diff options
author | Rex Zhu <Rex.Zhu@amd.com> | 2015-11-19 05:23:32 -0500 |
---|---|---|
committer | Alex Deucher <alexander.deucher@amd.com> | 2016-05-04 20:25:50 -0400 |
commit | a23eefa2f4615af91ea496ca5b55c9e7c6fa934c (patch) | |
tree | e45c46c34093786fd893dd990803be91ef43d959 | |
parent | c81726252ec99f375a226005b4e0277df3601d66 (diff) |
drm/amd/powerplay: enable dpm for baffin.
Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/Makefile | 3 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_dyn_defaults.h | 62 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_hwmgr.c | 4560 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_hwmgr.h | 349 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_powertune.c | 396 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_powertune.h | 70 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c | 111 | ||||
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h | 40 |
8 files changed, 5581 insertions, 10 deletions
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile index b664e34dbcc0..2982d5c9a059 100644 --- a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile | |||
@@ -8,7 +8,8 @@ HARDWARE_MGR = hwmgr.o processpptables.o functiontables.o \ | |||
8 | tonga_processpptables.o ppatomctrl.o \ | 8 | tonga_processpptables.o ppatomctrl.o \ |
9 | tonga_hwmgr.o pppcielanes.o tonga_thermal.o\ | 9 | tonga_hwmgr.o pppcielanes.o tonga_thermal.o\ |
10 | fiji_powertune.o fiji_hwmgr.o tonga_clockpowergating.o \ | 10 | fiji_powertune.o fiji_hwmgr.o tonga_clockpowergating.o \ |
11 | fiji_clockpowergating.o fiji_thermal.o | 11 | fiji_clockpowergating.o fiji_thermal.o \ |
12 | ellesmere_hwmgr.o ellesmere_powertune.o | ||
12 | 13 | ||
13 | AMD_PP_HWMGR = $(addprefix $(AMD_PP_PATH)/hwmgr/,$(HARDWARE_MGR)) | 14 | AMD_PP_HWMGR = $(addprefix $(AMD_PP_PATH)/hwmgr/,$(HARDWARE_MGR)) |
14 | 15 | ||
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_dyn_defaults.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_dyn_defaults.h new file mode 100644 index 000000000000..ba1187c84008 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_dyn_defaults.h | |||
@@ -0,0 +1,62 @@ | |||
1 | /* | ||
2 | * Copyright 2015 Advanced Micro Devices, Inc. | ||
3 | * | ||
4 | * Permission is hereby granted, free of charge, to any person obtaining a | ||
5 | * copy of this software and associated documentation files (the "Software"), | ||
6 | * to deal in the Software without restriction, including without limitation | ||
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
8 | * and/or sell copies of the Software, and to permit persons to whom the | ||
9 | * Software is furnished to do so, subject to the following conditions: | ||
10 | * | ||
11 | * The above copyright notice and this permission notice shall be included in | ||
12 | * all copies or substantial portions of the Software. | ||
13 | * | ||
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | ||
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | ||
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | ||
20 | * OTHER DEALINGS IN THE SOFTWARE. | ||
21 | * | ||
22 | */ | ||
23 | |||
24 | #ifndef ELLESMERE_DYN_DEFAULTS_H | ||
25 | #define ELLESMERE_DYN_DEFAULTS_H | ||
26 | |||
27 | |||
28 | enum Ellesmeredpm_TrendDetection { | ||
29 | EllesmereAdpm_TrendDetection_AUTO, | ||
30 | EllesmereAdpm_TrendDetection_UP, | ||
31 | EllesmereAdpm_TrendDetection_DOWN | ||
32 | }; | ||
33 | typedef enum Ellesmeredpm_TrendDetection Ellesmeredpm_TrendDetection; | ||
34 | |||
35 | /* We need to fill in the default values */ | ||
36 | |||
37 | |||
38 | #define PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT0 0x3FFFC102 | ||
39 | #define PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT1 0x000400 | ||
40 | #define PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT2 0xC00080 | ||
41 | #define PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT3 0xC00200 | ||
42 | #define PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT4 0xC01680 | ||
43 | #define PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT5 0xC00033 | ||
44 | #define PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT6 0xC00033 | ||
45 | #define PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT7 0x3FFFC000 | ||
46 | |||
47 | |||
48 | #define PPELLESMERE_THERMALPROTECTCOUNTER_DFLT 0x200 | ||
49 | #define PPELLESMERE_STATICSCREENTHRESHOLDUNIT_DFLT 0 | ||
50 | #define PPELLESMERE_STATICSCREENTHRESHOLD_DFLT 0x00C8 | ||
51 | #define PPELLESMERE_GFXIDLECLOCKSTOPTHRESHOLD_DFLT 0x200 | ||
52 | #define PPELLESMERE_REFERENCEDIVIDER_DFLT 4 | ||
53 | |||
54 | #define PPELLESMERE_ULVVOLTAGECHANGEDELAY_DFLT 1687 | ||
55 | |||
56 | #define PPELLESMERE_CGULVPARAMETER_DFLT 0x00040035 | ||
57 | #define PPELLESMERE_CGULVCONTROL_DFLT 0x00007450 | ||
58 | #define PPELLESMERE_TARGETACTIVITY_DFLT 50 | ||
59 | #define PPELLESMERE_MCLK_TARGETACTIVITY_DFLT 10 | ||
60 | |||
61 | #endif | ||
62 | |||
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_hwmgr.c new file mode 100644 index 000000000000..10e8e87d8384 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_hwmgr.c | |||
@@ -0,0 +1,4560 @@ | |||
1 | /* | ||
2 | * Copyright 2015 Advanced Micro Devices, Inc. | ||
3 | * | ||
4 | * Permission is hereby granted, free of charge, to any person obtaining a | ||
5 | * copy of this software and associated documentation files (the "Software"), | ||
6 | * to deal in the Software without restriction, including without limitation | ||
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
8 | * and/or sell copies of the Software, and to permit persons to whom the | ||
9 | * Software is furnished to do so, subject to the following conditions: | ||
10 | * | ||
11 | * The above copyright notice and this permission notice shall be included in | ||
12 | * all copies or substantial portions of the Software. | ||
13 | * | ||
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | ||
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | ||
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | ||
20 | * OTHER DEALINGS IN THE SOFTWARE. | ||
21 | * | ||
22 | */ | ||
23 | #include <linux/module.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <linux/fb.h> | ||
26 | #include "linux/delay.h" | ||
27 | #include "pp_acpi.h" | ||
28 | #include "hwmgr.h" | ||
29 | #include "ellesmere_hwmgr.h" | ||
30 | #include "ellesmere_powertune.h" | ||
31 | #include "ellesmere_dyn_defaults.h" | ||
32 | #include "ellesmere_smumgr.h" | ||
33 | #include "pp_debug.h" | ||
34 | #include "ppatomctrl.h" | ||
35 | #include "atombios.h" | ||
36 | #include "tonga_pptable.h" | ||
37 | #include "pppcielanes.h" | ||
38 | #include "amd_pcie_helpers.h" | ||
39 | #include "hardwaremanager.h" | ||
40 | #include "tonga_processpptables.h" | ||
41 | #include "cgs_common.h" | ||
42 | #include "smu74.h" | ||
43 | #include "smu_ucode_xfer_vi.h" | ||
44 | #include "smu74_discrete.h" | ||
45 | #include "smu/smu_7_1_3_d.h" | ||
46 | #include "smu/smu_7_1_3_sh_mask.h" | ||
47 | #include "gmc/gmc_8_1_d.h" | ||
48 | #include "gmc/gmc_8_1_sh_mask.h" | ||
49 | #include "oss/oss_3_0_d.h" | ||
50 | #include "gca/gfx_8_0_d.h" | ||
51 | #include "bif/bif_5_0_d.h" | ||
52 | #include "bif/bif_5_0_sh_mask.h" | ||
53 | #include "gmc/gmc_8_1_d.h" | ||
54 | #include "gmc/gmc_8_1_sh_mask.h" | ||
55 | #include "bif/bif_5_0_d.h" | ||
56 | #include "bif/bif_5_0_sh_mask.h" | ||
57 | #include "dce/dce_10_0_d.h" | ||
58 | #include "dce/dce_10_0_sh_mask.h" | ||
59 | |||
60 | #define MC_CG_ARB_FREQ_F0 0x0a | ||
61 | #define MC_CG_ARB_FREQ_F1 0x0b | ||
62 | #define MC_CG_ARB_FREQ_F2 0x0c | ||
63 | #define MC_CG_ARB_FREQ_F3 0x0d | ||
64 | |||
65 | #define MC_CG_SEQ_DRAMCONF_S0 0x05 | ||
66 | #define MC_CG_SEQ_DRAMCONF_S1 0x06 | ||
67 | #define MC_CG_SEQ_YCLK_SUSPEND 0x04 | ||
68 | #define MC_CG_SEQ_YCLK_RESUME 0x0a | ||
69 | |||
70 | |||
71 | #define SMC_RAM_END 0x40000 | ||
72 | |||
73 | #define SMC_CG_IND_START 0xc0030000 | ||
74 | #define SMC_CG_IND_END 0xc0040000 | ||
75 | |||
76 | #define VOLTAGE_SCALE 4 | ||
77 | #define VOLTAGE_VID_OFFSET_SCALE1 625 | ||
78 | #define VOLTAGE_VID_OFFSET_SCALE2 100 | ||
79 | |||
80 | #define VDDC_VDDCI_DELTA 200 | ||
81 | |||
82 | #define MEM_FREQ_LOW_LATENCY 25000 | ||
83 | #define MEM_FREQ_HIGH_LATENCY 80000 | ||
84 | |||
85 | #define MEM_LATENCY_HIGH 45 | ||
86 | #define MEM_LATENCY_LOW 35 | ||
87 | #define MEM_LATENCY_ERR 0xFFFF | ||
88 | |||
89 | #define MC_SEQ_MISC0_GDDR5_SHIFT 28 | ||
90 | #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 | ||
91 | #define MC_SEQ_MISC0_GDDR5_VALUE 5 | ||
92 | |||
93 | |||
94 | #define PCIE_BUS_CLK 10000 | ||
95 | #define TCLK (PCIE_BUS_CLK / 10) | ||
96 | |||
97 | |||
98 | uint16_t ellesmere_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0}, | ||
99 | {600, 1050, 6, 1} }; | ||
100 | |||
101 | /* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */ | ||
102 | uint32_t ellesmere_clock_stretcher_ddt_table[2][4][4] = { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, | ||
103 | { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; | ||
104 | |||
105 | /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */ | ||
106 | uint8_t ellesmere_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5}, | ||
107 | {0, 2, 4, 5, 6, 5} }; | ||
108 | |||
109 | /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ | ||
110 | enum DPM_EVENT_SRC { | ||
111 | DPM_EVENT_SRC_ANALOG = 0, | ||
112 | DPM_EVENT_SRC_EXTERNAL = 1, | ||
113 | DPM_EVENT_SRC_DIGITAL = 2, | ||
114 | DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, | ||
115 | DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 | ||
116 | }; | ||
117 | |||
118 | const unsigned long PhwEllesmere_Magic = (unsigned long)(PHM_VIslands_Magic); | ||
119 | |||
120 | struct ellesmere_power_state *cast_phw_ellesmere_power_state( | ||
121 | struct pp_hw_power_state *hw_ps) | ||
122 | { | ||
123 | PP_ASSERT_WITH_CODE((PhwEllesmere_Magic == hw_ps->magic), | ||
124 | "Invalid Powerstate Type!", | ||
125 | return NULL); | ||
126 | |||
127 | return (struct ellesmere_power_state *)hw_ps; | ||
128 | } | ||
129 | |||
130 | const struct ellesmere_power_state *cast_const_phw_ellesmere_power_state( | ||
131 | const struct pp_hw_power_state *hw_ps) | ||
132 | { | ||
133 | PP_ASSERT_WITH_CODE((PhwEllesmere_Magic == hw_ps->magic), | ||
134 | "Invalid Powerstate Type!", | ||
135 | return NULL); | ||
136 | |||
137 | return (const struct ellesmere_power_state *)hw_ps; | ||
138 | } | ||
139 | |||
140 | static bool ellesmere_is_dpm_running(struct pp_hwmgr *hwmgr) | ||
141 | { | ||
142 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, | ||
143 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) | ||
144 | ? true : false; | ||
145 | } | ||
146 | |||
147 | /** | ||
148 | * Find the MC microcode version and store it in the HwMgr struct | ||
149 | * | ||
150 | * @param hwmgr the address of the powerplay hardware manager. | ||
151 | * @return always 0 | ||
152 | */ | ||
153 | int phm_get_mc_microcode_version (struct pp_hwmgr *hwmgr) | ||
154 | { | ||
155 | cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); | ||
156 | |||
157 | hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); | ||
158 | |||
159 | return 0; | ||
160 | } | ||
161 | |||
162 | uint16_t phm_get_current_pcie_speed(struct pp_hwmgr *hwmgr) | ||
163 | { | ||
164 | uint32_t speedCntl = 0; | ||
165 | |||
166 | /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ | ||
167 | speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, | ||
168 | ixPCIE_LC_SPEED_CNTL); | ||
169 | return((uint16_t)PHM_GET_FIELD(speedCntl, | ||
170 | PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); | ||
171 | } | ||
172 | |||
173 | int phm_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr) | ||
174 | { | ||
175 | uint32_t link_width; | ||
176 | |||
177 | /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ | ||
178 | link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, | ||
179 | PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); | ||
180 | |||
181 | PP_ASSERT_WITH_CODE((7 >= link_width), | ||
182 | "Invalid PCIe lane width!", return 0); | ||
183 | |||
184 | return decode_pcie_lane_width(link_width); | ||
185 | } | ||
186 | |||
187 | void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr) | ||
188 | { | ||
189 | struct phm_ppt_v1_information *table_info = | ||
190 | (struct phm_ppt_v1_information *)hwmgr->pptable; | ||
191 | struct phm_clock_voltage_dependency_table *table = | ||
192 | table_info->vddc_dep_on_dal_pwrl; | ||
193 | struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table; | ||
194 | enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level; | ||
195 | uint32_t req_vddc = 0, req_volt, i; | ||
196 | |||
197 | if (!table && !(dal_power_level >= PP_DAL_POWERLEVEL_ULTRALOW && | ||
198 | dal_power_level <= PP_DAL_POWERLEVEL_PERFORMANCE)) | ||
199 | return; | ||
200 | |||
201 | for (i = 0; i < table->count; i++) { | ||
202 | if (dal_power_level == table->entries[i].clk) { | ||
203 | req_vddc = table->entries[i].v; | ||
204 | break; | ||
205 | } | ||
206 | } | ||
207 | |||
208 | vddc_table = table_info->vdd_dep_on_sclk; | ||
209 | for (i = 0; i < vddc_table->count; i++) { | ||
210 | if (req_vddc <= vddc_table->entries[i].vddc) { | ||
211 | req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE) | ||
212 | << VDDC_SHIFT; | ||
213 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
214 | PPSMC_MSG_VddC_Request, req_volt); | ||
215 | return; | ||
216 | } | ||
217 | } | ||
218 | printk(KERN_ERR "DAL requested level can not" | ||
219 | " found a available voltage in VDDC DPM Table \n"); | ||
220 | } | ||
221 | |||
222 | |||
223 | /** | ||
224 | * Checks if we want to support voltage control | ||
225 | * | ||
226 | * @param hwmgr the address of the powerplay hardware manager. | ||
227 | */ | ||
228 | static bool ellesmere_voltage_control(const struct pp_hwmgr *hwmgr) | ||
229 | { | ||
230 | const struct ellesmere_hwmgr *data = | ||
231 | (const struct ellesmere_hwmgr *)(hwmgr->backend); | ||
232 | |||
233 | return (ELLESMERE_VOLTAGE_CONTROL_NONE != data->voltage_control); | ||
234 | } | ||
235 | |||
236 | /** | ||
237 | * Enable voltage control | ||
238 | * | ||
239 | * @param hwmgr the address of the powerplay hardware manager. | ||
240 | * @return always 0 | ||
241 | */ | ||
242 | static int ellesmere_enable_voltage_control(struct pp_hwmgr *hwmgr) | ||
243 | { | ||
244 | /* enable voltage control */ | ||
245 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, | ||
246 | GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); | ||
247 | |||
248 | return 0; | ||
249 | } | ||
250 | |||
251 | /** | ||
252 | * Create Voltage Tables. | ||
253 | * | ||
254 | * @param hwmgr the address of the powerplay hardware manager. | ||
255 | * @return always 0 | ||
256 | */ | ||
257 | static int ellesmere_construct_voltage_tables(struct pp_hwmgr *hwmgr) | ||
258 | { | ||
259 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
260 | struct phm_ppt_v1_information *table_info = | ||
261 | (struct phm_ppt_v1_information *)hwmgr->pptable; | ||
262 | int result; | ||
263 | |||
264 | if (ELLESMERE_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { | ||
265 | result = atomctrl_get_voltage_table_v3(hwmgr, | ||
266 | VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, | ||
267 | &(data->mvdd_voltage_table)); | ||
268 | PP_ASSERT_WITH_CODE((0 == result), | ||
269 | "Failed to retrieve MVDD table.", | ||
270 | return result); | ||
271 | } else if (ELLESMERE_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { | ||
272 | result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table), | ||
273 | table_info->vdd_dep_on_mclk); | ||
274 | PP_ASSERT_WITH_CODE((0 == result), | ||
275 | "Failed to retrieve SVI2 MVDD table from dependancy table.", | ||
276 | return result;); | ||
277 | } | ||
278 | |||
279 | if (ELLESMERE_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { | ||
280 | result = atomctrl_get_voltage_table_v3(hwmgr, | ||
281 | VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, | ||
282 | &(data->vddci_voltage_table)); | ||
283 | PP_ASSERT_WITH_CODE((0 == result), | ||
284 | "Failed to retrieve VDDCI table.", | ||
285 | return result); | ||
286 | } else if (ELLESMERE_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { | ||
287 | result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table), | ||
288 | table_info->vdd_dep_on_mclk); | ||
289 | PP_ASSERT_WITH_CODE((0 == result), | ||
290 | "Failed to retrieve SVI2 VDDCI table from dependancy table.", | ||
291 | return result); | ||
292 | } | ||
293 | |||
294 | if (ELLESMERE_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { | ||
295 | result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table), | ||
296 | table_info->vddc_lookup_table); | ||
297 | PP_ASSERT_WITH_CODE((0 == result), | ||
298 | "Failed to retrieve SVI2 VDDC table from lookup table.", | ||
299 | return result); | ||
300 | } | ||
301 | |||
302 | PP_ASSERT_WITH_CODE( | ||
303 | (data->vddc_voltage_table.count <= (SMU74_MAX_LEVELS_VDDC)), | ||
304 | "Too many voltage values for VDDC. Trimming to fit state table.", | ||
305 | phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDC, | ||
306 | &(data->vddc_voltage_table))); | ||
307 | |||
308 | PP_ASSERT_WITH_CODE( | ||
309 | (data->vddci_voltage_table.count <= (SMU74_MAX_LEVELS_VDDCI)), | ||
310 | "Too many voltage values for VDDCI. Trimming to fit state table.", | ||
311 | phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDCI, | ||
312 | &(data->vddci_voltage_table))); | ||
313 | |||
314 | PP_ASSERT_WITH_CODE( | ||
315 | (data->mvdd_voltage_table.count <= (SMU74_MAX_LEVELS_MVDD)), | ||
316 | "Too many voltage values for MVDD. Trimming to fit state table.", | ||
317 | phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_MVDD, | ||
318 | &(data->mvdd_voltage_table))); | ||
319 | |||
320 | return 0; | ||
321 | } | ||
322 | |||
323 | /** | ||
324 | * Programs static screed detection parameters | ||
325 | * | ||
326 | * @param hwmgr the address of the powerplay hardware manager. | ||
327 | * @return always 0 | ||
328 | */ | ||
329 | static int ellesmere_program_static_screen_threshold_parameters( | ||
330 | struct pp_hwmgr *hwmgr) | ||
331 | { | ||
