
| 1377 | .salg_family = AF_ALG, | ||
| 1378 | .salg_type = "aead", /* this selects the symmetric cipher */ | ||
| 1379 | .salg_name = "gcm(aes)" /* this is the cipher name */ | ||
| 1380 | }; | ||
| 1381 | </programlisting> | ||
| 1382 | |||
| 1383 | <para> | ||
| 1384 | Before data can be sent to the kernel using the write/send system | ||
| 1385 | call family, the consumer must set the key. The key setting is | ||
| 1386 | described with the setsockopt invocation below. | ||
| 1387 | </para> | ||
| 1388 | |||
| 1389 | <para> | ||
| 1390 | In addition, before data can be sent to the kernel using the | ||
| 1391 | write/send system call family, the consumer must set the authentication | ||
| 1392 | tag size. To set the authentication tag size, the caller must use the | ||
| 1393 | setsockopt invocation described below. | ||
| 1394 | </para> | ||
| 1395 | |||
| 1396 | <para> | ||
| 1397 | Using the sendmsg() system call, the application provides the data that should be processed for encryption or decryption. In addition, the IV is | ||
| 1398 | specified with the data structure provided by the sendmsg() system call. | ||
| 1399 | </para> | ||
| 1400 | |||
| 1401 | <para> | ||
| 1402 | The sendmsg system call parameter of struct msghdr is embedded into the | ||
| 1403 | struct cmsghdr data structure. See recv(2) and cmsg(3) for more | ||
| 1404 | information on how the cmsghdr data structure is used together with the | ||
| 1405 | send/recv system call family. That cmsghdr data structure holds the | ||
| 1406 | following information specified with a separate header instances: | ||
| 1407 | </para> | ||
| 1408 | |||
| 1409 | <itemizedlist> | ||
| 1410 | <listitem> | ||
| 1411 | <para> | ||
| 1412 | specification of the cipher operation type with one of these flags: | ||
| 1413 | </para> | ||
| 1414 | <itemizedlist> | ||
| 1415 | <listitem> | ||
| 1416 | <para>ALG_OP_ENCRYPT - encryption of data</para> | ||
| 1417 | </listitem> | ||
| 1418 | <listitem> | ||
| 1419 | <para>ALG_OP_DECRYPT - decryption of data</para> | ||
| 1420 | </listitem> | ||
| 1421 | </itemizedlist> | ||
| 1422 | </listitem> | ||
| 1423 | |||
| 1424 | <listitem> | ||
| 1425 | <para> | ||
| 1426 | specification of the IV information marked with the flag ALG_SET_IV | ||
| 1427 | </para> | ||
| 1428 | </listitem> | ||
| 1429 | |||
| 1430 | <listitem> | ||
| 1431 | <para> | ||
| 1432 | specification of the associated authentication data (AAD) with the | ||
| 1433 | flag ALG_SET_AEAD_ASSOCLEN. The AAD is sent to the kernel together | ||
| 1434 | with the plaintext / ciphertext. See below for the memory structure. | ||
| 1435 | </para> | ||
| 1436 | </listitem> | ||
| 1437 | </itemizedlist> | ||
| 1438 | |||
| 1439 | <para> | ||
| 1440 | The send system call family allows the following flag to be specified: | ||
| 1441 | </para> | ||
| 1442 | |||
| 1443 | <itemizedlist> | ||
| 1444 | <listitem> | ||
| 1445 | <para> | ||
| 1446 | MSG_MORE: If this flag is set, the send system call acts like a | ||
| 1447 | cipher update function where more input data is expected | ||
| 1448 | with a subsequent invocation of the send system call. | ||
| 1449 | </para> | ||
| 1450 | </listitem> | ||
| 1451 | </itemizedlist> | ||
| 1452 | |||
| 1453 | <para> | ||
| 1454 | Note: The kernel reports -EINVAL for any unexpected data. The caller | ||
| 1455 | must make sure that all data matches the constraints given in | ||
| 1456 | /proc/crypto for the selected cipher. | ||
| 1457 | </para> | ||
| 1458 | |||
| 1459 | <para> | ||
| 1460 | With the recv() system call, the application can read the result of | ||
| 1461 | the cipher operation from the kernel crypto API. The output buffer | ||
| 1462 | must be at least as large as defined with the memory structure below. | ||
| 1463 | If the output data size is smaller, the cipher operation is not performed. | ||
| 1464 | </para> | ||
| 1465 | |||