332 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
333 | |||
334 | /* Set static screen threshold unit */ | ||
335 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, | ||
336 | CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, | ||
337 | data->static_screen_threshold_unit); | ||
338 | /* Set static screen threshold */ | ||
339 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, | ||
340 | CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, | ||
341 | data->static_screen_threshold); | ||
342 | |||
343 | return 0; | ||
344 | } | ||
345 | |||
346 | /** | ||
347 | * Setup display gap for glitch free memory clock switching. | ||
348 | * | ||
349 | * @param hwmgr the address of the powerplay hardware manager. | ||
350 | * @return always 0 | ||
351 | */ | ||
352 | static int ellesmere_enable_display_gap(struct pp_hwmgr *hwmgr) | ||
353 | { | ||
354 | uint32_t display_gap = | ||
355 | cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
356 | ixCG_DISPLAY_GAP_CNTL); | ||
357 | |||
358 | display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, | ||
359 | DISP_GAP, DISPLAY_GAP_IGNORE); | ||
360 | |||
361 | display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, | ||
362 | DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); | ||
363 | |||
364 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
365 | ixCG_DISPLAY_GAP_CNTL, display_gap); | ||
366 | |||
367 | return 0; | ||
368 | } | ||
369 | |||
370 | /** | ||
371 | * Programs activity state transition voting clients | ||
372 | * | ||
373 | * @param hwmgr the address of the powerplay hardware manager. | ||
374 | * @return always 0 | ||
375 | */ | ||
376 | static int ellesmere_program_voting_clients(struct pp_hwmgr *hwmgr) | ||
377 | { | ||
378 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
379 | |||
380 | /* Clear reset for voting clients before enabling DPM */ | ||
381 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, | ||
382 | SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); | ||
383 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, | ||
384 | SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); | ||
385 | |||
386 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
387 | ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0); | ||
388 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
389 | ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1); | ||
390 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
391 | ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2); | ||
392 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
393 | ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3); | ||
394 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
395 | ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4); | ||
396 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
397 | ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5); | ||
398 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
399 | ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6); | ||
400 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
401 | ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7); | ||
402 | |||
403 | return 0; | ||
404 | } | ||
405 | |||
406 | /** | ||
407 | * Get the location of various tables inside the FW image. | ||
408 | * | ||
409 | * @param hwmgr the address of the powerplay hardware manager. | ||
410 | * @return always 0 | ||
411 | */ | ||
412 | static int ellesmere_process_firmware_header(struct pp_hwmgr *hwmgr) | ||
413 | { | ||
414 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
415 | struct ellesmere_smumgr *smu_data = (struct ellesmere_smumgr *)(hwmgr->smumgr->backend); | ||
416 | uint32_t tmp; | ||
417 | int result; | ||
418 | bool error = false; | ||
419 | |||
420 | result = ellesmere_read_smc_sram_dword(hwmgr->smumgr, | ||
421 | SMU7_FIRMWARE_HEADER_LOCATION + | ||
422 | offsetof(SMU74_Firmware_Header, DpmTable), | ||
423 | &tmp, data->sram_end); | ||
424 | |||
425 | if (0 == result) | ||
426 | data->dpm_table_start = tmp; | ||
427 | |||
428 | error |= (0 != result); | ||
429 | |||
430 | result = ellesmere_read_smc_sram_dword(hwmgr->smumgr, | ||
431 | SMU7_FIRMWARE_HEADER_LOCATION + | ||
432 | offsetof(SMU74_Firmware_Header, SoftRegisters), | ||
433 | &tmp, data->sram_end); | ||
434 | |||
435 | if (!result) { | ||
436 | data->soft_regs_start = tmp; | ||
437 | smu_data->soft_regs_start = tmp; | ||
438 | } | ||
439 | |||
440 | error |= (0 != result); | ||
441 | |||
442 | result = ellesmere_read_smc_sram_dword(hwmgr->smumgr, | ||
443 | SMU7_FIRMWARE_HEADER_LOCATION + | ||
444 | offsetof(SMU74_Firmware_Header, mcRegisterTable), | ||
445 | &tmp, data->sram_end); | ||
446 | |||
447 | if (!result) | ||
448 | data->mc_reg_table_start = tmp; | ||
449 | |||
450 | result = ellesmere_read_smc_sram_dword(hwmgr->smumgr, | ||
451 | SMU7_FIRMWARE_HEADER_LOCATION + | ||
452 | offsetof(SMU74_Firmware_Header, FanTable), | ||
453 | &tmp, data->sram_end); | ||
454 | |||
455 | if (!result) | ||
456 | data->fan_table_start = tmp; | ||
457 | |||
458 | error |= (0 != result); | ||
459 | |||
460 | result = ellesmere_read_smc_sram_dword(hwmgr->smumgr, | ||
461 | SMU7_FIRMWARE_HEADER_LOCATION + | ||
462 | offsetof(SMU74_Firmware_Header, mcArbDramTimingTable), | ||
463 | &tmp, data->sram_end); | ||
464 | |||
465 | if (!result) | ||
466 | data->arb_table_start = tmp; | ||
467 | |||
468 | error |= (0 != result); | ||
469 | |||
470 | result = ellesmere_read_smc_sram_dword(hwmgr->smumgr, | ||
471 | SMU7_FIRMWARE_HEADER_LOCATION + | ||
472 | offsetof(SMU74_Firmware_Header, Version), | ||
473 | &tmp, data->sram_end); | ||
474 | |||
475 | if (!result) | ||
476 | hwmgr->microcode_version_info.SMC = tmp; | ||
477 | |||
478 | error |= (0 != result); | ||
479 | |||
480 | return error ? -1 : 0; | ||
481 | } | ||
482 | |||
483 | /* Copy one arb setting to another and then switch the active set. | ||
484 | * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants. | ||
485 | */ | ||
486 | static int ellesmere_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, | ||
487 | uint32_t arb_src, uint32_t arb_dest) | ||
488 | { | ||
489 | uint32_t mc_arb_dram_timing; | ||
490 | uint32_t mc_arb_dram_timing2; | ||
491 | uint32_t burst_time; | ||
492 | uint32_t mc_cg_config; | ||
493 | |||
494 | switch (arb_src) { | ||
495 | case MC_CG_ARB_FREQ_F0: | ||
496 | mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); | ||
497 | mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); | ||
498 | burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); | ||
499 | break; | ||
500 | case MC_CG_ARB_FREQ_F1: | ||
501 | mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); | ||
502 | mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); | ||
503 | burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); | ||
504 | break; | ||
505 | default: | ||
506 | return -EINVAL; | ||
507 | } | ||
508 | |||
509 | switch (arb_dest) { | ||
510 | case MC_CG_ARB_FREQ_F0: | ||
511 | cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); | ||
512 | cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); | ||
513 | PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); | ||
514 | break; | ||
515 | case MC_CG_ARB_FREQ_F1: | ||
516 | cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); | ||
517 | cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); | ||
518 | PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); | ||
519 | break; | ||
520 | default: | ||
521 | return -EINVAL; | ||
522 | } | ||
523 | |||
524 | mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); | ||
525 | mc_cg_config |= 0x0000000F; | ||
526 | cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); | ||
527 | PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest); | ||
528 | |||
529 | return 0; | ||
530 | } | ||
531 | |||
532 | /** | ||
533 | * Initial switch from ARB F0->F1 | ||
534 | * | ||
535 | * @param hwmgr the address of the powerplay hardware manager. | ||
536 | * @return always 0 | ||
537 | * This function is to be called from the SetPowerState table. | ||
538 | */ | ||
539 | static int ellesmere_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr) | ||
540 | { | ||
541 | return ellesmere_copy_and_switch_arb_sets(hwmgr, | ||
542 | MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); | ||
543 | } | ||
544 | |||
545 | static int ellesmere_setup_default_pcie_table(struct pp_hwmgr *hwmgr) | ||
546 | { | ||
547 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
548 | struct phm_ppt_v1_information *table_info = | ||
549 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
550 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; | ||
551 | uint32_t i, max_entry; | ||
552 | |||
553 | PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || | ||
554 | data->use_pcie_power_saving_levels), "No pcie performance levels!", | ||
555 | return -EINVAL); | ||
556 | |||
557 | if (data->use_pcie_performance_levels && | ||
558 | !data->use_pcie_power_saving_levels) { | ||
559 | data->pcie_gen_power_saving = data->pcie_gen_performance; | ||
560 | data->pcie_lane_power_saving = data->pcie_lane_performance; | ||
561 | } else if (!data->use_pcie_performance_levels && | ||
562 | data->use_pcie_power_saving_levels) { | ||
563 | data->pcie_gen_performance = data->pcie_gen_power_saving; | ||
564 | data->pcie_lane_performance = data->pcie_lane_power_saving; | ||
565 | } | ||
566 | |||
567 | phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table, | ||
568 | SMU74_MAX_LEVELS_LINK, | ||
569 | MAX_REGULAR_DPM_NUMBER); | ||
570 | |||
571 | if (pcie_table != NULL) { | ||
572 | /* max_entry is used to make sure we reserve one PCIE level | ||
573 | * for boot level (fix for A+A PSPP issue). | ||
574 | * If PCIE table from PPTable have ULV entry + 8 entries, | ||
575 | * then ignore the last entry.*/ | ||
576 | max_entry = (SMU74_MAX_LEVELS_LINK < pcie_table->count) ? | ||
577 | SMU74_MAX_LEVELS_LINK : pcie_table->count; | ||
578 | for (i = 1; i < max_entry; i++) { | ||
579 | phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1, | ||
580 | get_pcie_gen_support(data->pcie_gen_cap, | ||
581 | pcie_table->entries[i].gen_speed), | ||
582 | get_pcie_lane_support(data->pcie_lane_cap, | ||
583 | pcie_table->entries[i].lane_width)); | ||
584 | } | ||
585 | data->dpm_table.pcie_speed_table.count = max_entry - 1; | ||
586 | } else { | ||
587 | /* Hardcode Pcie Table */ | ||
588 | phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, | ||
589 | get_pcie_gen_support(data->pcie_gen_cap, | ||
590 | PP_Min_PCIEGen), | ||
591 | get_pcie_lane_support(data->pcie_lane_cap, | ||
592 | PP_Max_PCIELane)); | ||
593 | phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, | ||
594 | get_pcie_gen_support(data->pcie_gen_cap, | ||
595 | PP_Min_PCIEGen), | ||
596 | get_pcie_lane_support(data->pcie_lane_cap, | ||
597 | PP_Max_PCIELane)); | ||
598 | phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, | ||
599 | get_pcie_gen_support(data->pcie_gen_cap, | ||
600 | PP_Max_PCIEGen), | ||
601 | get_pcie_lane_support(data->pcie_lane_cap, | ||
602 | PP_Max_PCIELane)); | ||
603 | phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, | ||
604 | get_pcie_gen_support(data->pcie_gen_cap, | ||
605 | PP_Max_PCIEGen), | ||
606 | get_pcie_lane_support(data->pcie_lane_cap, | ||
607 | PP_Max_PCIELane)); | ||
608 | phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, | ||
609 | get_pcie_gen_support(data->pcie_gen_cap, | ||
610 | PP_Max_PCIEGen), | ||
611 | get_pcie_lane_support(data->pcie_lane_cap, | ||
612 | PP_Max_PCIELane)); | ||
613 | phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, | ||
614 | get_pcie_gen_support(data->pcie_gen_cap, | ||
615 | PP_Max_PCIEGen), | ||
616 | get_pcie_lane_support(data->pcie_lane_cap, | ||
617 | PP_Max_PCIELane)); | ||
618 | |||
619 | data->dpm_table.pcie_speed_table.count = 6; | ||
620 | } | ||
621 | /* Populate last level for boot PCIE level, but do not increment count. */ | ||
622 | phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, | ||
623 | data->dpm_table.pcie_speed_table.count, | ||
624 | get_pcie_gen_support(data->pcie_gen_cap, | ||
625 | PP_Min_PCIEGen), | ||
626 | get_pcie_lane_support(data->pcie_lane_cap, | ||
627 | PP_Max_PCIELane)); | ||
628 | |||
629 | return 0; | ||
630 | } | ||
631 | |||
632 | /* | ||
633 | * This function is to initalize all DPM state tables | ||
634 | * for SMU7 based on the dependency table. | ||
635 | * Dynamic state patching function will then trim these | ||
636 | * state tables to the allowed range based | ||
637 | * on the power policy or external client requests, | ||
638 | * such as UVD request, etc. | ||
639 | */ | ||
640 | int ellesmere_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) | ||
641 | { | ||
642 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
643 | struct phm_ppt_v1_information *table_info = | ||
644 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
645 | uint32_t i; | ||
646 | |||
647 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = | ||
648 | table_info->vdd_dep_on_sclk; | ||
649 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = | ||
650 | table_info->vdd_dep_on_mclk; | ||
651 | |||
652 | PP_ASSERT_WITH_CODE(dep_sclk_table != NULL, | ||
653 | "SCLK dependency table is missing. This table is mandatory", | ||
654 | return -EINVAL); | ||
655 | PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1, | ||
656 | "SCLK dependency table has to have is missing." | ||
657 | "This table is mandatory", | ||
658 | return -EINVAL); | ||
659 | |||
660 | PP_ASSERT_WITH_CODE(dep_mclk_table != NULL, | ||
661 | "MCLK dependency table is missing. This table is mandatory", | ||
662 | return -EINVAL); | ||
663 | PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, | ||
664 | "MCLK dependency table has to have is missing." | ||
665 | "This table is mandatory", | ||
666 | return -EINVAL); | ||
667 | |||
668 | /* clear the state table to reset everything to default */ | ||
669 | phm_reset_single_dpm_table( | ||
670 | &data->dpm_table.sclk_table, SMU74_MAX_LEVELS_GRAPHICS, MAX_REGULAR_DPM_NUMBER); | ||
671 | phm_reset_single_dpm_table( | ||
672 | &data->dpm_table.mclk_table, SMU74_MAX_LEVELS_MEMORY, MAX_REGULAR_DPM_NUMBER); | ||
673 | |||
674 | |||
675 | /* Initialize Sclk DPM table based on allow Sclk values */ | ||
676 | data->dpm_table.sclk_table.count = 0; | ||
677 | for (i = 0; i < dep_sclk_table->count; i++) { | ||
678 | if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value != | ||
679 | dep_sclk_table->entries[i].clk) { | ||
680 | |||
681 | data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = | ||
682 | dep_sclk_table->entries[i].clk; | ||
683 | |||
684 | data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = | ||
685 | (i == 0) ? true : false; | ||
686 | data->dpm_table.sclk_table.count++; | ||
687 | } | ||
688 | } | ||
689 | |||
690 | /* Initialize Mclk DPM table based on allow Mclk values */ | ||
691 | data->dpm_table.mclk_table.count = 0; | ||
692 | for (i = 0; i < dep_mclk_table->count; i++) { | ||
693 | if (i == 0 || data->dpm_table.mclk_table.dpm_levels | ||
694 | [data->dpm_table.mclk_table.count - 1].value != | ||
695 | dep_mclk_table->entries[i].clk) { | ||
696 | data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = | ||
697 | dep_mclk_table->entries[i].clk; | ||
698 | data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = | ||
699 | (i == 0) ? true : false; | ||
700 | data->dpm_table.mclk_table.count++; | ||
701 | } | ||
702 | } | ||
703 | |||
704 | /* setup PCIE gen speed levels */ | ||
705 | ellesmere_setup_default_pcie_table(hwmgr); | ||
706 | |||
707 | /* save a copy of the default DPM table */ | ||
708 | memcpy(&(data->golden_dpm_table), &(data->dpm_table), | ||
709 | sizeof(struct ellesmere_dpm_table)); | ||
710 | |||
711 | return 0; | ||
712 | } | ||
713 | |||
714 | uint8_t convert_to_vid(uint16_t vddc) | ||
715 | { | ||
716 | return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25); | ||
717 | } | ||
718 | |||
719 | /** | ||
720 | * Mvdd table preparation for SMC. | ||
721 | * | ||
722 | * @param *hwmgr The address of the hardware manager. | ||
723 | * @param *table The SMC DPM table structure to be populated. | ||
724 | * @return 0 | ||
725 | */ | ||
726 | static int ellesmere_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, | ||
727 | SMU74_Discrete_DpmTable *table) | ||
728 | { | ||
729 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
730 | uint32_t count, level; | ||
731 | |||
732 | if (ELLESMERE_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { | ||
733 | count = data->mvdd_voltage_table.count; | ||
734 | if (count > SMU_MAX_SMIO_LEVELS) | ||
735 | count = SMU_MAX_SMIO_LEVELS; | ||
736 | for (level = 0; level < count; level++) { | ||
737 | table->SmioTable2.Pattern[level].Voltage = | ||
738 | PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); | ||
739 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ | ||
740 | table->SmioTable2.Pattern[level].Smio = | ||
741 | (uint8_t) level; | ||
742 | table->Smio[level] |= | ||
743 | data->mvdd_voltage_table.entries[level].smio_low; | ||
744 | } | ||
745 | table->SmioMask2 = data->vddci_voltage_table.mask_low; | ||
746 | |||
747 | table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count); | ||
748 | } | ||
749 | |||
750 | return 0; | ||
751 | } | ||
752 | |||
753 | static int ellesmere_populate_smc_vddci_table(struct pp_hwmgr *hwmgr, | ||
754 | struct SMU74_Discrete_DpmTable *table) | ||
755 | { | ||
756 | uint32_t count, level; | ||
757 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
758 | |||
759 | count = data->vddci_voltage_table.count; | ||
760 | |||
761 | if (ELLESMERE_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { | ||
762 | if (count > SMU_MAX_SMIO_LEVELS) | ||
763 | count = SMU_MAX_SMIO_LEVELS; | ||
764 | for (level = 0; level < count; ++level) { | ||
765 | table->SmioTable1.Pattern[level].Voltage = | ||
766 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE); | ||
767 | table->SmioTable1.Pattern[level].Smio = (uint8_t) level; | ||
768 | |||
769 | table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low; | ||
770 | } | ||
771 | } | ||
772 | |||
773 | table->SmioMask1 = data->vddci_voltage_table.mask_low; | ||
774 | |||
775 | return 0; | ||
776 | } | ||
777 | |||
778 | /** | ||
779 | * Preparation of vddc and vddgfx CAC tables for SMC. | ||
780 | * | ||
781 | * @param hwmgr the address of the hardware manager | ||
782 | * @param table the SMC DPM table structure to be populated | ||
783 | * @return always 0 | ||
784 | */ | ||
785 | static int ellesmere_populate_cac_table(struct pp_hwmgr *hwmgr, | ||
786 | struct SMU74_Discrete_DpmTable *table) | ||
787 | { | ||
788 | uint32_t count; | ||
789 | uint8_t index; | ||
790 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
791 | struct phm_ppt_v1_information *table_info = | ||
792 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
793 | struct phm_ppt_v1_voltage_lookup_table *lookup_table = | ||
794 | table_info->vddc_lookup_table; | ||
795 | /* tables is already swapped, so in order to use the value from it, | ||
796 | * we need to swap it back. | ||
797 | * We are populating vddc CAC data to BapmVddc table | ||
798 | * in split and merged mode | ||
799 | */ | ||
800 | for (count = 0; count < lookup_table->count; count++) { | ||
801 | index = phm_get_voltage_index(lookup_table, | ||
802 | data->vddc_voltage_table.entries[count].value); | ||
803 | table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low); | ||
804 | table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid); | ||
805 | table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high); | ||
806 | } | ||
807 | |||
808 | return 0; | ||
809 | } | ||
810 | |||
811 | /** | ||
812 | * Preparation of voltage tables for SMC. | ||
813 | * | ||
814 | * @param hwmgr the address of the hardware manager | ||
815 | * @param table the SMC DPM table structure to be populated | ||
816 | * @return always 0 | ||
817 | */ | ||
818 | |||
819 | int ellesmere_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, | ||
820 | struct SMU74_Discrete_DpmTable *table) | ||
821 | { | ||
822 | ellesmere_populate_smc_vddci_table(hwmgr, table); | ||
823 | ellesmere_populate_smc_mvdd_table(hwmgr, table); | ||
824 | ellesmere_populate_cac_table(hwmgr, table); | ||
825 | |||
826 | return 0; | ||
827 | } | ||
828 | |||
829 | static int ellesmere_populate_ulv_level(struct pp_hwmgr *hwmgr, | ||
830 | struct SMU74_Discrete_Ulv *state) | ||
831 | { | ||
832 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
833 | struct phm_ppt_v1_information *table_info = | ||
834 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
835 | |||
836 | state->CcPwrDynRm = 0; | ||
837 | state->CcPwrDynRm1 = 0; | ||
838 | |||
839 | state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; | ||
840 | state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * | ||
841 | VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); | ||
842 | |||
843 | state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1; | ||
844 | |||
845 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); | ||
846 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); | ||
847 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); | ||
848 | |||
849 | return 0; | ||
850 | } | ||
851 | |||
852 | static int ellesmere_populate_ulv_state(struct pp_hwmgr *hwmgr, | ||
853 | struct SMU74_Discrete_DpmTable *table) | ||
854 | { | ||
855 | return ellesmere_populate_ulv_level(hwmgr, &table->Ulv); | ||
856 | } | ||
857 | |||
858 | static int ellesmere_populate_smc_link_level(struct pp_hwmgr *hwmgr, | ||
859 | struct SMU74_Discrete_DpmTable *table) | ||
860 | { | ||
861 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
862 | struct ellesmere_dpm_table *dpm_table = &data->dpm_table; | ||
863 | int i; | ||
864 | |||
865 | /* Index (dpm_table->pcie_speed_table.count) | ||
866 | * is reserved for PCIE boot level. */ | ||
867 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { | ||
868 | table->LinkLevel[i].PcieGenSpeed = | ||
869 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; | ||
870 | table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( | ||
871 | dpm_table->pcie_speed_table.dpm_levels[i].param1); | ||
872 | table->LinkLevel[i].EnabledForActivity = 1; | ||
873 | table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); | ||
874 | table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); | ||
875 | table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); | ||
876 | } | ||
877 | |||
878 | data->smc_state_table.LinkLevelCount = | ||
879 | (uint8_t)dpm_table->pcie_speed_table.count; | ||
880 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = | ||
881 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); | ||
882 | |||
883 | return 0; | ||
884 | } | ||
885 | |||
886 | static uint32_t ellesemere_get_xclk(struct pp_hwmgr *hwmgr) | ||
887 | { | ||
888 | uint32_t reference_clock, tmp; | ||
889 | struct cgs_display_info info = {0}; | ||
890 | struct cgs_mode_info mode_info; | ||
891 | |||
892 | info.mode_info = &mode_info; | ||
893 | |||
894 | tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK); | ||
895 | |||
896 | if (tmp) | ||
897 | return TCLK; | ||
898 | |||
899 | cgs_get_active_displays_info(hwmgr->device, &info); | ||
900 | reference_clock = mode_info.ref_clock; | ||
901 | |||
902 | tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE); | ||
903 | |||
904 | if (0 != tmp) | ||
905 | return reference_clock / 4; | ||
906 | |||
907 | return reference_clock; | ||
908 | } | ||
909 | |||
910 | /** | ||
911 | * Calculates the SCLK dividers using the provided engine clock | ||
912 | * | ||
913 | * @param hwmgr the address of the hardware manager | ||
914 | * @param clock the engine clock to use to populate the structure | ||
915 | * @param sclk the SMC SCLK structure to be populated | ||
916 | */ | ||
917 | static int ellesmere_calculate_sclk_params(struct pp_hwmgr *hwmgr, | ||
918 | uint32_t clock, SMU_SclkSetting *sclk_setting) | ||
919 | { | ||
920 | const struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
921 | const SMU74_Discrete_DpmTable *table = &(data->smc_state_table); | ||
922 | struct pp_atomctrl_clock_dividers_ai dividers; | ||
923 | |||
924 | uint32_t ref_clock; | ||
925 | uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq; | ||
926 | uint8_t i; | ||
927 | int result; | ||
928 | uint64_t temp; | ||
929 | |||
930 | sclk_setting->SclkFrequency = clock; | ||
931 | /* get the engine clock dividers for this clock value */ | ||
932 | result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs); | ||
933 | if (result == 0) { | ||
934 | sclk_setting->Fcw_int = dividers.usSclk_fcw_int; | ||
935 | sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac; | ||
936 | sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int; | ||
937 | sclk_setting->PllRange = dividers.ucSclkPllRange; | ||
938 | sclk_setting->SSc_En = dividers.ucSscEnable; | ||
939 | sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int; | ||
940 | sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac; | ||
941 | return result; | ||
942 | } | ||
943 | |||
944 | ref_clock = ellesemere_get_xclk(hwmgr); | ||
945 | |||
946 | for (i = 0; i < NUM_SCLK_RANGE; i++) { | ||
947 | if (clock > data->range_table[i].trans_lower_frequency | ||
948 | && clock <= data->range_table[i].trans_upper_frequency) { | ||
949 | sclk_setting->PllRange = i; | ||
950 | break; | ||
951 | } | ||
952 | } | ||
953 | |||
954 | sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); | ||
955 | temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; | ||
956 | temp <<= 0x10; | ||
957 | sclk_setting->Fcw_frac = (uint16_t)(0xFFFF & (temp / ref_clock)); | ||
958 | |||
959 | pcc_target_percent = 10; /* Hardcode 10% for now. */ | ||
960 | pcc_target_freq = clock - (clock * pcc_target_percent / 100); | ||
961 | sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); | ||
962 | |||
963 | ss_target_percent = 2; /* Hardcode 2% for now. */ | ||
964 | sclk_setting->SSc_En = 0; | ||
965 | if (ss_target_percent) { | ||
966 | sclk_setting->SSc_En = 1; | ||
967 | ss_target_freq = clock - (clock * ss_target_percent / 100); | ||
968 | sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); | ||
969 | temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; | ||
970 | temp <<= 0x10; | ||
971 | sclk_setting->Fcw1_frac = (uint16_t)(0xFFFF & (temp / ref_clock)); | ||
972 | } | ||
973 | |||
974 | return 0; | ||
975 | } | ||
976 | |||
977 | static int ellesmere_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, | ||
978 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, | ||
979 | uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) | ||
980 | { | ||
981 | uint32_t i; | ||
982 | uint16_t vddci; | ||
983 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
984 | |||
985 | *voltage = *mvdd = 0; | ||
986 | |||
987 | /* clock - voltage dependency table is empty table */ | ||
988 | if (dep_table->count == 0) | ||
989 | return -EINVAL; | ||
990 | |||
991 | for (i = 0; i < dep_table->count; i++) { | ||
992 | /* find first sclk bigger than request */ | ||
993 | if (dep_table->entries[i].clk >= clock) { | ||
994 | *voltage |= (dep_table->entries[i].vddc * | ||
995 | VOLTAGE_SCALE) << VDDC_SHIFT; | ||
996 | if (ELLESMERE_VOLTAGE_CONTROL_NONE == data->vddci_control) | ||
997 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * | ||
998 | VOLTAGE_SCALE) << VDDCI_SHIFT; | ||
999 | else if (dep_table->entries[i].vddci) | ||
1000 | *voltage |= (dep_table->entries[i].vddci * | ||
1001 | VOLTAGE_SCALE) << VDDCI_SHIFT; | ||
1002 | else { | ||
1003 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), | ||
1004 | (dep_table->entries[i].vddc - | ||
1005 | (uint16_t)data->vddc_vddci_delta)); | ||
1006 | *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; | ||
1007 | } | ||
1008 | |||
1009 | if (ELLESMERE_VOLTAGE_CONTROL_NONE == data->mvdd_control) | ||
1010 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * | ||
1011 | VOLTAGE_SCALE; | ||
1012 | else if (dep_table->entries[i].mvdd) | ||
1013 | *mvdd = (uint32_t) dep_table->entries[i].mvdd * | ||
1014 | VOLTAGE_SCALE; | ||
1015 | |||
1016 | *voltage |= 1 << PHASES_SHIFT; | ||
1017 | return 0; | ||
1018 | } | ||
1019 | } | ||
1020 | |||
1021 | /* sclk is bigger than max sclk in the dependence table */ | ||
1022 | *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; | ||
1023 | |||
1024 | if (ELLESMERE_VOLTAGE_CONTROL_NONE == data->vddci_control) | ||
1025 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * | ||
1026 | VOLTAGE_SCALE) << VDDCI_SHIFT; | ||
1027 | else if (dep_table->entries[i-1].vddci) { | ||
1028 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), | ||
1029 | (dep_table->entries[i].vddc - | ||
1030 | (uint16_t)data->vddc_vddci_delta)); | ||
1031 | *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; | ||
1032 | } | ||
1033 | |||
1034 | if (ELLESMERE_VOLTAGE_CONTROL_NONE == data->mvdd_control) | ||
1035 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; | ||
1036 | else if (dep_table->entries[i].mvdd) | ||
1037 | *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; | ||
1038 | |||
1039 | return 0; | ||
1040 | } | ||
1041 | |||
1042 | sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = { {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112}, | ||
1043 | {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160}, | ||
1044 | {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112}, | ||
1045 | {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160}, | ||
1046 | {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112}, | ||
1047 | {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160}, | ||
1048 | {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108}, | ||
1049 | {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} }; | ||
1050 | |||
1051 | static void ellesmere_get_sclk_range_table(struct pp_hwmgr *hwmgr) | ||
1052 | { | ||
1053 | uint32_t i, ref_clk; | ||
1054 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1055 | SMU74_Discrete_DpmTable *table = &(data->smc_state_table); | ||
1056 | struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } }; | ||
1057 | |||
1058 | ref_clk = ellesemere_get_xclk(hwmgr); | ||
1059 | |||
1060 | if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) { | ||
1061 | for (i = 0; i < NUM_SCLK_RANGE; i++) { | ||
1062 | table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting; | ||
1063 | table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv; | ||
1064 | table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc; | ||
1065 | |||
1066 | table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper; | ||
1067 | table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower; | ||
1068 | |||
1069 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); | ||
1070 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); | ||
1071 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); | ||
1072 | } | ||
1073 | return; | ||
1074 | } | ||
1075 | |||
1076 | for (i = 0; i < NUM_SCLK_RANGE; i++) { | ||
1077 | |||
1078 | data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv; | ||
1079 | data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv; | ||
1080 | |||
1081 | table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting; | ||
1082 | table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv; | ||
1083 | table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc; | ||
1084 | |||
1085 | table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper; | ||
1086 | table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower; | ||
1087 | |||
1088 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); | ||
1089 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); | ||
1090 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); | ||
1091 | } | ||
1092 | } | ||
1093 | |||
1094 | /** | ||
1095 | * Populates single SMC SCLK structure using the provided engine clock | ||
1096 | * | ||
1097 | * @param hwmgr the address of the hardware manager | ||
1098 | * @param clock the engine clock to use to populate the structure | ||
1099 | * @param sclk the SMC SCLK structure to be populated | ||
1100 | */ | ||
1101 | |||
1102 | static int ellesmere_populate_single_graphic_level(struct pp_hwmgr *hwmgr, | ||
1103 | uint32_t clock, uint16_t sclk_al_threshold, | ||
1104 | struct SMU74_Discrete_GraphicsLevel *level) | ||
1105 | { | ||
1106 | int result, i, temp; | ||
1107 | /* PP_Clocks minClocks; */ | ||
1108 | uint32_t mvdd; | ||
1109 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1110 | struct phm_ppt_v1_information *table_info = | ||
1111 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1112 | SMU_SclkSetting curr_sclk_setting = { 0 }; | ||
1113 | |||
1114 | result = ellesmere_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting); | ||
1115 | |||
1116 | /* populate graphics levels */ | ||
1117 | result = ellesmere_get_dependency_volt_by_clk(hwmgr, | ||
1118 | table_info->vdd_dep_on_sclk, clock, | ||
1119 | &level->MinVoltage, &mvdd); | ||
1120 | |||
1121 | PP_ASSERT_WITH_CODE((0 == result), | ||
1122 | "can not find VDDC voltage value for " | ||
1123 | "VDDC engine clock dependency table", | ||
1124 | return result); | ||
1125 | level->ActivityLevel = sclk_al_threshold; | ||
1126 | |||
1127 | level->CcPwrDynRm = 0; | ||
1128 | level->CcPwrDynRm1 = 0; | ||
1129 | level->EnabledForActivity = 0; | ||
1130 | level->EnabledForThrottle = 1; | ||
1131 | level->UpHyst = 10; | ||
1132 | level->DownHyst = 0; | ||
1133 | level->VoltageDownHyst = 0; | ||
1134 | level->PowerThrottle = 0; | ||
1135 | |||
1136 | /* | ||
1137 | * TODO: get minimum clocks from dal configaration | ||
1138 | * PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks); | ||
1139 | */ | ||
1140 | /* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */ | ||
1141 | |||
1142 | /* get level->DeepSleepDivId | ||
1143 | if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) | ||
1144 | level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR); | ||
1145 | */ | ||
1146 | PP_ASSERT_WITH_CODE((clock >= 2500), "Engine clock can't satisfy stutter requirement!", return 0); | ||
1147 | for (i = ELLESMERE_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { | ||
1148 | temp = clock / (1UL << i); | ||
1149 | |||
1150 | if (temp >= 2500 || i == 0) | ||
1151 | break; | ||
1152 | } | ||
1153 | |||
1154 | level->DeepSleepDivId = i; | ||
1155 | |||
1156 | /* Default to slow, highest DPM level will be | ||
1157 | * set to PPSMC_DISPLAY_WATERMARK_LOW later. | ||
1158 | */ | ||
1159 | if (data->update_up_hyst) | ||
1160 | level->UpHyst = (uint8_t)data->up_hyst; | ||
1161 | if (data->update_down_hyst) | ||
1162 | level->DownHyst = (uint8_t)data->down_hyst; | ||
1163 | |||
1164 | level->SclkSetting = curr_sclk_setting; | ||
1165 | |||
1166 | CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); | ||
1167 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); | ||
1168 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); | ||
1169 | CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); | ||
1170 | CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency); | ||
1171 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int); | ||
1172 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac); | ||
1173 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int); | ||
1174 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int); | ||
1175 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac); | ||
1176 | return 0; | ||
1177 | } | ||
1178 | |||
1179 | /** | ||
1180 | * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states | ||
1181 | * | ||
1182 | * @param hwmgr the address of the hardware manager | ||
1183 | */ | ||
1184 | static int ellesmere_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) | ||
1185 | { | ||
1186 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1187 | struct ellesmere_dpm_table *dpm_table = &data->dpm_table; | ||
1188 | struct phm_ppt_v1_information *table_info = | ||
1189 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1190 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; | ||
1191 | uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count; | ||
1192 | int result = 0; | ||
1193 | uint32_t array = data->dpm_table_start + | ||
1194 | offsetof(SMU74_Discrete_DpmTable, GraphicsLevel); | ||