| 1466 | <para> | ||
| 1467 | The authenticated decryption operation may indicate an integrity error. | ||
| 1468 | Such breach in integrity is marked with the -EBADMSG error code. | ||
| 1469 | </para> | ||
| 1470 | |||
| 1471 | <sect2><title>AEAD Memory Structure</title> | ||
| 1472 | <para> | ||
| 1473 | The AEAD cipher operates with the following information that | ||
| 1474 | is communicated between user and kernel space as one data stream: | ||
| 1475 | </para> | ||
| 1476 | |||
| 1477 | <itemizedlist> | ||
| 1478 | <listitem> | ||
| 1479 | <para>plaintext or ciphertext</para> | ||
| 1480 | </listitem> | ||
| 1481 | |||
| 1482 | <listitem> | ||
| 1483 | <para>associated authentication data (AAD)</para> | ||
| 1484 | </listitem> | ||
| 1485 | |||
| 1486 | <listitem> | ||
| 1487 | <para>authentication tag</para> | ||
| 1488 | </listitem> | ||
| 1489 | </itemizedlist> | ||
| 1490 | |||
| 1491 | <para> | ||
| 1492 | The sizes of the AAD and the authentication tag are provided with | ||
| 1493 | the sendmsg and setsockopt calls (see there). As the kernel knows | ||
| 1494 | the size of the entire data stream, the kernel is now able to | ||
| 1495 | calculate the right offsets of the data components in the data | ||
| 1496 | stream. | ||
| 1497 | </para> | ||
| 1498 | |||
| 1499 | <para> | ||
| 1500 | The user space caller must arrange the aforementioned information | ||
| 1501 | in the following order: | ||
| 1502 | </para> | ||
| 1503 | |||
| 1504 | <itemizedlist> | ||
| 1505 | <listitem> | ||
| 1506 | <para> | ||
| 1507 | AEAD encryption input: AAD || plaintext | ||
| 1508 | </para> | ||
| 1509 | </listitem> | ||
| 1510 | |||
| 1511 | <listitem> | ||
| 1512 | <para> | ||
| 1513 | AEAD decryption input: AAD || ciphertext || authentication tag | ||
| 1514 | </para> | ||
| 1515 | </listitem> | ||
| 1516 | </itemizedlist> | ||
| 1517 | |||
| 1518 | <para> | ||
| 1519 | The output buffer the user space caller provides must be at least as | ||
| 1520 | large to hold the following data: | ||
| 1521 | </para> | ||
| 1522 | |||
| 1523 | <itemizedlist> | ||
| 1524 | <listitem> | ||
| 1525 | <para> | ||
| 1526 | AEAD encryption output: ciphertext || authentication tag | ||
| 1527 | </para> | ||
| 1528 | </listitem> | ||
| 1529 | |||
| 1530 | <listitem> | ||
| 1531 | <para> | ||
| 1532 | AEAD decryption output: plaintext | ||
| 1533 | </para> | ||
| 1534 | </listitem> | ||
| 1535 | </itemizedlist> | ||
| 1536 | </sect2> | ||
| 1537 | </sect1> | ||
| 1538 | |||
| 1539 | <sect1><title>Random Number Generator API</title> | ||
| 1540 | <para> | ||
| 1541 | Again, the operation is very similar to the other APIs. | ||
| 1542 | During initialization, the struct sockaddr data structure must be | ||
| 1543 | filled as follows: | ||
| 1544 | </para> | ||
| 1545 | |||
| 1546 | <programlisting> | ||
| 1547 | struct sockaddr_alg sa = { | ||
| 1548 | .salg_family = AF_ALG, | ||
| 1549 | .salg_type = "rng", /* this selects the symmetric cipher */ | ||
| 1550 | .salg_name = "drbg_nopr_sha256" /* this is the cipher name */ | ||
| 1551 | }; | ||
| 1552 | </programlisting> | ||
| 1553 | |||
| 1554 | <para> | ||
| 1555 | Depending on the RNG type, the RNG must be seeded. The seed is provided | ||
| 1556 | using the setsockopt interface to set the key. For example, the | ||
| 1557 | ansi_cprng requires a seed. The DRBGs do not require a seed, but | ||
| 1558 | may be seeded. | ||
| 1559 | </para> | ||
| 1560 | |||
| 1561 | <para> | ||
| 1562 | Using the read()/recvmsg() system calls, random numbers can be obtained. | ||
| 1563 | The kernel generates at most 128 bytes in one call. If user space | ||
| 1564 | requires more data, multiple calls to read()/recvmsg() must be made. | ||
| 1565 | </para> | ||
| 1566 | |||
| 1567 | <para> | ||
| 1568 | WARNING: The user space caller may invoke the initially mentioned | ||
| 1569 | accept system call multiple times. In this case, the returned file | ||