1195 | uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) * | ||
1196 | SMU74_MAX_LEVELS_GRAPHICS; | ||
1197 | struct SMU74_Discrete_GraphicsLevel *levels = | ||
1198 | data->smc_state_table.GraphicsLevel; | ||
1199 | uint32_t i, max_entry; | ||
1200 | uint8_t hightest_pcie_level_enabled = 0, | ||
1201 | lowest_pcie_level_enabled = 0, | ||
1202 | mid_pcie_level_enabled = 0, | ||
1203 | count = 0; | ||
1204 | |||
1205 | ellesmere_get_sclk_range_table(hwmgr); | ||
1206 | |||
1207 | for (i = 0; i < dpm_table->sclk_table.count; i++) { | ||
1208 | |||
1209 | result = ellesmere_populate_single_graphic_level(hwmgr, | ||
1210 | dpm_table->sclk_table.dpm_levels[i].value, | ||
1211 | (uint16_t)data->activity_target[i], | ||
1212 | &(data->smc_state_table.GraphicsLevel[i])); | ||
1213 | if (result) | ||
1214 | return result; | ||
1215 | |||
1216 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ | ||
1217 | if (i > 1) | ||
1218 | levels[i].DeepSleepDivId = 0; | ||
1219 | } | ||
1220 | |||
1221 | data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; | ||
1222 | data->smc_state_table.GraphicsDpmLevelCount = | ||
1223 | (uint8_t)dpm_table->sclk_table.count; | ||
1224 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = | ||
1225 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); | ||
1226 | |||
1227 | |||
1228 | if (pcie_table != NULL) { | ||
1229 | PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), | ||
1230 | "There must be 1 or more PCIE levels defined in PPTable.", | ||
1231 | return -EINVAL); | ||
1232 | max_entry = pcie_entry_cnt - 1; | ||
1233 | for (i = 0; i < dpm_table->sclk_table.count; i++) | ||
1234 | levels[i].pcieDpmLevel = | ||
1235 | (uint8_t) ((i < max_entry) ? i : max_entry); | ||
1236 | } else { | ||
1237 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && | ||
1238 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & | ||
1239 | (1 << (hightest_pcie_level_enabled + 1))) != 0)) | ||
1240 | hightest_pcie_level_enabled++; | ||
1241 | |||
1242 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && | ||
1243 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & | ||
1244 | (1 << lowest_pcie_level_enabled)) == 0)) | ||
1245 | lowest_pcie_level_enabled++; | ||
1246 | |||
1247 | while ((count < hightest_pcie_level_enabled) && | ||
1248 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & | ||
1249 | (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) | ||
1250 | count++; | ||
1251 | |||
1252 | mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < | ||
1253 | hightest_pcie_level_enabled ? | ||
1254 | (lowest_pcie_level_enabled + 1 + count) : | ||
1255 | hightest_pcie_level_enabled; | ||
1256 | |||
1257 | /* set pcieDpmLevel to hightest_pcie_level_enabled */ | ||
1258 | for (i = 2; i < dpm_table->sclk_table.count; i++) | ||
1259 | levels[i].pcieDpmLevel = hightest_pcie_level_enabled; | ||
1260 | |||
1261 | /* set pcieDpmLevel to lowest_pcie_level_enabled */ | ||
1262 | levels[0].pcieDpmLevel = lowest_pcie_level_enabled; | ||
1263 | |||
1264 | /* set pcieDpmLevel to mid_pcie_level_enabled */ | ||
1265 | levels[1].pcieDpmLevel = mid_pcie_level_enabled; | ||
1266 | } | ||
1267 | /* level count will send to smc once at init smc table and never change */ | ||
1268 | result = ellesmere_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, | ||
1269 | (uint32_t)array_size, data->sram_end); | ||
1270 | |||
1271 | return result; | ||
1272 | } | ||
1273 | |||
1274 | static int ellesmere_populate_single_memory_level(struct pp_hwmgr *hwmgr, | ||
1275 | uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level) | ||
1276 | { | ||
1277 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1278 | struct phm_ppt_v1_information *table_info = | ||
1279 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1280 | int result = 0; | ||
1281 | struct cgs_display_info info = {0, 0, NULL}; | ||
1282 | |||
1283 | cgs_get_active_displays_info(hwmgr->device, &info); | ||
1284 | |||
1285 | if (table_info->vdd_dep_on_mclk) { | ||
1286 | result = ellesmere_get_dependency_volt_by_clk(hwmgr, | ||
1287 | table_info->vdd_dep_on_mclk, clock, | ||
1288 | &mem_level->MinVoltage, &mem_level->MinMvdd); | ||
1289 | PP_ASSERT_WITH_CODE((0 == result), | ||
1290 | "can not find MinVddc voltage value from memory " | ||
1291 | "VDDC voltage dependency table", return result); | ||
1292 | } | ||
1293 | |||
1294 | mem_level->MclkFrequency = clock; | ||
1295 | mem_level->StutterEnable = 0; | ||
1296 | mem_level->EnabledForThrottle = 1; | ||
1297 | mem_level->EnabledForActivity = 0; | ||
1298 | mem_level->UpHyst = 0; | ||
1299 | mem_level->DownHyst = 100; | ||
1300 | mem_level->VoltageDownHyst = 0; | ||
1301 | mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target; | ||
1302 | mem_level->StutterEnable = false; | ||
1303 | |||
1304 | mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; | ||
1305 | |||
1306 | data->display_timing.num_existing_displays = info.display_count; | ||
1307 | |||
1308 | if ((data->mclk_stutter_mode_threshold) && | ||
1309 | (clock <= data->mclk_stutter_mode_threshold) && | ||
1310 | (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, | ||
1311 | STUTTER_ENABLE) & 0x1)) | ||
1312 | mem_level->StutterEnable = true; | ||
1313 | |||
1314 | if (!result) { | ||
1315 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); | ||
1316 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); | ||
1317 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); | ||
1318 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); | ||
1319 | } | ||
1320 | return result; | ||
1321 | } | ||
1322 | |||
1323 | /** | ||
1324 | * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states | ||
1325 | * | ||
1326 | * @param hwmgr the address of the hardware manager | ||
1327 | */ | ||
1328 | static int ellesmere_populate_all_memory_levels(struct pp_hwmgr *hwmgr) | ||
1329 | { | ||
1330 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1331 | struct ellesmere_dpm_table *dpm_table = &data->dpm_table; | ||
1332 | int result; | ||
1333 | /* populate MCLK dpm table to SMU7 */ | ||
1334 | uint32_t array = data->dpm_table_start + | ||
1335 | offsetof(SMU74_Discrete_DpmTable, MemoryLevel); | ||
1336 | uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) * | ||
1337 | SMU74_MAX_LEVELS_MEMORY; | ||
1338 | struct SMU74_Discrete_MemoryLevel *levels = | ||
1339 | data->smc_state_table.MemoryLevel; | ||
1340 | uint32_t i; | ||
1341 | |||
1342 | for (i = 0; i < dpm_table->mclk_table.count; i++) { | ||
1343 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), | ||
1344 | "can not populate memory level as memory clock is zero", | ||
1345 | return -EINVAL); | ||
1346 | result = ellesmere_populate_single_memory_level(hwmgr, | ||
1347 | dpm_table->mclk_table.dpm_levels[i].value, | ||
1348 | &levels[i]); | ||
1349 | if (result) | ||
1350 | return result; | ||
1351 | } | ||
1352 | |||
1353 | /* Only enable level 0 for now. */ | ||
1354 | levels[0].EnabledForActivity = 1; | ||
1355 | |||
1356 | /* in order to prevent MC activity from stutter mode to push DPM up. | ||
1357 | * the UVD change complements this by putting the MCLK in | ||
1358 | * a higher state by default such that we are not effected by | ||
1359 | * up threshold or and MCLK DPM latency. | ||
1360 | */ | ||
1361 | levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target; | ||
1362 | CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel); | ||
1363 | |||
1364 | data->smc_state_table.MemoryDpmLevelCount = | ||
1365 | (uint8_t)dpm_table->mclk_table.count; | ||
1366 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = | ||
1367 | phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); | ||
1368 | /* set highest level watermark to high */ | ||
1369 | levels[dpm_table->mclk_table.count - 1].DisplayWatermark = | ||
1370 | PPSMC_DISPLAY_WATERMARK_HIGH; | ||
1371 | |||
1372 | /* level count will send to smc once at init smc table and never change */ | ||
1373 | result = ellesmere_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, | ||
1374 | (uint32_t)array_size, data->sram_end); | ||
1375 | |||
1376 | return result; | ||
1377 | } | ||
1378 | |||
1379 | /** | ||
1380 | * Populates the SMC MVDD structure using the provided memory clock. | ||
1381 | * | ||
1382 | * @param hwmgr the address of the hardware manager | ||
1383 | * @param mclk the MCLK value to be used in the decision if MVDD should be high or low. | ||
1384 | * @param voltage the SMC VOLTAGE structure to be populated | ||
1385 | */ | ||
1386 | int ellesmere_populate_mvdd_value(struct pp_hwmgr *hwmgr, | ||
1387 | uint32_t mclk, SMIO_Pattern *smio_pat) | ||
1388 | { | ||
1389 | const struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1390 | struct phm_ppt_v1_information *table_info = | ||
1391 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1392 | uint32_t i = 0; | ||
1393 | |||
1394 | if (ELLESMERE_VOLTAGE_CONTROL_NONE != data->mvdd_control) { | ||
1395 | /* find mvdd value which clock is more than request */ | ||
1396 | for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { | ||
1397 | if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { | ||
1398 | smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; | ||
1399 | break; | ||
1400 | } | ||
1401 | } | ||
1402 | PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, | ||
1403 | "MVDD Voltage is outside the supported range.", | ||
1404 | return -EINVAL); | ||
1405 | } else | ||
1406 | return -EINVAL; | ||
1407 | |||
1408 | return 0; | ||
1409 | } | ||
1410 | |||
1411 | static int ellesmere_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, | ||
1412 | SMU74_Discrete_DpmTable *table) | ||
1413 | { | ||
1414 | int result = 0; | ||
1415 | uint32_t sclk_frequency; | ||
1416 | const struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1417 | struct phm_ppt_v1_information *table_info = | ||
1418 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1419 | SMIO_Pattern vol_level; | ||
1420 | uint32_t mvdd; | ||
1421 | uint16_t us_mvdd; | ||
1422 | |||
1423 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; | ||
1424 | |||
1425 | if (!data->sclk_dpm_key_disabled) { | ||
1426 | /* Get MinVoltage and Frequency from DPM0, | ||
1427 | * already converted to SMC_UL */ | ||
1428 | sclk_frequency = data->dpm_table.sclk_table.dpm_levels[0].value; | ||
1429 | result = ellesmere_get_dependency_volt_by_clk(hwmgr, | ||
1430 | table_info->vdd_dep_on_sclk, | ||
1431 | table->ACPILevel.SclkFrequency, | ||
1432 | &table->ACPILevel.MinVoltage, &mvdd); | ||
1433 | PP_ASSERT_WITH_CODE((0 == result), | ||
1434 | "Cannot find ACPI VDDC voltage value " | ||
1435 | "in Clock Dependency Table", ); | ||
1436 | } else { | ||
1437 | sclk_frequency = data->vbios_boot_state.sclk_bootup_value; | ||
1438 | table->ACPILevel.MinVoltage = | ||
1439 | data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; | ||
1440 | } | ||
1441 | |||
1442 | result = ellesmere_calculate_sclk_params(hwmgr, sclk_frequency, &(table->ACPILevel.SclkSetting)); | ||
1443 | PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); | ||
1444 | |||
1445 | table->ACPILevel.DeepSleepDivId = 0; | ||
1446 | table->ACPILevel.CcPwrDynRm = 0; | ||
1447 | table->ACPILevel.CcPwrDynRm1 = 0; | ||
1448 | |||
1449 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); | ||
1450 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); | ||
1451 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); | ||
1452 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); | ||
1453 | |||
1454 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency); | ||
1455 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int); | ||
1456 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac); | ||
1457 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int); | ||
1458 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int); | ||
1459 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac); | ||
1460 | |||
1461 | if (!data->mclk_dpm_key_disabled) { | ||
1462 | /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ | ||
1463 | table->MemoryACPILevel.MclkFrequency = | ||
1464 | data->dpm_table.mclk_table.dpm_levels[0].value; | ||
1465 | result = ellesmere_get_dependency_volt_by_clk(hwmgr, | ||
1466 | table_info->vdd_dep_on_mclk, | ||
1467 | table->MemoryACPILevel.MclkFrequency, | ||
1468 | &table->MemoryACPILevel.MinVoltage, &mvdd); | ||
1469 | PP_ASSERT_WITH_CODE((0 == result), | ||
1470 | "Cannot find ACPI VDDCI voltage value " | ||
1471 | "in Clock Dependency Table", | ||
1472 | ); | ||
1473 | } else { | ||
1474 | table->MemoryACPILevel.MclkFrequency = | ||
1475 | data->vbios_boot_state.mclk_bootup_value; | ||
1476 | table->MemoryACPILevel.MinVoltage = | ||
1477 | data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; | ||
1478 | } | ||
1479 | |||
1480 | us_mvdd = 0; | ||
1481 | if ((ELLESMERE_VOLTAGE_CONTROL_NONE == data->mvdd_control) || | ||
1482 | (data->mclk_dpm_key_disabled)) | ||
1483 | us_mvdd = data->vbios_boot_state.mvdd_bootup_value; | ||
1484 | else { | ||
1485 | if (!ellesmere_populate_mvdd_value(hwmgr, | ||
1486 | data->dpm_table.mclk_table.dpm_levels[0].value, | ||
1487 | &vol_level)) | ||
1488 | us_mvdd = vol_level.Voltage; | ||
1489 | } | ||
1490 | |||
1491 | if (0 == ellesmere_populate_mvdd_value(hwmgr, 0, &vol_level)) | ||
1492 | table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage); | ||
1493 | else | ||
1494 | table->MemoryACPILevel.MinMvdd = 0; | ||
1495 | |||
1496 | table->MemoryACPILevel.StutterEnable = false; | ||
1497 | |||
1498 | table->MemoryACPILevel.EnabledForThrottle = 0; | ||
1499 | table->MemoryACPILevel.EnabledForActivity = 0; | ||
1500 | table->MemoryACPILevel.UpHyst = 0; | ||
1501 | table->MemoryACPILevel.DownHyst = 100; | ||
1502 | table->MemoryACPILevel.VoltageDownHyst = 0; | ||
1503 | table->MemoryACPILevel.ActivityLevel = | ||
1504 | PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); | ||
1505 | |||
1506 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); | ||
1507 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); | ||
1508 | |||
1509 | return result; | ||
1510 | } | ||
1511 | |||
1512 | static int ellesmere_populate_smc_vce_level(struct pp_hwmgr *hwmgr, | ||
1513 | SMU74_Discrete_DpmTable *table) | ||
1514 | { | ||
1515 | int result = -EINVAL; | ||
1516 | uint8_t count; | ||
1517 | struct pp_atomctrl_clock_dividers_vi dividers; | ||
1518 | struct phm_ppt_v1_information *table_info = | ||
1519 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1520 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | ||
1521 | table_info->mm_dep_table; | ||
1522 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1523 | |||
1524 | table->VceLevelCount = (uint8_t)(mm_table->count); | ||
1525 | table->VceBootLevel = 0; | ||
1526 | |||
1527 | for (count = 0; count < table->VceLevelCount; count++) { | ||
1528 | table->VceLevel[count].Frequency = mm_table->entries[count].eclk; | ||
1529 | table->VceLevel[count].MinVoltage |= | ||
1530 | (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; | ||
1531 | table->VceLevel[count].MinVoltage |= | ||
1532 | ((mm_table->entries[count].vddc - data->vddc_vddci_delta) * | ||
1533 | VOLTAGE_SCALE) << VDDCI_SHIFT; | ||
1534 | table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; | ||
1535 | |||
1536 | /*retrieve divider value for VBIOS */ | ||
1537 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | ||
1538 | table->VceLevel[count].Frequency, ÷rs); | ||
1539 | PP_ASSERT_WITH_CODE((0 == result), | ||
1540 | "can not find divide id for VCE engine clock", | ||
1541 | return result); | ||
1542 | |||
1543 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; | ||
1544 | |||
1545 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); | ||
1546 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); | ||
1547 | } | ||
1548 | return result; | ||
1549 | } | ||
1550 | |||
1551 | static int ellesmere_populate_smc_samu_level(struct pp_hwmgr *hwmgr, | ||
1552 | SMU74_Discrete_DpmTable *table) | ||
1553 | { | ||
1554 | int result = -EINVAL; | ||
1555 | uint8_t count; | ||
1556 | struct pp_atomctrl_clock_dividers_vi dividers; | ||
1557 | struct phm_ppt_v1_information *table_info = | ||
1558 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1559 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | ||
1560 | table_info->mm_dep_table; | ||
1561 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1562 | |||
1563 | table->SamuBootLevel = 0; | ||
1564 | table->SamuLevelCount = (uint8_t)(mm_table->count); | ||
1565 | |||
1566 | for (count = 0; count < table->SamuLevelCount; count++) { | ||
1567 | /* not sure whether we need evclk or not */ | ||
1568 | table->SamuLevel[count].Frequency = mm_table->entries[count].samclock; | ||
1569 | table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc * | ||
1570 | VOLTAGE_SCALE) << VDDC_SHIFT; | ||
1571 | table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - | ||
1572 | data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT; | ||
1573 | table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT; | ||
1574 | |||
1575 | /* retrieve divider value for VBIOS */ | ||
1576 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | ||
1577 | table->SamuLevel[count].Frequency, ÷rs); | ||
1578 | PP_ASSERT_WITH_CODE((0 == result), | ||
1579 | "can not find divide id for samu clock", return result); | ||
1580 | |||
1581 | table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; | ||
1582 | |||
1583 | CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); | ||
1584 | CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage); | ||
1585 | } | ||
1586 | return result; | ||
1587 | } | ||
1588 | |||
1589 | static int ellesmere_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, | ||
1590 | int32_t eng_clock, int32_t mem_clock, | ||
1591 | SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs) | ||
1592 | { | ||
1593 | uint32_t dram_timing; | ||
1594 | uint32_t dram_timing2; | ||
1595 | uint32_t burst_time; | ||
1596 | int result; | ||
1597 | |||
1598 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, | ||
1599 | eng_clock, mem_clock); | ||
1600 | PP_ASSERT_WITH_CODE(result == 0, | ||
1601 | "Error calling VBIOS to set DRAM_TIMING.", return result); | ||
1602 | |||