| 1570 | descriptors have the same state. | ||
| 1571 | </para> | ||
| 1572 | |||
| 1573 | </sect1> | ||
| 1574 | |||
| 1575 | <sect1><title>Zero-Copy Interface</title> | ||
| 1576 | <para> | ||
| 1577 | In addition to the send/write/read/recv system call family, the AF_ALG | ||
| 1578 | interface can be accessed with the zero-copy interface of splice/vmsplice. | ||
| 1579 | As the name indicates, the kernel tries to avoid a copy operation into | ||
| 1580 | kernel space. | ||
| 1581 | </para> | ||
| 1582 | |||
| 1583 | <para> | ||
| 1584 | The zero-copy operation requires data to be aligned at the page boundary. | ||
| 1585 | Non-aligned data can be used as well, but may require more operations of | ||
| 1586 | the kernel which would defeat the speed gains obtained from the zero-copy | ||
| 1587 | interface. | ||
| 1588 | </para> | ||
| 1589 | |||
| 1590 | <para> | ||
| 1591 | The system-interent limit for the size of one zero-copy operation is | ||
| 1592 | 16 pages. If more data is to be sent to AF_ALG, user space must slice | ||
| 1593 | the input into segments with a maximum size of 16 pages. | ||
| 1594 | </para> | ||
| 1595 | |||
| 1596 | <para> | ||
| 1597 | Zero-copy can be used with the following code example (a complete working | ||
| 1598 | example is provided with libkcapi): | ||
| 1599 | </para> | ||
| 1600 | |||
| 1601 | <programlisting> | ||
| 1602 | int pipes[2]; | ||
| 1603 | |||
| 1604 | pipe(pipes); | ||
| 1605 | /* input data in iov */ | ||
| 1606 | vmsplice(pipes[1], iov, iovlen, SPLICE_F_GIFT); | ||
| 1607 | /* opfd is the file descriptor returned from accept() system call */ | ||
| 1608 | splice(pipes[0], NULL, opfd, NULL, ret, 0); | ||
| 1609 | read(opfd, out, outlen); | ||
| 1610 | </programlisting> | ||
| 1611 | |||
| 1612 | </sect1> | ||
| 1613 | |||
| 1614 | <sect1><title>Setsockopt Interface</title> | ||
| 1615 | <para> | ||
| 1616 | In addition to the read/recv and send/write system call handling | ||
| 1617 | to send and retrieve data subject to the cipher operation, a consumer | ||
| 1618 | also needs to set the additional information for the cipher operation. | ||
| 1619 | This additional information is set using the setsockopt system call | ||
| 1620 | that must be invoked with the file descriptor of the open cipher | ||
| 1621 | (i.e. the file descriptor returned by the accept system call). | ||
| 1622 | </para> | ||
| 1623 | |||
| 1624 | <para> | ||
| 1625 | Each setsockopt invocation must use the level SOL_ALG. | ||
| 1626 | </para> | ||
| 1627 | |||
| 1628 | <para> | ||
| 1629 | The setsockopt interface allows setting the following data using | ||
| 1630 | the mentioned optname: | ||
| 1631 | </para> | ||
| 1632 | |||
| 1633 | <itemizedlist> | ||
| 1634 | <listitem> | ||
| 1635 | <para> | ||
| 1636 | ALG_SET_KEY -- Setting the key. Key setting is applicable to: | ||
| 1637 | </para> | ||
| 1638 | <itemizedlist> | ||
| 1639 | <listitem> | ||
| 1640 | <para>the skcipher cipher type (symmetric ciphers)</para> | ||
| 1641 | </listitem> | ||
| 1642 | <listitem> | ||
| 1643 | <para>the hash cipher type (keyed message digests)</para> | ||
| 1644 | </listitem> | ||
| 1645 | <listitem> | ||
| 1646 | <para>the AEAD cipher type</para> | ||
| 1647 | </listitem> | ||
| 1648 | <listitem> | ||
| 1649 | <para>the RNG cipher type to provide the seed</para> | ||
| 1650 | </listitem> | ||
| 1651 | </itemizedlist> | ||
| 1652 | </listitem> | ||
| 1653 | |||
| 1654 | <listitem> | ||
| 1655 | <para> | ||
| 1656 | ALG_SET_AEAD_AUTHSIZE -- Setting the authentication tag size | ||
| 1657 | for AEAD ciphers. For a encryption operation, the authentication | ||
| 1658 | tag of the given size will be generated. For a decryption operation, | ||
| 1659 | the provided ciphertext is assumed to contain an authentication tag | ||
| 1660 | of the given size (see section about AEAD memory layout below). | ||
| 1661 | </para> | ||
| 1662 | </listitem> | ||
| 1663 | </itemizedlist> | ||
| 1664 | |||
| 1665 | </sect1> | ||
| 1666 | |||
| 1667 | <sect1><title>User space API example</title> | ||
| 1668 | <para> | ||
| 1669 | Please see [1] for libkcapi which provides an easy-to-use wrapper | ||
| 1670 | around the aforementioned Netlink kernel interface. [1] also contains | ||
| 1671 | a test application that invokes all libkcapi API calls. | ||
| 1672 | </para> | ||
| 1673 | |||
| 1674 | <para> | ||
| 1675 | [1] <ulink url="http://www.chronox.de/libkcapi.html">http://www.chronox.de/libkcapi.html</ulink> | ||
| 1676 | </para> | ||
| 1677 | |||
| 1678 | </sect1> | ||
| 1679 | |||
| 1680 | </chapter> | ||
| 1681 | |||
| 1682 | <chapter id="API"><title>Programming Interface</title> | ||
| 1683 | <para> | ||
| 1684 | Please note that the kernel crypto API contains the AEAD givcrypt | ||
| 1685 | API (crypto_aead_giv* and aead_givcrypt_* function calls in | ||
| 1686 | include/crypto/aead.h). This API is obsolete and will be removed | ||
| 1687 | in the future. To obtain the functionality of an AEAD cipher with | ||
| 1688 | internal IV generation, use the IV generator as a regular cipher. | ||
| 1689 | For example, rfc4106(gcm(aes)) is the AEAD cipher with external | ||
| 1690 | IV generation and seqniv(rfc4106(gcm(aes))) implies that the kernel | ||
| 1691 | crypto API generates the IV. Different IV generators are available. | ||
| 1692 | </para> | ||
| 1693 | <sect1><title>Block Cipher Context Data Structures</title> | ||
| 1694 | !Pinclude/linux/crypto.h Block Cipher Context Data Structures | ||
| 1695 | !Finclude/crypto/aead.h aead_request | ||
| 1696 | </sect1> | ||
| 1697 | <sect1><title>Block Cipher Algorithm Definitions</title> | ||
| 1698 | !Pinclude/linux/crypto.h Block Cipher Algorithm Definitions | ||
| 1699 | !Finclude/linux/crypto.h crypto_alg | ||
| 1700 | !Finclude/linux/crypto.h ablkcipher_alg | ||
| 1701 | !Finclude/crypto/aead.h aead_alg | ||
| 1702 | !Finclude/linux/crypto.h blkcipher_alg | ||
| 1703 | !Finclude/linux/crypto.h cipher_alg | ||
| 1704 | !Finclude/crypto/rng.h rng_alg | ||
| 1705 | </sect1> | ||
| 1706 | <sect1><title>Symmetric Key Cipher API</title> | ||
| 1707 | !Pinclude/crypto/skcipher.h Symmetric Key Cipher API | ||
| 1708 | !Finclude/crypto/skcipher.h crypto_alloc_skcipher | ||
| 1709 | !Finclude/crypto/skcipher.h crypto_free_skcipher | ||
| 1710 | !Finclude/crypto/skcipher.h crypto_has_skcipher | ||
| 1711 | !Finclude/crypto/skcipher.h crypto_skcipher_ivsize | ||
| 1712 | !Finclude/crypto/skcipher.h crypto_skcipher_blocksize | ||
| 1713 | !Finclude/crypto/skcipher.h crypto_skcipher_setkey | ||
| 1714 | !Finclude/crypto/skcipher.h crypto_skcipher_reqtfm | ||
| 1715 | !Finclude/crypto/skcipher.h crypto_skcipher_encrypt | ||
| 1716 | !Finclude/crypto/skcipher.h crypto_skcipher_decrypt | ||
| 1717 | </sect1> | ||
| 1718 | <sect1><title>Symmetric Key Cipher Request Handle</title> | ||
| 1719 | !Pinclude/crypto/skcipher.h Symmetric Key Cipher Request Handle | ||
| 1720 | !Finclude/crypto/skcipher.h crypto_skcipher_reqsize | ||
| 1721 | !Finclude/crypto/skcipher.h skcipher_request_set_tfm | ||
| 1722 | !Finclude/crypto/skcipher.h skcipher_request_alloc | ||
| 1723 | !Finclude/crypto/skcipher.h skcipher_request_free | ||
| 1724 | !Finclude/crypto/skcipher.h skcipher_request_set_callback | ||
| 1725 | !Finclude/crypto/skcipher.h skcipher_request_set_crypt | ||
| 1726 | </sect1> | ||
| 1727 | <sect1><title>Asynchronous Block Cipher API - Deprecated</title> | ||
| 1728 | !Pinclude/linux/crypto.h Asynchronous Block Cipher API | ||
| 1729 | !Finclude/linux/crypto.h crypto_alloc_ablkcipher | ||
| 1730 | !Finclude/linux/crypto.h crypto_free_ablkcipher | ||
| 1731 | !Finclude/linux/crypto.h crypto_has_ablkcipher | ||
| 1732 | !Finclude/linux/crypto.h crypto_ablkcipher_ivsize | ||
| 1733 | !Finclude/linux/crypto.h crypto_ablkcipher_blocksize | ||