1603 | dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); | ||
1604 | dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); | ||
1605 | burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); | ||
1606 | |||
1607 | |||
1608 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); | ||
1609 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); | ||
1610 | arb_regs->McArbBurstTime = (uint8_t)burst_time; | ||
1611 | |||
1612 | return 0; | ||
1613 | } | ||
1614 | |||
1615 | static int ellesmere_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) | ||
1616 | { | ||
1617 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1618 | struct SMU74_Discrete_MCArbDramTimingTable arb_regs; | ||
1619 | uint32_t i, j; | ||
1620 | int result = 0; | ||
1621 | |||
1622 | for (i = 0; i < data->dpm_table.sclk_table.count; i++) { | ||
1623 | for (j = 0; j < data->dpm_table.mclk_table.count; j++) { | ||
1624 | result = ellesmere_populate_memory_timing_parameters(hwmgr, | ||
1625 | data->dpm_table.sclk_table.dpm_levels[i].value, | ||
1626 | data->dpm_table.mclk_table.dpm_levels[j].value, | ||
1627 | &arb_regs.entries[i][j]); | ||
1628 | if (result == 0) | ||
1629 | result = atomctrl_set_ac_timing_ai(hwmgr, data->dpm_table.mclk_table.dpm_levels[j].value, j); | ||
1630 | if (result != 0) | ||
1631 | return result; | ||
1632 | } | ||
1633 | } | ||
1634 | |||
1635 | result = ellesmere_copy_bytes_to_smc( | ||
1636 | hwmgr->smumgr, | ||
1637 | data->arb_table_start, | ||
1638 | (uint8_t *)&arb_regs, | ||
1639 | sizeof(SMU74_Discrete_MCArbDramTimingTable), | ||
1640 | data->sram_end); | ||
1641 | return result; | ||
1642 | } | ||
1643 | |||
1644 | static int ellesmere_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, | ||
1645 | struct SMU74_Discrete_DpmTable *table) | ||
1646 | { | ||
1647 | int result = -EINVAL; | ||
1648 | uint8_t count; | ||
1649 | struct pp_atomctrl_clock_dividers_vi dividers; | ||
1650 | struct phm_ppt_v1_information *table_info = | ||
1651 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1652 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | ||
1653 | table_info->mm_dep_table; | ||
1654 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1655 | |||
1656 | table->UvdLevelCount = (uint8_t)(mm_table->count); | ||
1657 | table->UvdBootLevel = 0; | ||
1658 | |||
1659 | for (count = 0; count < table->UvdLevelCount; count++) { | ||
1660 | table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; | ||
1661 | table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; | ||
1662 | table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * | ||
1663 | VOLTAGE_SCALE) << VDDC_SHIFT; | ||
1664 | table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - | ||
1665 | data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT; | ||
1666 | table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; | ||
1667 | |||
1668 | /* retrieve divider value for VBIOS */ | ||
1669 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | ||
1670 | table->UvdLevel[count].VclkFrequency, ÷rs); | ||
1671 | PP_ASSERT_WITH_CODE((0 == result), | ||
1672 | "can not find divide id for Vclk clock", return result); | ||
1673 | |||
1674 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; | ||
1675 | |||
1676 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | ||
1677 | table->UvdLevel[count].DclkFrequency, ÷rs); | ||
1678 | PP_ASSERT_WITH_CODE((0 == result), | ||
1679 | "can not find divide id for Dclk clock", return result); | ||
1680 | |||
1681 | table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; | ||
1682 | |||
1683 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); | ||
1684 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); | ||
1685 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); | ||
1686 | |||
1687 | } | ||
1688 | return result; | ||
1689 | } | ||
1690 | |||
1691 | static int ellesmere_populate_smc_boot_level(struct pp_hwmgr *hwmgr, | ||
1692 | struct SMU74_Discrete_DpmTable *table) | ||
1693 | { | ||
1694 | int result = 0; | ||
1695 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1696 | |||
1697 | table->GraphicsBootLevel = 0; | ||
1698 | table->MemoryBootLevel = 0; | ||
1699 | |||
1700 | /* find boot level from dpm table */ | ||
1701 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), | ||
1702 | data->vbios_boot_state.sclk_bootup_value, | ||
1703 | (uint32_t *)&(table->GraphicsBootLevel)); | ||
1704 | |||
1705 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), | ||
1706 | data->vbios_boot_state.mclk_bootup_value, | ||
1707 | (uint32_t *)&(table->MemoryBootLevel)); | ||
1708 | |||
1709 | table->BootVddc = data->vbios_boot_state.vddc_bootup_value * | ||
1710 | VOLTAGE_SCALE; | ||
1711 | table->BootVddci = data->vbios_boot_state.vddci_bootup_value * | ||
1712 | VOLTAGE_SCALE; | ||
1713 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * | ||
1714 | VOLTAGE_SCALE; | ||
1715 | |||
1716 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); | ||
1717 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); | ||
1718 | CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); | ||
1719 | |||
1720 | return 0; | ||
1721 | } | ||
1722 | |||
1723 | |||
1724 | static int ellesmere_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) | ||
1725 | { | ||
1726 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1727 | struct phm_ppt_v1_information *table_info = | ||
1728 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1729 | uint8_t count, level; | ||
1730 | |||
1731 | count = (uint8_t)(table_info->vdd_dep_on_sclk->count); | ||
1732 | |||
1733 | for (level = 0; level < count; level++) { | ||
1734 | if (table_info->vdd_dep_on_sclk->entries[level].clk >= | ||
1735 | data->vbios_boot_state.sclk_bootup_value) { | ||
1736 | data->smc_state_table.GraphicsBootLevel = level; | ||
1737 | break; | ||
1738 | } | ||
1739 | } | ||
1740 | |||
1741 | count = (uint8_t)(table_info->vdd_dep_on_mclk->count); | ||
1742 | for (level = 0; level < count; level++) { | ||
1743 | if (table_info->vdd_dep_on_mclk->entries[level].clk >= | ||
1744 | data->vbios_boot_state.mclk_bootup_value) { | ||
1745 | data->smc_state_table.MemoryBootLevel = level; | ||
1746 | break; | ||
1747 | } | ||
1748 | } | ||
1749 | |||
1750 | return 0; | ||
1751 | } | ||
1752 | |||
1753 | static int ellesmere_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) | ||
1754 | { | ||
1755 | uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, | ||
1756 | volt_with_cks, value; | ||
1757 | uint16_t clock_freq_u16; | ||
1758 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1759 | uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, | ||
1760 | volt_offset = 0; | ||
1761 | struct phm_ppt_v1_information *table_info = | ||
1762 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1763 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = | ||
1764 | table_info->vdd_dep_on_sclk; | ||
1765 | |||
1766 | stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; | ||
1767 | |||
1768 | /* Read SMU_Eefuse to read and calculate RO and determine | ||
1769 | * if the part is SS or FF. if RO >= 1660MHz, part is FF. | ||
1770 | */ | ||
1771 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1772 | ixSMU_EFUSE_0 + (146 * 4)); | ||
1773 | efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1774 | ixSMU_EFUSE_0 + (148 * 4)); | ||
1775 | efuse &= 0xFF000000; | ||
1776 | efuse = efuse >> 24; | ||
1777 | efuse2 &= 0xF; | ||
1778 | |||
1779 | if (efuse2 == 1) | ||
1780 | ro = (2300 - 1350) * efuse / 255 + 1350; | ||
1781 | else | ||
1782 | ro = (2500 - 1000) * efuse / 255 + 1000; | ||
1783 | |||
1784 | if (ro >= 1660) | ||
1785 | type = 0; | ||
1786 | else | ||
1787 | type = 1; | ||
1788 | |||
1789 | /* Populate Stretch amount */ | ||
1790 | data->smc_state_table.ClockStretcherAmount = stretch_amount; | ||
1791 | |||
1792 | /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ | ||
1793 | for (i = 0; i < sclk_table->count; i++) { | ||
1794 | data->smc_state_table.Sclk_CKS_masterEn0_7 |= | ||
1795 | sclk_table->entries[i].cks_enable << i; | ||
1796 | volt_without_cks = (uint32_t)((14041 * | ||
1797 | (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / | ||
1798 | (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); | ||
1799 | volt_with_cks = (uint32_t)((13946 * | ||
1800 | (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / | ||
1801 | (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); | ||
1802 | if (volt_without_cks >= volt_with_cks) | ||
1803 | volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + | ||
1804 | sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); | ||
1805 | data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; | ||
1806 | } | ||
1807 | |||
1808 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, | ||
1809 | STRETCH_ENABLE, 0x0); | ||
1810 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, | ||
1811 | masterReset, 0x1); | ||
1812 | /* PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, staticEnable, 0x1); */ | ||
1813 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, | ||
1814 | masterReset, 0x0); | ||
1815 | |||
1816 | /* Populate CKS Lookup Table */ | ||
1817 | if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) | ||
1818 | stretch_amount2 = 0; | ||
1819 | else if (stretch_amount == 3 || stretch_amount == 4) | ||
1820 | stretch_amount2 = 1; | ||
1821 | else { | ||
1822 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
1823 | PHM_PlatformCaps_ClockStretcher); | ||
1824 | PP_ASSERT_WITH_CODE(false, | ||
1825 | "Stretch Amount in PPTable not supported\n", | ||
1826 | return -EINVAL); | ||
1827 | } | ||
1828 | |||
1829 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1830 | ixPWR_CKS_CNTL); | ||
1831 | value &= 0xFFC2FF87; | ||
1832 | data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = | ||
1833 | ellesmere_clock_stretcher_lookup_table[stretch_amount2][0]; | ||
1834 | data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = | ||
1835 | ellesmere_clock_stretcher_lookup_table[stretch_amount2][1]; | ||
1836 | clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table. | ||
1837 | GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].SclkSetting.SclkFrequency) / 100); | ||
1838 | if (ellesmere_clock_stretcher_lookup_table[stretch_amount2][0] < clock_freq_u16 | ||
1839 | && ellesmere_clock_stretcher_lookup_table[stretch_amount2][1] > clock_freq_u16) { | ||
1840 | /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ | ||
1841 | value |= (ellesmere_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; | ||
1842 | /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ | ||
1843 | value |= (ellesmere_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; | ||
1844 | /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ | ||
1845 | value |= (ellesmere_clock_stretch_amount_conversion | ||
1846 | [ellesmere_clock_stretcher_lookup_table[stretch_amount2][3]] | ||
1847 | [stretch_amount]) << 3; | ||
1848 | } | ||
1849 | CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq); | ||
1850 | CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq); | ||
1851 | data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = | ||
1852 | ellesmere_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; | ||
1853 | data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= | ||
1854 | (ellesmere_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; | ||
1855 | |||
1856 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1857 | ixPWR_CKS_CNTL, value); | ||
1858 | |||
1859 | /* Populate DDT Lookup Table */ | ||
1860 | for (i = 0; i < 4; i++) { | ||
1861 | /* Assign the minimum and maximum VID stored | ||
1862 | * in the last row of Clock Stretcher Voltage Table. | ||
1863 | */ | ||
1864 | data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].minVID = | ||
1865 | (uint8_t) ellesmere_clock_stretcher_ddt_table[type][i][2]; | ||
1866 | data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].maxVID = | ||
1867 | (uint8_t) ellesmere_clock_stretcher_ddt_table[type][i][3]; | ||
1868 | /* Loop through each SCLK and check the frequency | ||
1869 | * to see if it lies within the frequency for clock stretcher. | ||
1870 | */ | ||
1871 | for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) { | ||
1872 | cks_setting = 0; | ||
1873 | clock_freq = PP_SMC_TO_HOST_UL( | ||
1874 | data->smc_state_table.GraphicsLevel[j].SclkSetting.SclkFrequency); | ||
1875 | /* Check the allowed frequency against the sclk level[j]. | ||
1876 | * Sclk's endianness has already been converted, | ||
1877 | * and it's in 10Khz unit, | ||
1878 | * as opposed to Data table, which is in Mhz unit. | ||
1879 | */ | ||
1880 | if (clock_freq >= (ellesmere_clock_stretcher_ddt_table[type][i][0]) * 100) { | ||
1881 | cks_setting |= 0x2; | ||
1882 | if (clock_freq < (ellesmere_clock_stretcher_ddt_table[type][i][1]) * 100) | ||
1883 | cks_setting |= 0x1; | ||
1884 | } | ||
1885 | data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting | ||
1886 | |= cks_setting << (j * 2); | ||
1887 | } | ||
1888 | CONVERT_FROM_HOST_TO_SMC_US( | ||
1889 | data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting); | ||
1890 | } | ||
1891 | |||
1892 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); | ||
1893 | value &= 0xFFFFFFFE; | ||
1894 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); | ||
1895 | |||
1896 | return 0; | ||
1897 | } | ||
1898 | |||
1899 | /** | ||
1900 | * Populates the SMC VRConfig field in DPM table. | ||
1901 | * | ||
1902 | * @param hwmgr the address of the hardware manager | ||
1903 | * @param table the SMC DPM table structure to be populated | ||
1904 | * @return always 0 | ||
1905 | */ | ||
1906 | static int ellesmere_populate_vr_config(struct pp_hwmgr *hwmgr, | ||
1907 | struct SMU74_Discrete_DpmTable *table) | ||
1908 | { | ||
1909 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1910 | uint16_t config; | ||
1911 | |||
1912 | config = VR_MERGED_WITH_VDDC; | ||
1913 | table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); | ||
1914 | |||
1915 | /* Set Vddc Voltage Controller */ | ||
1916 | if (ELLESMERE_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { | ||
1917 | config = VR_SVI2_PLANE_1; | ||
1918 | table->VRConfig |= config; | ||
1919 | } else { | ||
1920 | PP_ASSERT_WITH_CODE(false, | ||
1921 | "VDDC should be on SVI2 control in merged mode!", | ||
1922 | ); | ||
1923 | } | ||
1924 | /* Set Vddci Voltage Controller */ | ||
1925 | if (ELLESMERE_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { | ||
1926 | config = VR_SVI2_PLANE_2; /* only in merged mode */ | ||
1927 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); | ||
1928 | } else if (ELLESMERE_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { | ||
1929 | config = VR_SMIO_PATTERN_1; | ||
1930 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); | ||
1931 | } else { | ||
1932 | config = VR_STATIC_VOLTAGE; | ||
1933 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); | ||
1934 | } | ||
1935 | /* Set Mvdd Voltage Controller */ | ||
1936 | if (ELLESMERE_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { | ||
1937 | config = VR_SVI2_PLANE_2; | ||
1938 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT); | ||
1939 | } else if (ELLESMERE_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { | ||
1940 | config = VR_SMIO_PATTERN_2; | ||
1941 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT); | ||
1942 | } else { | ||
1943 | config = VR_STATIC_VOLTAGE; | ||
1944 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT); | ||
1945 | } | ||
1946 | |||
1947 | return 0; | ||
1948 | } | ||
1949 | |||
1950 | /** | ||
1951 | * Initializes the SMC table and uploads it | ||
1952 | * | ||
1953 | * @param hwmgr the address of the powerplay hardware manager. | ||
1954 | * @return always 0 | ||
1955 | */ | ||
1956 | static int ellesmere_init_smc_table(struct pp_hwmgr *hwmgr) | ||
1957 | { | ||
1958 | int result; | ||
1959 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
1960 | struct phm_ppt_v1_information *table_info = | ||
1961 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
1962 | struct SMU74_Discrete_DpmTable *table = &(data->smc_state_table); | ||
1963 | const struct ellesmere_ulv_parm *ulv = &(data->ulv); | ||
1964 | uint8_t i; | ||
1965 | struct pp_atomctrl_gpio_pin_assignment gpio_pin; | ||
1966 | |||
1967 | result = ellesmere_setup_default_dpm_tables(hwmgr); | ||
1968 | PP_ASSERT_WITH_CODE(0 == result, | ||
1969 | "Failed to setup default DPM tables!", return result); | ||
1970 | |||
1971 | if (ELLESMERE_VOLTAGE_CONTROL_NONE != data->voltage_control) | ||
1972 | ellesmere_populate_smc_voltage_tables(hwmgr, table); | ||
1973 | |||
1974 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
1975 | PHM_PlatformCaps_AutomaticDCTransition)) | ||
1976 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; | ||
1977 | |||
1978 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
1979 | PHM_PlatformCaps_StepVddc)) | ||
1980 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; | ||
1981 | |||
1982 | if (data->is_memory_gddr5) | ||
1983 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; | ||
1984 | |||
1985 | if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) { | ||
1986 | result = ellesmere_populate_ulv_state(hwmgr, table); | ||
1987 | PP_ASSERT_WITH_CODE(0 == result, | ||
1988 | "Failed to initialize ULV state!", return result); | ||
1989 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
1990 | ixCG_ULV_PARAMETER, PPELLESMERE_CGULVPARAMETER_DFLT); | ||
1991 | } | ||
1992 | |||
1993 | result = ellesmere_populate_smc_link_level(hwmgr, table); | ||
1994 | PP_ASSERT_WITH_CODE(0 == result, | ||
1995 | "Failed to initialize Link Level!", return result); | ||
1996 | |||
1997 | result = ellesmere_populate_all_graphic_levels(hwmgr); | ||
1998 | PP_ASSERT_WITH_CODE(0 == result, | ||
1999 | "Failed to initialize Graphics Level!", return result); | ||
2000 | |||
2001 | result = ellesmere_populate_all_memory_levels(hwmgr); | ||
2002 | PP_ASSERT_WITH_CODE(0 == result, | ||
2003 | "Failed to initialize Memory Level!", return result); | ||
2004 | |||
2005 | result = ellesmere_populate_smc_acpi_level(hwmgr, table); | ||
2006 | PP_ASSERT_WITH_CODE(0 == result, | ||
2007 | "Failed to initialize ACPI Level!", return result); | ||
2008 | |||
2009 | result = ellesmere_populate_smc_vce_level(hwmgr, table); | ||
2010 | PP_ASSERT_WITH_CODE(0 == result, | ||
2011 | "Failed to initialize VCE Level!", return result); | ||
2012 | |||
2013 | result = ellesmere_populate_smc_samu_level(hwmgr, table); | ||
2014 | PP_ASSERT_WITH_CODE(0 == result, | ||
2015 | "Failed to initialize SAMU Level!", return result); | ||
2016 | |||
2017 | /* Since only the initial state is completely set up at this point | ||
2018 | * (the other states are just copies of the boot state) we only | ||
2019 | * need to populate the ARB settings for the initial state. | ||
2020 | */ | ||
2021 | result = ellesmere_program_memory_timing_parameters(hwmgr); | ||
2022 | PP_ASSERT_WITH_CODE(0 == result, | ||
2023 | "Failed to Write ARB settings for the initial state.", return result); | ||
2024 | |||
2025 | result = ellesmere_populate_smc_uvd_level(hwmgr, table); | ||
2026 | PP_ASSERT_WITH_CODE(0 == result, | ||
2027 | "Failed to initialize UVD Level!", return result); | ||
2028 | |||
2029 | result = ellesmere_populate_smc_boot_level(hwmgr, table); | ||
2030 | PP_ASSERT_WITH_CODE(0 == result, | ||
2031 | "Failed to initialize Boot Level!", return result); | ||
2032 | |||
2033 | result = ellesmere_populate_smc_initailial_state(hwmgr); | ||
2034 | PP_ASSERT_WITH_CODE(0 == result, | ||
2035 | "Failed to initialize Boot State!", return result); | ||
2036 | |||
2037 | result = ellesmere_populate_bapm_parameters_in_dpm_table(hwmgr); | ||
2038 | PP_ASSERT_WITH_CODE(0 == result, | ||
2039 | "Failed to populate BAPM Parameters!", return result); | ||
2040 | |||
2041 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2042 | PHM_PlatformCaps_ClockStretcher)) { | ||
2043 | result = ellesmere_populate_clock_stretcher_data_table(hwmgr); | ||
2044 | PP_ASSERT_WITH_CODE(0 == result, | ||
2045 | "Failed to populate Clock Stretcher Data Table!", | ||
2046 | return result); | ||
2047 | } | ||
2048 | |||
2049 | table->GraphicsVoltageChangeEnable = 1; | ||
2050 | table->GraphicsThermThrottleEnable = 1; | ||
2051 | table->GraphicsInterval = 1; | ||
2052 | table->VoltageInterval = 1; | ||
2053 | table->ThermalInterval = 1; | ||
2054 | table->TemperatureLimitHigh = | ||
2055 | table_info->cac_dtp_table->usTargetOperatingTemp * | ||
2056 | ELLESMERE_Q88_FORMAT_CONVERSION_UNIT; | ||
2057 | table->TemperatureLimitLow = | ||
2058 | (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * | ||
2059 | ELLESMERE_Q88_FORMAT_CONVERSION_UNIT; | ||
2060 | table->MemoryVoltageChangeEnable = 1; | ||
2061 | table->MemoryInterval = 1; | ||
2062 | table->VoltageResponseTime = 0; | ||
2063 | table->PhaseResponseTime = 0; | ||
2064 | table->MemoryThermThrottleEnable = 1; | ||
2065 | table->PCIeBootLinkLevel = 0; | ||
2066 | table->PCIeGenInterval = 1; | ||
2067 | |||
2068 | result = ellesmere_populate_vr_config(hwmgr, table); | ||
2069 | PP_ASSERT_WITH_CODE(0 == result, | ||
2070 | "Failed to populate VRConfig setting!", return result); | ||
2071 | |||
2072 | table->ThermGpio = 17; | ||
2073 | table->SclkStepSize = 0x4000; | ||
2074 | |||
2075 | if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { | ||
2076 | table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; | ||
2077 | } else { | ||
2078 | table->VRHotGpio = ELLESMERE_UNUSED_GPIO_PIN; | ||
2079 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2080 | PHM_PlatformCaps_RegulatorHot); | ||
2081 | } | ||
2082 | |||
2083 | if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, | ||
2084 | &gpio_pin)) { | ||
2085 | table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; | ||
2086 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2087 | PHM_PlatformCaps_AutomaticDCTransition); | ||
2088 | } else { | ||
2089 | table->AcDcGpio = ELLESMERE_UNUSED_GPIO_PIN; | ||
2090 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2091 | PHM_PlatformCaps_AutomaticDCTransition); | ||
2092 | } | ||
2093 | |||
2094 | /* Thermal Output GPIO */ | ||
2095 | if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, | ||
2096 | &gpio_pin)) { | ||
2097 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2098 | PHM_PlatformCaps_ThermalOutGPIO); | ||
2099 | |||
2100 | table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; | ||
2101 | |||
2102 | /* For porlarity read GPIOPAD_A with assigned Gpio pin | ||
2103 | * since VBIOS will program this register to set 'inactive state', | ||
2104 | * driver can then determine 'active state' from this and | ||
2105 | * program SMU with correct polarity | ||
2106 | */ | ||
2107 | table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) | ||
2108 | & (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; | ||
2109 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; | ||
2110 | |||
2111 | /* if required, combine VRHot/PCC with thermal out GPIO */ | ||
2112 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot) | ||
2113 | && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal)) | ||
2114 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; | ||
2115 | } else { | ||
2116 | table->ThermOutGpio = 17; | ||
2117 | table->ThermOutPolarity = 1; | ||
2118 | table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; | ||
2119 | } | ||
2120 | |||
2121 | for (i = 0; i < SMU74_MAX_ENTRIES_SMIO; i++) | ||
2122 | table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); | ||
2123 | |||
2124 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); | ||
2125 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); | ||
2126 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); | ||
2127 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); | ||
2128 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); | ||
2129 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); | ||
2130 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); | ||
2131 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); | ||
2132 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); | ||
2133 | |||
2134 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ | ||
2135 | result = ellesmere_copy_bytes_to_smc(hwmgr->smumgr, | ||
2136 | data->dpm_table_start + | ||
2137 | offsetof(SMU74_Discrete_DpmTable, SystemFlags), | ||
2138 | (uint8_t *)&(table->SystemFlags), | ||
2139 | sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController), | ||
2140 | data->sram_end); | ||
2141 | PP_ASSERT_WITH_CODE(0 == result, | ||
2142 | "Failed to upload dpm data to SMC memory!", return result); | ||
2143 | |||
2144 | return 0; | ||
2145 | } | ||
2146 | |||
2147 | /** | ||
2148 | * Initialize the ARB DRAM timing table's index field. | ||
2149 | * | ||
2150 | * @param hwmgr the address of the powerplay hardware manager. | ||
2151 | * @return always 0 | ||
2152 | */ | ||
2153 | static int ellesmere_init_arb_table_index(struct pp_hwmgr *hwmgr) | ||
2154 | { | ||
2155 | const struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2156 | uint32_t tmp; | ||
2157 | int result; | ||
2158 | |||
2159 | /* This is a read-modify-write on the first byte of the ARB table. | ||
2160 | * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure | ||
2161 | * is the field 'current'. | ||
2162 | * This solution is ugly, but we never write the whole table only | ||
2163 | * individual fields in it. | ||
2164 | * In reality this field should not be in that structure | ||
2165 | * but in a soft register. | ||
2166 | */ | ||
2167 | result = ellesmere_read_smc_sram_dword(hwmgr->smumgr, | ||
2168 | data->arb_table_start, &tmp, data->sram_end); | ||
2169 | |||
2170 | if (result) | ||
2171 | return result; | ||
2172 | |||
2173 | tmp &= 0x00FFFFFF; | ||
2174 | tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; | ||
2175 | |||
2176 | return ellesmere_write_smc_sram_dword(hwmgr->smumgr, | ||
2177 | data->arb_table_start, tmp, data->sram_end); | ||
2178 | } | ||
2179 | |||
2180 | static int ellesmere_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr) | ||
2181 | { | ||
2182 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2183 | PHM_PlatformCaps_RegulatorHot)) | ||
2184 | return smum_send_msg_to_smc(hwmgr->smumgr, | ||
2185 | PPSMC_MSG_EnableVRHotGPIOInterrupt); | ||
2186 | |||
2187 | return 0; | ||
2188 | } | ||
2189 | |||
2190 | static int ellesmere_enable_sclk_control(struct pp_hwmgr *hwmgr) | ||
2191 | { | ||
2192 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, | ||
2193 | SCLK_PWRMGT_OFF, 0); | ||
2194 | return 0; | ||
2195 | } | ||
2196 | |||
2197 | static int ellesmere_enable_ulv(struct pp_hwmgr *hwmgr) | ||
2198 | { | ||
2199 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2200 | struct ellesmere_ulv_parm *ulv = &(data->ulv); | ||
2201 | |||
2202 | if (ulv->ulv_supported) | ||
2203 | return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV); | ||
2204 | |||
2205 | return 0; | ||
2206 | } | ||
2207 | |||
2208 | static int ellesmere_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) | ||
2209 | { | ||
2210 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2211 | PHM_PlatformCaps_SclkDeepSleep)) { | ||
2212 | if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON)) | ||
2213 | PP_ASSERT_WITH_CODE(false, | ||
2214 | "Attempt to enable Master Deep Sleep switch failed!", | ||
2215 | return -1); | ||
2216 | } else { | ||
2217 | if (smum_send_msg_to_smc(hwmgr->smumgr, | ||
2218 | PPSMC_MSG_MASTER_DeepSleep_OFF)) { | ||
2219 | PP_ASSERT_WITH_CODE(false, | ||
2220 | "Attempt to disable Master Deep Sleep switch failed!", | ||
2221 | return -1); | ||
2222 | } | ||
2223 | } | ||
2224 | |||
2225 | return 0; | ||
2226 | } | ||
2227 | |||
2228 | static int ellesmere_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) | ||
2229 | { | ||
2230 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2231 | |||
2232 | /* enable SCLK dpm */ | ||
2233 | if (!data->sclk_dpm_key_disabled) | ||
2234 | PP_ASSERT_WITH_CODE( | ||
2235 | (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)), | ||
2236 | "Failed to enable SCLK DPM during DPM Start Function!", | ||
2237 | return -1); | ||
2238 | |||
2239 | /* enable MCLK dpm */ | ||
2240 | if (0 == data->mclk_dpm_key_disabled) { | ||
2241 | |||
2242 | PP_ASSERT_WITH_CODE( | ||
2243 | (0 == smum_send_msg_to_smc(hwmgr->smumgr, | ||
2244 | PPSMC_MSG_MCLKDPM_Enable)), | ||
2245 | "Failed to enable MCLK DPM during DPM Start Function!", | ||
2246 | return -1); | ||
2247 | |||
2248 | |||
2249 | PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); | ||
2250 | |||
2251 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5); | ||
2252 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5); | ||
2253 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005); | ||
2254 | udelay(10); | ||
2255 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005); | ||
2256 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005); | ||
2257 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005); | ||
2258 | } | ||
2259 | |||
2260 | return 0; | ||
2261 | } | ||
2262 | |||
2263 | static int ellesmere_start_dpm(struct pp_hwmgr *hwmgr) | ||
2264 | { | ||
2265 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2266 | |||
2267 | /*enable general power management */ | ||
2268 | |||
2269 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, | ||
2270 | GLOBAL_PWRMGT_EN, 1); | ||
2271 | |||
2272 | /* enable sclk deep sleep */ | ||
2273 | |||
2274 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, | ||
2275 | DYNAMIC_PM_EN, 1); | ||
2276 | |||
2277 | /* prepare for PCIE DPM */ | ||
2278 | |||
2279 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, | ||
2280 | data->soft_regs_start + offsetof(SMU74_SoftRegisters, | ||
2281 | VoltageChangeTimeout), 0x1000); | ||
2282 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, | ||
2283 | SWRST_COMMAND_1, RESETLC, 0x0); | ||
2284 | |||
2285 | PP_ASSERT_WITH_CODE( | ||
2286 | (0 == smum_send_msg_to_smc(hwmgr->smumgr, | ||
2287 | PPSMC_MSG_Voltage_Cntl_Enable)), | ||
2288 | "Failed to enable voltage DPM during DPM Start Function!", | ||
2289 | return -1); | ||
2290 | |||
2291 | if (ellesmere_enable_sclk_mclk_dpm(hwmgr)) { | ||
2292 | printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!"); | ||
2293 | return -1; | ||
2294 | } | ||
2295 | |||
2296 | /* enable PCIE dpm */ | ||
2297 | if (0 == data->pcie_dpm_key_disabled) { | ||
2298 | PP_ASSERT_WITH_CODE( | ||
2299 | (0 == smum_send_msg_to_smc(hwmgr->smumgr, | ||
2300 | PPSMC_MSG_PCIeDPM_Enable)), | ||
2301 | "Failed to enable pcie DPM during DPM Start Function!", | ||
2302 | return -1); | ||
2303 | } | ||
2304 | |||
2305 | PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr, | ||
2306 | PPSMC_MSG_EnableACDCGPIOInterrupt)), | ||
2307 | "Failed to enable AC DC GPIO Interrupt!", | ||
2308 | ); | ||
2309 | |||
2310 | return 0; | ||
2311 | } | ||
2312 | |||
2313 | static void ellesmere_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources) | ||
2314 | { | ||
2315 | bool protection; | ||
2316 | enum DPM_EVENT_SRC src; | ||
2317 | |||
2318 | switch (sources) { | ||
2319 | default: | ||
2320 | printk(KERN_ERR "Unknown throttling event sources."); | ||
2321 | /* fall through */ | ||
2322 | case 0: | ||
2323 | protection = false; | ||
2324 | /* src is unused */ | ||
2325 | break; | ||
2326 | case (1 << PHM_AutoThrottleSource_Thermal): | ||
2327 | protection = true; | ||
2328 | src = DPM_EVENT_SRC_DIGITAL; | ||
2329 | break; | ||
2330 | case (1 << PHM_AutoThrottleSource_External): | ||
2331 | protection = true; | ||
2332 | src = DPM_EVENT_SRC_EXTERNAL; | ||
2333 | break; | ||
2334 | case (1 << PHM_AutoThrottleSource_External) | | ||
2335 | (1 << PHM_AutoThrottleSource_Thermal): | ||
2336 | protection = true; | ||
2337 | src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; | ||
2338 | break; | ||
2339 | } | ||
2340 | /* Order matters - don't enable thermal protection for the wrong source. */ | ||
2341 | if (protection) { | ||
2342 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, | ||
2343 | DPM_EVENT_SRC, src); | ||
2344 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, | ||
2345 | THERMAL_PROTECTION_DIS, | ||
2346 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2347 | PHM_PlatformCaps_ThermalController)); | ||
2348 | } else | ||
2349 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, | ||
2350 | THERMAL_PROTECTION_DIS, 1); | ||
2351 | } | ||
2352 | |||
2353 | static int ellesmere_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, | ||
2354 | PHM_AutoThrottleSource source) | ||
2355 | { | ||
2356 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2357 | |||
2358 | if (!(data->active_auto_throttle_sources & (1 << source))) { | ||
2359 | data->active_auto_throttle_sources |= 1 << source; | ||
2360 | ellesmere_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); | ||
2361 | } | ||
2362 | return 0; | ||
2363 | } | ||
2364 | |||
2365 | static int ellesmere_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) | ||
2366 | { | ||
2367 | return ellesmere_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); | ||
2368 | } | ||
2369 | |||
2370 | int ellesmere_pcie_performance_request(struct pp_hwmgr *hwmgr) | ||
2371 | { | ||
2372 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2373 | data->pcie_performance_request = true; | ||
2374 | |||
2375 | return 0; | ||
2376 | } | ||
2377 | |||
2378 | int ellesmere_enable_dpm_tasks(struct pp_hwmgr *hwmgr) | ||
2379 | { | ||
2380 | int tmp_result, result = 0; | ||
2381 | tmp_result = (!ellesmere_is_dpm_running(hwmgr)) ? 0 : -1; | ||
2382 | PP_ASSERT_WITH_CODE(result == 0, | ||
2383 | "DPM is already running right now, no need to enable DPM!", | ||
2384 | return 0); | ||
2385 | |||
2386 | if (ellesmere_voltage_control(hwmgr)) { | ||
2387 | tmp_result = ellesmere_enable_voltage_control(hwmgr); | ||
2388 | PP_ASSERT_WITH_CODE(tmp_result == 0, | ||
2389 | "Failed to enable voltage control!", | ||
2390 | result = tmp_result); | ||
2391 | |||
2392 | tmp_result = ellesmere_construct_voltage_tables(hwmgr); | ||
2393 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2394 | "Failed to contruct voltage tables!", | ||
2395 | result = tmp_result); | ||
2396 | } | ||
2397 | |||
2398 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2399 | PHM_PlatformCaps_EngineSpreadSpectrumSupport)) | ||
2400 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, | ||
2401 | GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1); | ||
2402 | |||
2403 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2404 | PHM_PlatformCaps_ThermalController)) | ||
2405 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, | ||
2406 | GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0); | ||
2407 | |||
2408 | tmp_result = ellesmere_program_static_screen_threshold_parameters(hwmgr); | ||
2409 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2410 | "Failed to program static screen threshold parameters!", | ||
2411 | result = tmp_result); | ||
2412 | |||
2413 | tmp_result = ellesmere_enable_display_gap(hwmgr); | ||
2414 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2415 | "Failed to enable display gap!", result = tmp_result); | ||
2416 | |||
2417 | tmp_result = ellesmere_program_voting_clients(hwmgr); | ||
2418 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2419 | "Failed to program voting clients!", result = tmp_result); | ||
2420 | |||
2421 | tmp_result = ellesmere_process_firmware_header(hwmgr); | ||
2422 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2423 | "Failed to process firmware header!", result = tmp_result); | ||
2424 | |||
2425 | tmp_result = ellesmere_initial_switch_from_arbf0_to_f1(hwmgr); | ||
2426 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2427 | "Failed to initialize switch from ArbF0 to F1!", | ||
2428 | result = tmp_result); | ||
2429 | |||
2430 | tmp_result = ellesmere_init_smc_table(hwmgr); | ||
2431 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2432 | "Failed to initialize SMC table!", result = tmp_result); | ||
2433 | |||
2434 | tmp_result = ellesmere_init_arb_table_index(hwmgr); | ||
2435 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2436 | "Failed to initialize ARB table index!", result = tmp_result); | ||
2437 | |||
2438 | tmp_result = ellesmere_populate_pm_fuses(hwmgr); | ||