| 1734 | !Finclude/linux/crypto.h crypto_ablkcipher_setkey | ||
| 1735 | !Finclude/linux/crypto.h crypto_ablkcipher_reqtfm | ||
| 1736 | !Finclude/linux/crypto.h crypto_ablkcipher_encrypt | ||
| 1737 | !Finclude/linux/crypto.h crypto_ablkcipher_decrypt | ||
| 1738 | </sect1> | ||
| 1739 | <sect1><title>Asynchronous Cipher Request Handle - Deprecated</title> | ||
| 1740 | !Pinclude/linux/crypto.h Asynchronous Cipher Request Handle | ||
| 1741 | !Finclude/linux/crypto.h crypto_ablkcipher_reqsize | ||
| 1742 | !Finclude/linux/crypto.h ablkcipher_request_set_tfm | ||
| 1743 | !Finclude/linux/crypto.h ablkcipher_request_alloc | ||
| 1744 | !Finclude/linux/crypto.h ablkcipher_request_free | ||
| 1745 | !Finclude/linux/crypto.h ablkcipher_request_set_callback | ||
| 1746 | !Finclude/linux/crypto.h ablkcipher_request_set_crypt | ||
| 1747 | </sect1> | ||
| 1748 | <sect1><title>Authenticated Encryption With Associated Data (AEAD) Cipher API</title> | ||
| 1749 | !Pinclude/crypto/aead.h Authenticated Encryption With Associated Data (AEAD) Cipher API | ||
| 1750 | !Finclude/crypto/aead.h crypto_alloc_aead | ||
| 1751 | !Finclude/crypto/aead.h crypto_free_aead | ||
| 1752 | !Finclude/crypto/aead.h crypto_aead_ivsize | ||
| 1753 | !Finclude/crypto/aead.h crypto_aead_authsize | ||
| 1754 | !Finclude/crypto/aead.h crypto_aead_blocksize | ||
| 1755 | !Finclude/crypto/aead.h crypto_aead_setkey | ||
| 1756 | !Finclude/crypto/aead.h crypto_aead_setauthsize | ||
| 1757 | !Finclude/crypto/aead.h crypto_aead_encrypt | ||
| 1758 | !Finclude/crypto/aead.h crypto_aead_decrypt | ||
| 1759 | </sect1> | ||
| 1760 | <sect1><title>Asynchronous AEAD Request Handle</title> | ||
| 1761 | !Pinclude/crypto/aead.h Asynchronous AEAD Request Handle | ||
| 1762 | !Finclude/crypto/aead.h crypto_aead_reqsize | ||
| 1763 | !Finclude/crypto/aead.h aead_request_set_tfm | ||
| 1764 | !Finclude/crypto/aead.h aead_request_alloc | ||
| 1765 | !Finclude/crypto/aead.h aead_request_free | ||
| 1766 | !Finclude/crypto/aead.h aead_request_set_callback | ||
| 1767 | !Finclude/crypto/aead.h aead_request_set_crypt | ||
| 1768 | !Finclude/crypto/aead.h aead_request_set_ad | ||
| 1769 | </sect1> | ||
| 1770 | <sect1><title>Synchronous Block Cipher API - Deprecated</title> | ||
| 1771 | !Pinclude/linux/crypto.h Synchronous Block Cipher API | ||
| 1772 | !Finclude/linux/crypto.h crypto_alloc_blkcipher | ||
| 1773 | !Finclude/linux/crypto.h crypto_free_blkcipher | ||
| 1774 | !Finclude/linux/crypto.h crypto_has_blkcipher | ||
| 1775 | !Finclude/linux/crypto.h crypto_blkcipher_name | ||
| 1776 | !Finclude/linux/crypto.h crypto_blkcipher_ivsize | ||
| 1777 | !Finclude/linux/crypto.h crypto_blkcipher_blocksize | ||
| 1778 | !Finclude/linux/crypto.h crypto_blkcipher_setkey | ||
| 1779 | !Finclude/linux/crypto.h crypto_blkcipher_encrypt | ||
| 1780 | !Finclude/linux/crypto.h crypto_blkcipher_encrypt_iv | ||
| 1781 | !Finclude/linux/crypto.h crypto_blkcipher_decrypt | ||
| 1782 | !Finclude/linux/crypto.h crypto_blkcipher_decrypt_iv | ||
| 1783 | !Finclude/linux/crypto.h crypto_blkcipher_set_iv | ||
| 1784 | !Finclude/linux/crypto.h crypto_blkcipher_get_iv | ||
| 1785 | </sect1> | ||
| 1786 | <sect1><title>Single Block Cipher API</title> | ||
| 1787 | !Pinclude/linux/crypto.h Single Block Cipher API | ||
| 1788 | !Finclude/linux/crypto.h crypto_alloc_cipher | ||
| 1789 | !Finclude/linux/crypto.h crypto_free_cipher | ||
| 1790 | !Finclude/linux/crypto.h crypto_has_cipher | ||
| 1791 | !Finclude/linux/crypto.h crypto_cipher_blocksize | ||
| 1792 | !Finclude/linux/crypto.h crypto_cipher_setkey | ||
| 1793 | !Finclude/linux/crypto.h crypto_cipher_encrypt_one | ||
| 1794 | !Finclude/linux/crypto.h crypto_cipher_decrypt_one | ||
| 1795 | </sect1> | ||
| 1796 | <sect1><title>Message Digest Algorithm Definitions</title> | ||
| 1797 | !Pinclude/crypto/hash.h Message Digest Algorithm Definitions | ||
| 1798 | !Finclude/crypto/hash.h hash_alg_common | ||
| 1799 | !Finclude/crypto/hash.h ahash_alg | ||
| 1800 | !Finclude/crypto/hash.h shash_alg | ||
| 1801 | </sect1> | ||
| 1802 | <sect1><title>Asynchronous Message Digest API</title> | ||
| 1803 | !Pinclude/crypto/hash.h Asynchronous Message Digest API | ||
| 1804 | !Finclude/crypto/hash.h crypto_alloc_ahash | ||
| 1805 | !Finclude/crypto/hash.h crypto_free_ahash | ||
| 1806 | !Finclude/crypto/hash.h crypto_ahash_init | ||
| 1807 | !Finclude/crypto/hash.h crypto_ahash_digestsize | ||
| 1808 | !Finclude/crypto/hash.h crypto_ahash_reqtfm | ||
| 1809 | !Finclude/crypto/hash.h crypto_ahash_reqsize | ||
| 1810 | !Finclude/crypto/hash.h crypto_ahash_setkey | ||
| 1811 | !Finclude/crypto/hash.h crypto_ahash_finup | ||
| 1812 | !Finclude/crypto/hash.h crypto_ahash_final | ||
| 1813 | !Finclude/crypto/hash.h crypto_ahash_digest | ||
| 1814 | !Finclude/crypto/hash.h crypto_ahash_export | ||
| 1815 | !Finclude/crypto/hash.h crypto_ahash_import | ||
| 1816 | </sect1> | ||
| 1817 | <sect1><title>Asynchronous Hash Request Handle</title> | ||
| 1818 | !Pinclude/crypto/hash.h Asynchronous Hash Request Handle | ||
| 1819 | !Finclude/crypto/hash.h ahash_request_set_tfm | ||
| 1820 | !Finclude/crypto/hash.h ahash_request_alloc | ||
| 1821 | !Finclude/crypto/hash.h ahash_request_free | ||
| 1822 | !Finclude/crypto/hash.h ahash_request_set_callback | ||
| 1823 | !Finclude/crypto/hash.h ahash_request_set_crypt | ||
| 1824 | </sect1> | ||
| 1825 | <sect1><title>Synchronous Message Digest API</title> | ||
| 1826 | !Pinclude/crypto/hash.h Synchronous Message Digest API | ||
| 1827 | !Finclude/crypto/hash.h crypto_alloc_shash | ||
| 1828 | !Finclude/crypto/hash.h crypto_free_shash | ||
| 1829 | !Finclude/crypto/hash.h crypto_shash_blocksize | ||
| 1830 | !Finclude/crypto/hash.h crypto_shash_digestsize | ||
| 1831 | !Finclude/crypto/hash.h crypto_shash_descsize | ||
| 1832 | !Finclude/crypto/hash.h crypto_shash_setkey | ||
| 1833 | !Finclude/crypto/hash.h crypto_shash_digest | ||
| 1834 | !Finclude/crypto/hash.h crypto_shash_export | ||
| 1835 | !Finclude/crypto/hash.h crypto_shash_import | ||
| 1836 | !Finclude/crypto/hash.h crypto_shash_init | ||
| 1837 | !Finclude/crypto/hash.h crypto_shash_update | ||
| 1838 | !Finclude/crypto/hash.h crypto_shash_final | ||
| 1839 | !Finclude/crypto/hash.h crypto_shash_finup | ||
| 1840 | </sect1> | ||
| 1841 | <sect1><title>Crypto API Random Number API</title> | ||
| 1842 | !Pinclude/crypto/rng.h Random number generator API | ||
| 1843 | !Finclude/crypto/rng.h crypto_alloc_rng | ||
| 1844 | !Finclude/crypto/rng.h crypto_rng_alg | ||
| 1845 | !Finclude/crypto/rng.h crypto_free_rng | ||
| 1846 | !Finclude/crypto/rng.h crypto_rng_generate | ||
| 1847 | !Finclude/crypto/rng.h crypto_rng_get_bytes | ||
| 1848 | !Finclude/crypto/rng.h crypto_rng_reset | ||
| 1849 | !Finclude/crypto/rng.h crypto_rng_seedsize | ||
| 1850 | !Cinclude/crypto/rng.h | ||
| 1851 | </sect1> | ||
| 1852 | <sect1><title>Asymmetric Cipher API</title> | ||
| 1853 | !Pinclude/crypto/akcipher.h Generic Public Key API | ||
| 1854 | !Finclude/crypto/akcipher.h akcipher_alg | ||
| 1855 | !Finclude/crypto/akcipher.h akcipher_request | ||
| 1856 | !Finclude/crypto/akcipher.h crypto_alloc_akcipher | ||
| 1857 | !Finclude/crypto/akcipher.h crypto_free_akcipher | ||
| 1858 | !Finclude/crypto/akcipher.h crypto_akcipher_set_pub_key | ||
| 1859 | !Finclude/crypto/akcipher.h crypto_akcipher_set_priv_key | ||
| 1860 | </sect1> | ||
| 1861 | <sect1><title>Asymmetric Cipher Request Handle</title> | ||
| 1862 | !Finclude/crypto/akcipher.h akcipher_request_alloc | ||
| 1863 | !Finclude/crypto/akcipher.h akcipher_request_free | ||
| 1864 | !Finclude/crypto/akcipher.h akcipher_request_set_callback | ||
| 1865 | !Finclude/crypto/akcipher.h akcipher_request_set_crypt | ||
| 1866 | !Finclude/crypto/akcipher.h crypto_akcipher_maxsize | ||