2439 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2440 | "Failed to populate PM fuses!", result = tmp_result); | ||
2441 | |||
2442 | tmp_result = ellesmere_enable_vrhot_gpio_interrupt(hwmgr); | ||
2443 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2444 | "Failed to enable VR hot GPIO interrupt!", result = tmp_result); | ||
2445 | |||
2446 | tmp_result = ellesmere_enable_sclk_control(hwmgr); | ||
2447 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2448 | "Failed to enable SCLK control!", result = tmp_result); | ||
2449 | |||
2450 | tmp_result = ellesmere_enable_ulv(hwmgr); | ||
2451 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2452 | "Failed to enable ULV!", result = tmp_result); | ||
2453 | |||
2454 | tmp_result = ellesmere_enable_deep_sleep_master_switch(hwmgr); | ||
2455 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2456 | "Failed to enable deep sleep master switch!", result = tmp_result); | ||
2457 | |||
2458 | tmp_result = ellesmere_start_dpm(hwmgr); | ||
2459 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2460 | "Failed to start DPM!", result = tmp_result); | ||
2461 | |||
2462 | tmp_result = ellesmere_enable_smc_cac(hwmgr); | ||
2463 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2464 | "Failed to enable SMC CAC!", result = tmp_result); | ||
2465 | |||
2466 | tmp_result = ellesmere_enable_power_containment(hwmgr); | ||
2467 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2468 | "Failed to enable power containment!", result = tmp_result); | ||
2469 | |||
2470 | tmp_result = ellesmere_power_control_set_level(hwmgr); | ||
2471 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2472 | "Failed to power control set level!", result = tmp_result); | ||
2473 | |||
2474 | tmp_result = ellesmere_enable_thermal_auto_throttle(hwmgr); | ||
2475 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2476 | "Failed to enable thermal auto throttle!", result = tmp_result); | ||
2477 | |||
2478 | tmp_result = ellesmere_pcie_performance_request(hwmgr); | ||
2479 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
2480 | "Failed to enable thermal auto throttle!", result = tmp_result); | ||
2481 | |||
2482 | return result; | ||
2483 | } | ||
2484 | |||
2485 | int ellesmere_disable_dpm_tasks(struct pp_hwmgr *hwmgr) | ||
2486 | { | ||
2487 | |||
2488 | return 0; | ||
2489 | } | ||
2490 | |||
2491 | int ellesmere_reset_asic_tasks(struct pp_hwmgr *hwmgr) | ||
2492 | { | ||
2493 | |||
2494 | return 0; | ||
2495 | } | ||
2496 | |||
2497 | int ellesmere_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) | ||
2498 | { | ||
2499 | return phm_hwmgr_backend_fini(hwmgr); | ||
2500 | } | ||
2501 | |||
2502 | int ellesmere_set_features_platform_caps(struct pp_hwmgr *hwmgr) | ||
2503 | { | ||
2504 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2505 | |||
2506 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2507 | PHM_PlatformCaps_SclkDeepSleep); | ||
2508 | |||
2509 | if (data->mvdd_control == ELLESMERE_VOLTAGE_CONTROL_NONE) | ||
2510 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2511 | PHM_PlatformCaps_EnableMVDDControl); | ||
2512 | |||
2513 | if (data->vddci_control == ELLESMERE_VOLTAGE_CONTROL_NONE) | ||
2514 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2515 | PHM_PlatformCaps_ControlVDDCI); | ||
2516 | |||
2517 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2518 | PHM_PlatformCaps_TablelessHardwareInterface); | ||
2519 | |||
2520 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2521 | PHM_PlatformCaps_EnableSMU7ThermalManagement); | ||
2522 | |||
2523 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2524 | PHM_PlatformCaps_DynamicPowerManagement); | ||
2525 | |||
2526 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2527 | PHM_PlatformCaps_TablelessHardwareInterface); | ||
2528 | |||
2529 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2530 | PHM_PlatformCaps_SMC); | ||
2531 | |||
2532 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2533 | PHM_PlatformCaps_NonABMSupportInPPLib); | ||
2534 | |||
2535 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2536 | PHM_PlatformCaps_DynamicUVDState); | ||
2537 | |||
2538 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2539 | PHM_PlatformCaps_SclkThrottleLowNotification); | ||
2540 | |||
2541 | /* power tune caps Assume disabled */ | ||
2542 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2543 | PHM_PlatformCaps_PowerContainment); | ||
2544 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2545 | PHM_PlatformCaps_CAC); | ||
2546 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2547 | PHM_PlatformCaps_SQRamping); | ||
2548 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2549 | PHM_PlatformCaps_DBRamping); | ||
2550 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2551 | PHM_PlatformCaps_TDRamping); | ||
2552 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | ||
2553 | PHM_PlatformCaps_TCPRamping); | ||
2554 | |||
2555 | return 0; | ||
2556 | } | ||
2557 | |||
2558 | static void ellesmere_init_dpm_defaults(struct pp_hwmgr *hwmgr) | ||
2559 | { | ||
2560 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2561 | |||
2562 | ellesmere_initialize_power_tune_defaults(hwmgr); | ||
2563 | |||
2564 | data->pcie_gen_performance.max = PP_PCIEGen1; | ||
2565 | data->pcie_gen_performance.min = PP_PCIEGen3; | ||
2566 | data->pcie_gen_power_saving.max = PP_PCIEGen1; | ||
2567 | data->pcie_gen_power_saving.min = PP_PCIEGen3; | ||
2568 | data->pcie_lane_performance.max = 0; | ||
2569 | data->pcie_lane_performance.min = 16; | ||
2570 | data->pcie_lane_power_saving.max = 0; | ||
2571 | data->pcie_lane_power_saving.min = 16; | ||
2572 | } | ||
2573 | |||
2574 | /** | ||
2575 | * Get Leakage VDDC based on leakage ID. | ||
2576 | * | ||
2577 | * @param hwmgr the address of the powerplay hardware manager. | ||
2578 | * @return always 0 | ||
2579 | */ | ||
2580 | static int ellesmere_get_evv_voltages(struct pp_hwmgr *hwmgr) | ||
2581 | { | ||
2582 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2583 | uint16_t vv_id; | ||
2584 | uint16_t vddc = 0; | ||
2585 | uint16_t i, j; | ||
2586 | uint32_t sclk = 0; | ||
2587 | struct phm_ppt_v1_information *table_info = | ||
2588 | (struct phm_ppt_v1_information *)hwmgr->pptable; | ||
2589 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = | ||
2590 | table_info->vdd_dep_on_sclk; | ||
2591 | int result; | ||
2592 | |||
2593 | for (i = 0; i < ELLESMERE_MAX_LEAKAGE_COUNT; i++) { | ||
2594 | vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; | ||
2595 | if (!phm_get_sclk_for_voltage_evv(hwmgr, | ||
2596 | table_info->vddc_lookup_table, vv_id, &sclk)) { | ||
2597 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2598 | PHM_PlatformCaps_ClockStretcher)) { | ||
2599 | for (j = 1; j < sclk_table->count; j++) { | ||
2600 | if (sclk_table->entries[j].clk == sclk && | ||
2601 | sclk_table->entries[j].cks_enable == 0) { | ||
2602 | sclk += 5000; | ||
2603 | break; | ||
2604 | } | ||
2605 | } | ||
2606 | } | ||
2607 | |||
2608 | |||
2609 | PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, | ||
2610 | VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc), | ||
2611 | "Error retrieving EVV voltage value!", | ||
2612 | continue); | ||
2613 | |||
2614 | |||
2615 | /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ | ||
2616 | PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0), | ||
2617 | "Invalid VDDC value", result = -EINVAL;); | ||
2618 | |||
2619 | /* the voltage should not be zero nor equal to leakage ID */ | ||
2620 | if (vddc != 0 && vddc != vv_id) { | ||
2621 | data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100); | ||
2622 | data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; | ||
2623 | data->vddc_leakage.count++; | ||
2624 | } | ||
2625 | } | ||
2626 | } | ||
2627 | |||
2628 | return 0; | ||
2629 | } | ||
2630 | |||
2631 | /** | ||
2632 | * Change virtual leakage voltage to actual value. | ||
2633 | * | ||
2634 | * @param hwmgr the address of the powerplay hardware manager. | ||
2635 | * @param pointer to changing voltage | ||
2636 | * @param pointer to leakage table | ||
2637 | */ | ||
2638 | static void ellesmere_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, | ||
2639 | uint16_t *voltage, struct ellesmere_leakage_voltage *leakage_table) | ||
2640 | { | ||
2641 | uint32_t index; | ||
2642 | |||
2643 | /* search for leakage voltage ID 0xff01 ~ 0xff08 */ | ||
2644 | for (index = 0; index < leakage_table->count; index++) { | ||
2645 | /* if this voltage matches a leakage voltage ID */ | ||
2646 | /* patch with actual leakage voltage */ | ||
2647 | if (leakage_table->leakage_id[index] == *voltage) { | ||
2648 | *voltage = leakage_table->actual_voltage[index]; | ||
2649 | break; | ||
2650 | } | ||
2651 | } | ||
2652 | |||
2653 | if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) | ||
2654 | printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n"); | ||
2655 | } | ||
2656 | |||
2657 | /** | ||
2658 | * Patch voltage lookup table by EVV leakages. | ||
2659 | * | ||
2660 | * @param hwmgr the address of the powerplay hardware manager. | ||
2661 | * @param pointer to voltage lookup table | ||
2662 | * @param pointer to leakage table | ||
2663 | * @return always 0 | ||
2664 | */ | ||
2665 | static int ellesmere_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, | ||
2666 | phm_ppt_v1_voltage_lookup_table *lookup_table, | ||
2667 | struct ellesmere_leakage_voltage *leakage_table) | ||
2668 | { | ||
2669 | uint32_t i; | ||
2670 | |||
2671 | for (i = 0; i < lookup_table->count; i++) | ||
2672 | ellesmere_patch_with_vdd_leakage(hwmgr, | ||
2673 | &lookup_table->entries[i].us_vdd, leakage_table); | ||
2674 | |||
2675 | return 0; | ||
2676 | } | ||
2677 | |||
2678 | static int ellesmere_patch_clock_voltage_limits_with_vddc_leakage( | ||
2679 | struct pp_hwmgr *hwmgr, struct ellesmere_leakage_voltage *leakage_table, | ||
2680 | uint16_t *vddc) | ||
2681 | { | ||
2682 | struct phm_ppt_v1_information *table_info = | ||
2683 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
2684 | ellesmere_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); | ||
2685 | hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = | ||
2686 | table_info->max_clock_voltage_on_dc.vddc; | ||
2687 | return 0; | ||
2688 | } | ||
2689 | |||
2690 | static int ellesmere_patch_voltage_dependency_tables_with_lookup_table( | ||
2691 | struct pp_hwmgr *hwmgr) | ||
2692 | { | ||
2693 | uint8_t entryId; | ||
2694 | uint8_t voltageId; | ||
2695 | struct phm_ppt_v1_information *table_info = | ||
2696 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
2697 | |||
2698 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = | ||
2699 | table_info->vdd_dep_on_sclk; | ||
2700 | struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = | ||
2701 | table_info->vdd_dep_on_mclk; | ||
2702 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | ||
2703 | table_info->mm_dep_table; | ||
2704 | |||
2705 | for (entryId = 0; entryId < sclk_table->count; ++entryId) { | ||
2706 | voltageId = sclk_table->entries[entryId].vddInd; | ||
2707 | sclk_table->entries[entryId].vddc = | ||
2708 | table_info->vddc_lookup_table->entries[voltageId].us_vdd; | ||
2709 | } | ||
2710 | |||
2711 | for (entryId = 0; entryId < mclk_table->count; ++entryId) { | ||
2712 | voltageId = mclk_table->entries[entryId].vddInd; | ||
2713 | mclk_table->entries[entryId].vddc = | ||
2714 | table_info->vddc_lookup_table->entries[voltageId].us_vdd; | ||
2715 | } | ||
2716 | |||
2717 | for (entryId = 0; entryId < mm_table->count; ++entryId) { | ||
2718 | voltageId = mm_table->entries[entryId].vddcInd; | ||
2719 | mm_table->entries[entryId].vddc = | ||
2720 | table_info->vddc_lookup_table->entries[voltageId].us_vdd; | ||
2721 | } | ||
2722 | |||
2723 | return 0; | ||
2724 | |||
2725 | } | ||
2726 | |||
2727 | static int ellesmere_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) | ||
2728 | { | ||
2729 | /* Need to determine if we need calculated voltage. */ | ||
2730 | return 0; | ||
2731 | } | ||
2732 | |||
2733 | static int ellesmere_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) | ||
2734 | { | ||
2735 | /* Need to determine if we need calculated voltage from mm table. */ | ||
2736 | return 0; | ||
2737 | } | ||
2738 | |||
2739 | static int ellesmere_sort_lookup_table(struct pp_hwmgr *hwmgr, | ||
2740 | struct phm_ppt_v1_voltage_lookup_table *lookup_table) | ||
2741 | { | ||
2742 | uint32_t table_size, i, j; | ||
2743 | struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record; | ||
2744 | table_size = lookup_table->count; | ||
2745 | |||
2746 | PP_ASSERT_WITH_CODE(0 != lookup_table->count, | ||
2747 | "Lookup table is empty", return -EINVAL); | ||
2748 | |||
2749 | /* Sorting voltages */ | ||
2750 | for (i = 0; i < table_size - 1; i++) { | ||
2751 | for (j = i + 1; j > 0; j--) { | ||
2752 | if (lookup_table->entries[j].us_vdd < | ||
2753 | lookup_table->entries[j - 1].us_vdd) { | ||
2754 | tmp_voltage_lookup_record = lookup_table->entries[j - 1]; | ||
2755 | lookup_table->entries[j - 1] = lookup_table->entries[j]; | ||
2756 | lookup_table->entries[j] = tmp_voltage_lookup_record; | ||
2757 | } | ||
2758 | } | ||
2759 | } | ||
2760 | |||
2761 | return 0; | ||
2762 | } | ||
2763 | |||
2764 | static int ellesmere_complete_dependency_tables(struct pp_hwmgr *hwmgr) | ||
2765 | { | ||
2766 | int result = 0; | ||
2767 | int tmp_result; | ||
2768 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2769 | struct phm_ppt_v1_information *table_info = | ||
2770 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
2771 | |||
2772 | tmp_result = ellesmere_patch_lookup_table_with_leakage(hwmgr, | ||
2773 | table_info->vddc_lookup_table, &(data->vddc_leakage)); | ||
2774 | if (tmp_result) | ||
2775 | result = tmp_result; | ||
2776 | |||
2777 | tmp_result = ellesmere_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, | ||
2778 | &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); | ||
2779 | if (tmp_result) | ||
2780 | result = tmp_result; | ||
2781 | |||
2782 | tmp_result = ellesmere_patch_voltage_dependency_tables_with_lookup_table(hwmgr); | ||
2783 | if (tmp_result) | ||
2784 | result = tmp_result; | ||
2785 | |||
2786 | tmp_result = ellesmere_calc_voltage_dependency_tables(hwmgr); | ||
2787 | if (tmp_result) | ||
2788 | result = tmp_result; | ||
2789 | |||
2790 | tmp_result = ellesmere_calc_mm_voltage_dependency_table(hwmgr); | ||
2791 | if (tmp_result) | ||
2792 | result = tmp_result; | ||
2793 | |||
2794 | tmp_result = ellesmere_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); | ||
2795 | if (tmp_result) | ||
2796 | result = tmp_result; | ||
2797 | |||
2798 | return result; | ||
2799 | } | ||
2800 | |||
2801 | static int ellesmere_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) | ||
2802 | { | ||
2803 | struct phm_ppt_v1_information *table_info = | ||
2804 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
2805 | |||
2806 | struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = | ||
2807 | table_info->vdd_dep_on_sclk; | ||
2808 | struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = | ||
2809 | table_info->vdd_dep_on_mclk; | ||
2810 | |||
2811 | PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, | ||
2812 | "VDD dependency on SCLK table is missing. \ | ||
2813 | This table is mandatory", return -EINVAL); | ||
2814 | PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, | ||
2815 | "VDD dependency on SCLK table has to have is missing. \ | ||
2816 | This table is mandatory", return -EINVAL); | ||
2817 | |||
2818 | PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, | ||
2819 | "VDD dependency on MCLK table is missing. \ | ||
2820 | This table is mandatory", return -EINVAL); | ||
2821 | PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, | ||
2822 | "VDD dependency on MCLK table has to have is missing. \ | ||
2823 | This table is mandatory", return -EINVAL); | ||
2824 | |||
2825 | table_info->max_clock_voltage_on_ac.sclk = | ||
2826 | allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; | ||
2827 | table_info->max_clock_voltage_on_ac.mclk = | ||
2828 | allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; | ||
2829 | table_info->max_clock_voltage_on_ac.vddc = | ||
2830 | allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; | ||
2831 | table_info->max_clock_voltage_on_ac.vddci = | ||
2832 | allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; | ||
2833 | |||
2834 | return 0; | ||
2835 | } | ||
2836 | |||
2837 | int ellesmere_hwmgr_backend_init(struct pp_hwmgr *hwmgr) | ||
2838 | { | ||
2839 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2840 | struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; | ||
2841 | uint32_t temp_reg; | ||
2842 | int result; | ||
2843 | |||
2844 | data->dll_default_on = false; | ||
2845 | data->sram_end = SMC_RAM_END; | ||
2846 | |||
2847 | data->disable_dpm_mask = 0xFF; | ||
2848 | data->static_screen_threshold = PPELLESMERE_STATICSCREENTHRESHOLD_DFLT; | ||
2849 | data->static_screen_threshold_unit = PPELLESMERE_STATICSCREENTHRESHOLD_DFLT; | ||
2850 | data->activity_target[0] = PPELLESMERE_TARGETACTIVITY_DFLT; | ||
2851 | data->activity_target[1] = PPELLESMERE_TARGETACTIVITY_DFLT; | ||
2852 | data->activity_target[2] = PPELLESMERE_TARGETACTIVITY_DFLT; | ||
2853 | data->activity_target[3] = PPELLESMERE_TARGETACTIVITY_DFLT; | ||
2854 | data->activity_target[4] = PPELLESMERE_TARGETACTIVITY_DFLT; | ||
2855 | data->activity_target[5] = PPELLESMERE_TARGETACTIVITY_DFLT; | ||
2856 | data->activity_target[6] = PPELLESMERE_TARGETACTIVITY_DFLT; | ||
2857 | data->activity_target[7] = PPELLESMERE_TARGETACTIVITY_DFLT; | ||
2858 | |||
2859 | data->voting_rights_clients0 = PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT0; | ||
2860 | data->voting_rights_clients1 = PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT1; | ||
2861 | data->voting_rights_clients2 = PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT2; | ||
2862 | data->voting_rights_clients3 = PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT3; | ||
2863 | data->voting_rights_clients4 = PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT4; | ||