| 1867 | !Finclude/crypto/akcipher.h crypto_akcipher_encrypt | ||
| 1868 | !Finclude/crypto/akcipher.h crypto_akcipher_decrypt | ||
| 1869 | !Finclude/crypto/akcipher.h crypto_akcipher_sign | ||
| 1870 | !Finclude/crypto/akcipher.h crypto_akcipher_verify | ||
| 1871 | </sect1> | ||
| 1872 | </chapter> | ||
| 1873 | |||
| 1874 | <chapter id="Code"><title>Code Examples</title> | ||
| 1875 | <sect1><title>Code Example For Symmetric Key Cipher Operation</title> | ||
| 1876 | <programlisting> | ||
| 1877 | |||
| 1878 | struct tcrypt_result { | ||
| 1879 | struct completion completion; | ||
| 1880 | int err; | ||
| 1881 | }; | ||
| 1882 | |||
| 1883 | /* tie all data structures together */ | ||
| 1884 | struct skcipher_def { | ||
| 1885 | struct scatterlist sg; | ||
| 1886 | struct crypto_skcipher *tfm; | ||
| 1887 | struct skcipher_request *req; | ||
| 1888 | struct tcrypt_result result; | ||
| 1889 | }; | ||
| 1890 | |||
| 1891 | /* Callback function */ | ||
| 1892 | static void test_skcipher_cb(struct crypto_async_request *req, int error) | ||
| 1893 | { | ||
| 1894 | struct tcrypt_result *result = req->data; | ||
| 1895 | |||
| 1896 | if (error == -EINPROGRESS) | ||
| 1897 | return; | ||
| 1898 | result->err = error; | ||
| 1899 | complete(&result->completion); | ||
| 1900 | pr_info("Encryption finished successfully\n"); | ||
| 1901 | } | ||
| 1902 | |||
| 1903 | /* Perform cipher operation */ | ||
| 1904 | static unsigned int test_skcipher_encdec(struct skcipher_def *sk, | ||
| 1905 | int enc) | ||
| 1906 | { | ||
| 1907 | int rc = 0; | ||
| 1908 | |||
| 1909 | if (enc) | ||
| 1910 | rc = crypto_skcipher_encrypt(sk->req); | ||
| 1911 | else | ||
| 1912 | rc = crypto_skcipher_decrypt(sk->req); | ||
| 1913 | |||
| 1914 | switch (rc) { | ||
| 1915 | case 0: | ||
| 1916 | break; | ||
| 1917 | case -EINPROGRESS: | ||
| 1918 | case -EBUSY: | ||
| 1919 | rc = wait_for_completion_interruptible( | ||
| 1920 | &sk->result.completion); | ||
| 1921 | if (!rc && !sk->result.err) { | ||
| 1922 | reinit_completion(&sk->result.completion); | ||
| 1923 | break; | ||
| 1924 | } | ||
| 1925 | default: | ||
| 1926 | pr_info("skcipher encrypt returned with %d result %d\n", | ||
| 1927 | rc, sk->result.err); | ||
| 1928 | break; | ||
| 1929 | } | ||
| 1930 | init_completion(&sk->result.completion); | ||
| 1931 | |||
| 1932 | return rc; | ||
| 1933 | } | ||
| 1934 | |||
| 1935 | /* Initialize and trigger cipher operation */ | ||
| 1936 | static int test_skcipher(void) | ||
| 1937 | { | ||
| 1938 | struct skcipher_def sk; | ||
| 1939 | struct crypto_skcipher *skcipher = NULL; | ||
| 1940 | struct skcipher_request *req = NULL; | ||
| 1941 | char *scratchpad = NULL; | ||
| 1942 | char *ivdata = NULL; | ||
| 1943 | unsigned char key[32]; | ||
| 1944 | int ret = -EFAULT; | ||
| 1945 | |||
| 1946 | skcipher = crypto_alloc_skcipher("cbc-aes-aesni", 0, 0); | ||
| 1947 | if (IS_ERR(skcipher)) { | ||
| 1948 | pr_info("could not allocate skcipher handle\n"); | ||
| 1949 | return PTR_ERR(skcipher); | ||
| 1950 | } | ||
| 1951 | |||
| 1952 | req = skcipher_request_alloc(skcipher, GFP_KERNEL); | ||
| 1953 | if (!req) { | ||
| 1954 | pr_info("could not allocate skcipher request\n"); | ||
| 1955 | ret = -ENOMEM; | ||
| 1956 | goto out; | ||
| 1957 | } | ||
| 1958 | |||
| 1959 | skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, | ||
| 1960 | test_skcipher_cb, | ||
| 1961 | &sk.result); | ||
| 1962 | |||
| 1963 | /* AES 256 with random key */ | ||
| 1964 | get_random_bytes(&key, 32); | ||
| 1965 | if (crypto_skcipher_setkey(skcipher, key, 32)) { | ||
| 1966 | pr_info("key could not be set\n"); | ||
| 1967 | ret = -EAGAIN; | ||
| 1968 | goto out; | ||
| 1969 | } | ||
| 1970 | |||
| 1971 | /* IV will be random */ | ||
| 1972 | ivdata = kmalloc(16, GFP_KERNEL); | ||
| 1973 | if (!ivdata) { | ||
| 1974 | pr_info("could not allocate ivdata\n"); | ||
| 1975 | goto out; | ||
| 1976 | } | ||
| 1977 | get_random_bytes(ivdata, 16); | ||
| 1978 | |||
| 1979 | /* Input data will be random */ | ||
| 1980 | scratchpad = kmalloc(16, GFP_KERNEL); | ||
| 1981 | if (!scratchpad) { | ||
| 1982 | pr_info("could not allocate scratchpad\n"); | ||
| 1983 | goto out; | ||
| 1984 | } | ||
| 1985 | get_random_bytes(scratchpad, 16); | ||
| 1986 | |||
| 1987 | sk.tfm = skcipher; | ||
| 1988 | sk.req = req; | ||
| 1989 | |||
| 1990 | /* We encrypt one block */ | ||
| 1991 | sg_init_one(&sk.sg, scratchpad, 16); | ||
| 1992 | skcipher_request_set_crypt(req, &sk.sg, &sk.sg, 16, ivdata); | ||
| 1993 | init_completion(&sk.result.completion); | ||
| 1994 | |||
| 1995 | /* encrypt data */ | ||
| 1996 | ret = test_skcipher_encdec(&sk, 1); | ||
| 1997 | if (ret) | ||
| 1998 | goto out; | ||
| 1999 | |||
| 2000 | pr_info("Encryption triggered successfully\n"); | ||
| 2001 | |||
| 2002 | out: | ||
| 2003 | if (skcipher) | ||
| 2004 | crypto_free_skcipher(skcipher); | ||
| 2005 | if (req) | ||
| 2006 | skcipher_request_free(req); | ||
| 2007 | if (ivdata) | ||
| 2008 | kfree(ivdata); | ||
| 2009 | if (scratchpad) | ||
| 2010 | kfree(scratchpad); | ||
| 2011 | return ret; | ||
| 2012 | } | ||
| 2013 | </programlisting> | ||
| 2014 | </sect1> | ||
| 2015 | |||
| 2016 | <sect1><title>Code Example For Use of Operational State Memory With SHASH</title> | ||
| 2017 | <programlisting> | ||
| 2018 | |||
| 2019 | struct sdesc { | ||
| 2020 | struct shash_desc shash; | ||
| 2021 | char ctx[]; | ||
| 2022 | }; | ||
| 2023 | |||
| 2024 | static struct sdescinit_sdesc(struct crypto_shash *alg) | ||
| 2025 | { | ||
| 2026 | struct sdescsdesc; | ||
| 2027 | int size; | ||
| 2028 | |||
| 2029 | size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); | ||
| 2030 | sdesc = kmalloc(size, GFP_KERNEL); | ||
| 2031 | if (!sdesc) | ||
| 2032 | return ERR_PTR(-ENOMEM); | ||
| 2033 | sdesc->shash.tfm = alg; | ||
| 2034 | sdesc->shash.flags = 0x0; | ||
| 2035 | return sdesc; | ||
| 2036 | } | ||
| 2037 | |||
| 2038 | static int calc_hash(struct crypto_shashalg, | ||
| 2039 | const unsigned chardata, unsigned int datalen, | ||
| 2040 | unsigned chardigest) { | ||
| 2041 | struct sdescsdesc; | ||
| 2042 | int ret; | ||
| 2043 | |||
| 2044 | sdesc = init_sdesc(alg); | ||
| 2045 | if (IS_ERR(sdesc)) { | ||
| 2046 | pr_info("trusted_key: can't alloc %s\n", hash_alg); | ||
| 2047 | return PTR_ERR(sdesc); | ||
| 2048 | } | ||
| 2049 | |||
| 2050 | ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest); | ||
| 2051 | kfree(sdesc); | ||
| 2052 | return ret; | ||
| 2053 | } | ||
| 2054 | </programlisting> | ||
| 2055 | </sect1> | ||
| 2056 | |||
| 2057 | <sect1><title>Code Example For Random Number Generator Usage</title> | ||
| 2058 | <programlisting> | ||
| 2059 | |||
| 2060 | static int get_random_numbers(u8 *buf, unsigned int len) | ||
| 2061 | { | ||
| 2062 | struct crypto_rngrng = NULL; | ||
| 2063 | chardrbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */ | ||
| 2064 | int ret; | ||
| 2065 | |||
| 2066 | if (!buf || !len) { | ||
| 2067 | pr_debug("No output buffer provided\n"); | ||
| 2068 | return -EINVAL; | ||
| 2069 | } | ||
| 2070 | |||
| 2071 | rng = crypto_alloc_rng(drbg, 0, 0); | ||
| 2072 | if (IS_ERR(rng)) { | ||
| 2073 | pr_debug("could not allocate RNG handle for %s\n", drbg); | ||
| 2074 | return -PTR_ERR(rng); | ||
| 2075 | } | ||
| 2076 | |||
| 2077 | ret = crypto_rng_get_bytes(rng, buf, len); | ||
| 2078 | if (ret < 0) | ||
| 2079 | pr_debug("generation of random numbers failed\n"); | ||
| 2080 | else if (ret == 0) | ||
| 2081 | pr_debug("RNG returned no data"); | ||
| 2082 | else | ||
| 2083 | pr_debug("RNG returned %d bytes of data\n", ret); | ||
| 2084 | |||
| 2085 | out: | ||
| 2086 | crypto_free_rng(rng); | ||
| 2087 | return ret; | ||
| 2088 | } | ||
| 2089 | </programlisting> | ||
| 2090 | </sect1> | ||
| 2091 | </chapter> | ||
| 2092 | </book> | ||