2864 | data->voting_rights_clients5 = PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT5; | ||
2865 | data->voting_rights_clients6 = PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT6; | ||
2866 | data->voting_rights_clients7 = PPELLESMERE_VOTINGRIGHTSCLIENTS_DFLT7; | ||
2867 | |||
2868 | data->vddc_vddci_delta = VDDC_VDDCI_DELTA; | ||
2869 | |||
2870 | data->mclk_activity_target = PPELLESMERE_MCLK_TARGETACTIVITY_DFLT; | ||
2871 | |||
2872 | /* need to set voltage control types before EVV patching */ | ||
2873 | data->voltage_control = ELLESMERE_VOLTAGE_CONTROL_NONE; | ||
2874 | data->vddci_control = ELLESMERE_VOLTAGE_CONTROL_NONE; | ||
2875 | data->mvdd_control = ELLESMERE_VOLTAGE_CONTROL_NONE; | ||
2876 | |||
2877 | if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, | ||
2878 | VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) | ||
2879 | data->voltage_control = ELLESMERE_VOLTAGE_CONTROL_BY_SVID2; | ||
2880 | |||
2881 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | ||
2882 | PHM_PlatformCaps_DynamicPatchPowerState); | ||
2883 | |||
2884 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2885 | PHM_PlatformCaps_EnableMVDDControl)) { | ||
2886 | if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, | ||
2887 | VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) | ||
2888 | data->mvdd_control = ELLESMERE_VOLTAGE_CONTROL_BY_GPIO; | ||
2889 | else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, | ||
2890 | VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) | ||
2891 | data->mvdd_control = ELLESMERE_VOLTAGE_CONTROL_BY_SVID2; | ||
2892 | } | ||
2893 | |||
2894 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
2895 | PHM_PlatformCaps_ControlVDDCI)) { | ||
2896 | if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, | ||
2897 | VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) | ||
2898 | data->vddci_control = ELLESMERE_VOLTAGE_CONTROL_BY_GPIO; | ||
2899 | else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, | ||
2900 | VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) | ||
2901 | data->vddci_control = ELLESMERE_VOLTAGE_CONTROL_BY_SVID2; | ||
2902 | } | ||
2903 | |||
2904 | ellesmere_set_features_platform_caps(hwmgr); | ||
2905 | |||
2906 | ellesmere_init_dpm_defaults(hwmgr); | ||
2907 | |||
2908 | /* Get leakage voltage based on leakage ID. */ | ||
2909 | result = ellesmere_get_evv_voltages(hwmgr); | ||
2910 | |||
2911 | if (result) { | ||
2912 | printk("Get EVV Voltage Failed. Abort Driver loading!\n"); | ||
2913 | return -1; | ||
2914 | } | ||
2915 | |||
2916 | ellesmere_complete_dependency_tables(hwmgr); | ||
2917 | ellesmere_set_private_data_based_on_pptable(hwmgr); | ||
2918 | |||
2919 | /* Initalize Dynamic State Adjustment Rule Settings */ | ||
2920 | result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr); | ||
2921 | |||
2922 | if (0 == result) { | ||
2923 | struct cgs_system_info sys_info = {0}; | ||
2924 | |||
2925 | data->is_tlu_enabled = 0; | ||
2926 | |||
2927 | hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = | ||
2928 | ELLESMERE_MAX_HARDWARE_POWERLEVELS; | ||
2929 | hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; | ||
2930 | hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; | ||
2931 | hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ | ||
2932 | /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ | ||
2933 | hwmgr->platform_descriptor.clockStep.engineClock = 500; | ||
2934 | hwmgr->platform_descriptor.clockStep.memoryClock = 500; | ||
2935 | |||
2936 | if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { | ||
2937 | temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); | ||
2938 | switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { | ||
2939 | case 0: | ||
2940 | temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); | ||
2941 | break; | ||
2942 | case 1: | ||
2943 | temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); | ||
2944 | break; | ||
2945 | case 2: | ||
2946 | temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); | ||
2947 | break; | ||
2948 | case 3: | ||
2949 | temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); | ||
2950 | break; | ||
2951 | case 4: | ||
2952 | temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); | ||
2953 | break; | ||
2954 | default: | ||
2955 | PP_ASSERT_WITH_CODE(0, | ||
2956 | "Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!", | ||
2957 | ); | ||
2958 | break; | ||
2959 | } | ||
2960 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg); | ||
2961 | } | ||
2962 | |||
2963 | sys_info.size = sizeof(struct cgs_system_info); | ||
2964 | sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO; | ||
2965 | result = cgs_query_system_info(hwmgr->device, &sys_info); | ||
2966 | if (result) | ||
2967 | data->pcie_gen_cap = 0x30007; | ||
2968 | else | ||
2969 | data->pcie_gen_cap = (uint32_t)sys_info.value; | ||
2970 | if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) | ||
2971 | data->pcie_spc_cap = 20; | ||
2972 | sys_info.size = sizeof(struct cgs_system_info); | ||
2973 | sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW; | ||
2974 | result = cgs_query_system_info(hwmgr->device, &sys_info); | ||
2975 | if (result) | ||
2976 | data->pcie_lane_cap = 0x2f0000; | ||
2977 | else | ||
2978 | data->pcie_lane_cap = (uint32_t)sys_info.value; | ||
2979 | } else { | ||
2980 | /* Ignore return value in here, we are cleaning up a mess. */ | ||
2981 | ellesmere_hwmgr_backend_fini(hwmgr); | ||
2982 | } | ||
2983 | |||
2984 | return 0; | ||
2985 | } | ||
2986 | |||
2987 | static int ellesmere_force_dpm_highest(struct pp_hwmgr *hwmgr) | ||
2988 | { | ||
2989 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
2990 | uint32_t level, tmp; | ||
2991 | |||
2992 | if (!data->pcie_dpm_key_disabled) { | ||
2993 | if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { | ||
2994 | level = 0; | ||
2995 | tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; | ||
2996 | while (tmp >>= 1) | ||
2997 | level++; | ||
2998 | |||
2999 | if (level) | ||
3000 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
3001 | PPSMC_MSG_PCIeDPM_ForceLevel, level); | ||
3002 | } | ||
3003 | } | ||
3004 | |||
3005 | if (!data->sclk_dpm_key_disabled) { | ||
3006 | if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { | ||
3007 | level = 0; | ||
3008 | tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; | ||
3009 | while (tmp >>= 1) | ||
3010 | level++; | ||
3011 | |||
3012 | if (level) | ||
3013 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
3014 | PPSMC_MSG_SCLKDPM_SetEnabledMask, | ||
3015 | (1 << level)); | ||
3016 | } | ||
3017 | } | ||
3018 | |||
3019 | if (!data->mclk_dpm_key_disabled) { | ||
3020 | if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { | ||
3021 | level = 0; | ||
3022 | tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; | ||
3023 | while (tmp >>= 1) | ||
3024 | level++; | ||
3025 | |||
3026 | if (level) | ||
3027 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
3028 | PPSMC_MSG_MCLKDPM_SetEnabledMask, | ||
3029 | (1 << level)); | ||
3030 | } | ||
3031 | } | ||
3032 | |||
3033 | return 0; | ||
3034 | } | ||
3035 | |||
3036 | static int ellesmere_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) | ||
3037 | { | ||
3038 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3039 | |||
3040 | phm_apply_dal_min_voltage_request(hwmgr); | ||
3041 | |||
3042 | if (!data->sclk_dpm_key_disabled) { | ||
3043 | if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) | ||
3044 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
3045 | PPSMC_MSG_SCLKDPM_SetEnabledMask, | ||
3046 | data->dpm_level_enable_mask.sclk_dpm_enable_mask); | ||
3047 | } | ||
3048 | |||
3049 | if (!data->mclk_dpm_key_disabled) { | ||
3050 | if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) | ||
3051 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
3052 | PPSMC_MSG_MCLKDPM_SetEnabledMask, | ||
3053 | data->dpm_level_enable_mask.mclk_dpm_enable_mask); | ||
3054 | } | ||
3055 | |||
3056 | return 0; | ||
3057 | } | ||
3058 | |||
3059 | static int ellesmere_unforce_dpm_levels(struct pp_hwmgr *hwmgr) | ||
3060 | { | ||
3061 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3062 | |||
3063 | if (!ellesmere_is_dpm_running(hwmgr)) | ||
3064 | return -EINVAL; | ||
3065 | |||
3066 | if (!data->pcie_dpm_key_disabled) { | ||
3067 | smum_send_msg_to_smc(hwmgr->smumgr, | ||
3068 | PPSMC_MSG_PCIeDPM_UnForceLevel); | ||
3069 | } | ||
3070 | |||
3071 | return ellesmere_upload_dpm_level_enable_mask(hwmgr); | ||
3072 | } | ||
3073 | |||
3074 | static int ellesmere_force_dpm_lowest(struct pp_hwmgr *hwmgr) | ||
3075 | { | ||
3076 | struct ellesmere_hwmgr *data = | ||
3077 | (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3078 | uint32_t level; | ||
3079 | |||
3080 | if (!data->sclk_dpm_key_disabled) | ||
3081 | if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { | ||
3082 | level = phm_get_lowest_enabled_level(hwmgr, | ||
3083 | data->dpm_level_enable_mask.sclk_dpm_enable_mask); | ||
3084 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
3085 | PPSMC_MSG_SCLKDPM_SetEnabledMask, | ||
3086 | (1 << level)); | ||
3087 | |||
3088 | } | ||
3089 | /* uvd is enabled, can't set mclk low right now | ||
3090 | if (!data->mclk_dpm_key_disabled) { | ||
3091 | if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { | ||
3092 | level = phm_get_lowest_enabled_level(hwmgr, | ||
3093 | data->dpm_level_enable_mask.mclk_dpm_enable_mask); | ||
3094 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
3095 | PPSMC_MSG_MCLKDPM_SetEnabledMask, | ||
3096 | (1 << level)); | ||
3097 | } | ||
3098 | } | ||
3099 | */ | ||
3100 | if (!data->pcie_dpm_key_disabled) { | ||
3101 | if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { | ||
3102 | level = phm_get_lowest_enabled_level(hwmgr, | ||
3103 | data->dpm_level_enable_mask.pcie_dpm_enable_mask); | ||
3104 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
3105 | PPSMC_MSG_PCIeDPM_ForceLevel, | ||
3106 | (level)); | ||
3107 | } | ||
3108 | } | ||
3109 | |||
3110 | return 0; | ||
3111 | |||
3112 | } | ||
3113 | static int ellesmere_force_dpm_level(struct pp_hwmgr *hwmgr, | ||
3114 | enum amd_dpm_forced_level level) | ||
3115 | { | ||
3116 | int ret = 0; | ||
3117 | |||
3118 | switch (level) { | ||
3119 | case AMD_DPM_FORCED_LEVEL_HIGH: | ||
3120 | ret = ellesmere_force_dpm_highest(hwmgr); | ||
3121 | if (ret) | ||
3122 | return ret; | ||
3123 | break; | ||
3124 | case AMD_DPM_FORCED_LEVEL_LOW: | ||
3125 | ret = ellesmere_force_dpm_lowest(hwmgr); | ||
3126 | if (ret) | ||
3127 | return ret; | ||
3128 | break; | ||
3129 | case AMD_DPM_FORCED_LEVEL_AUTO: | ||
3130 | ret = ellesmere_unforce_dpm_levels(hwmgr); | ||
3131 | if (ret) | ||
3132 | return ret; | ||
3133 | break; | ||
3134 | default: | ||
3135 | break; | ||
3136 | } | ||
3137 | |||
3138 | hwmgr->dpm_level = level; | ||
3139 | |||
3140 | return ret; | ||
3141 | } | ||
3142 | |||
3143 | static int ellesmere_get_power_state_size(struct pp_hwmgr *hwmgr) | ||
3144 | { | ||
3145 | return sizeof(struct ellesmere_power_state); | ||
3146 | } | ||
3147 | |||
3148 | |||
3149 | static int ellesmere_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, | ||
3150 | struct pp_power_state *request_ps, | ||
3151 | const struct pp_power_state *current_ps) | ||
3152 | { | ||
3153 | |||
3154 | struct ellesmere_power_state *ellesmere_ps = | ||
3155 | cast_phw_ellesmere_power_state(&request_ps->hardware); | ||
3156 | uint32_t sclk; | ||
3157 | uint32_t mclk; | ||
3158 | struct PP_Clocks minimum_clocks = {0}; | ||
3159 | bool disable_mclk_switching; | ||
3160 | bool disable_mclk_switching_for_frame_lock; | ||
3161 | struct cgs_display_info info = {0}; | ||
3162 | const struct phm_clock_and_voltage_limits *max_limits; | ||
3163 | uint32_t i; | ||
3164 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3165 | struct phm_ppt_v1_information *table_info = | ||
3166 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
3167 | int32_t count; | ||
3168 | int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; | ||
3169 | |||
3170 | data->battery_state = (PP_StateUILabel_Battery == | ||
3171 | request_ps->classification.ui_label); | ||
3172 | |||
3173 | PP_ASSERT_WITH_CODE(ellesmere_ps->performance_level_count == 2, | ||
3174 | "VI should always have 2 performance levels", | ||
3175 | ); | ||
3176 | |||
3177 | max_limits = (PP_PowerSource_AC == hwmgr->power_source) ? | ||
3178 | &(hwmgr->dyn_state.max_clock_voltage_on_ac) : | ||
3179 | &(hwmgr->dyn_state.max_clock_voltage_on_dc); | ||
3180 | |||
3181 | /* Cap clock DPM tables at DC MAX if it is in DC. */ | ||
3182 | if (PP_PowerSource_DC == hwmgr->power_source) { | ||
3183 | for (i = 0; i < ellesmere_ps->performance_level_count; i++) { | ||
3184 | if (ellesmere_ps->performance_levels[i].memory_clock > max_limits->mclk) | ||
3185 | ellesmere_ps->performance_levels[i].memory_clock = max_limits->mclk; | ||
3186 | if (ellesmere_ps->performance_levels[i].engine_clock > max_limits->sclk) | ||
3187 | ellesmere_ps->performance_levels[i].engine_clock = max_limits->sclk; | ||
3188 | } | ||
3189 | } | ||
3190 | |||
3191 | ellesmere_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk; | ||
3192 | ellesmere_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk; | ||
3193 | |||
3194 | cgs_get_active_displays_info(hwmgr->device, &info); | ||
3195 | |||
3196 | /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ | ||
3197 | |||
3198 | /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */ | ||
3199 | |||
3200 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
3201 | PHM_PlatformCaps_StablePState)) { | ||
3202 | max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); | ||
3203 | stable_pstate_sclk = (max_limits->sclk * 75) / 100; | ||
3204 | |||
3205 | for (count = table_info->vdd_dep_on_sclk->count - 1; | ||
3206 | count >= 0; count--) { | ||
3207 | if (stable_pstate_sclk >= | ||
3208 | table_info->vdd_dep_on_sclk->entries[count].clk) { | ||
3209 | stable_pstate_sclk = | ||
3210 | table_info->vdd_dep_on_sclk->entries[count].clk; | ||
3211 | break; | ||
3212 | } | ||
3213 | } | ||
3214 | |||
3215 | if (count < 0) | ||
3216 | stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; | ||
3217 | |||
3218 | stable_pstate_mclk = max_limits->mclk; | ||
3219 | |||
3220 | minimum_clocks.engineClock = stable_pstate_sclk; | ||
3221 | minimum_clocks.memoryClock = stable_pstate_mclk; | ||
3222 | } | ||
3223 | |||
3224 | if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk) | ||
3225 | minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk; | ||
3226 | |||
3227 | if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk) | ||
3228 | minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk; | ||
3229 | |||
3230 | ellesmere_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold; | ||
3231 | |||
3232 | if (0 != hwmgr->gfx_arbiter.sclk_over_drive) { | ||
3233 | PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= | ||
3234 | hwmgr->platform_descriptor.overdriveLimit.engineClock), | ||
3235 | "Overdrive sclk exceeds limit", | ||
3236 | hwmgr->gfx_arbiter.sclk_over_drive = | ||
3237 | hwmgr->platform_descriptor.overdriveLimit.engineClock); | ||
3238 | |||
3239 | if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk) | ||
3240 | ellesmere_ps->performance_levels[1].engine_clock = | ||
3241 | hwmgr->gfx_arbiter.sclk_over_drive; | ||
3242 | } | ||
3243 | |||
3244 | if (0 != hwmgr->gfx_arbiter.mclk_over_drive) { | ||
3245 | PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= | ||
3246 | hwmgr->platform_descriptor.overdriveLimit.memoryClock), | ||
3247 | "Overdrive mclk exceeds limit", | ||
3248 | hwmgr->gfx_arbiter.mclk_over_drive = | ||
3249 | hwmgr->platform_descriptor.overdriveLimit.memoryClock); | ||
3250 | |||
3251 | if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk) | ||
3252 | ellesmere_ps->performance_levels[1].memory_clock = | ||
3253 | hwmgr->gfx_arbiter.mclk_over_drive; | ||
3254 | } | ||
3255 | |||
3256 | disable_mclk_switching_for_frame_lock = phm_cap_enabled( | ||
3257 | hwmgr->platform_descriptor.platformCaps, | ||
3258 | PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); | ||
3259 | |||
3260 | disable_mclk_switching = (1 < info.display_count) || | ||
3261 | disable_mclk_switching_for_frame_lock; | ||
3262 | |||
3263 | sclk = ellesmere_ps->performance_levels[0].engine_clock; | ||
3264 | mclk = ellesmere_ps->performance_levels[0].memory_clock; | ||
3265 | |||
3266 | if (disable_mclk_switching) | ||
3267 | mclk = ellesmere_ps->performance_levels | ||
3268 | [ellesmere_ps->performance_level_count - 1].memory_clock; | ||
3269 | |||
3270 | if (sclk < minimum_clocks.engineClock) | ||
3271 | sclk = (minimum_clocks.engineClock > max_limits->sclk) ? | ||
3272 | max_limits->sclk : minimum_clocks.engineClock; | ||
3273 | |||
3274 | if (mclk < minimum_clocks.memoryClock) | ||
3275 | mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? | ||
3276 | max_limits->mclk : minimum_clocks.memoryClock; | ||
3277 | |||
3278 | ellesmere_ps->performance_levels[0].engine_clock = sclk; | ||
3279 | ellesmere_ps->performance_levels[0].memory_clock = mclk; | ||
3280 | |||
3281 | ellesmere_ps->performance_levels[1].engine_clock = | ||
3282 | (ellesmere_ps->performance_levels[1].engine_clock >= | ||
3283 | ellesmere_ps->performance_levels[0].engine_clock) ? | ||
3284 | ellesmere_ps->performance_levels[1].engine_clock : | ||
3285 | ellesmere_ps->performance_levels[0].engine_clock; | ||
3286 | |||
3287 | if (disable_mclk_switching) { | ||
3288 | if (mclk < ellesmere_ps->performance_levels[1].memory_clock) | ||
3289 | mclk = ellesmere_ps->performance_levels[1].memory_clock; | ||
3290 | |||
3291 | ellesmere_ps->performance_levels[0].memory_clock = mclk; | ||
3292 | ellesmere_ps->performance_levels[1].memory_clock = mclk; | ||
3293 | } else { | ||
3294 | if (ellesmere_ps->performance_levels[1].memory_clock < | ||
3295 | ellesmere_ps->performance_levels[0].memory_clock) | ||
3296 | ellesmere_ps->performance_levels[1].memory_clock = | ||
3297 | ellesmere_ps->performance_levels[0].memory_clock; | ||
3298 | } | ||
3299 | |||
3300 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
3301 | PHM_PlatformCaps_StablePState)) { | ||
3302 | for (i = 0; i < ellesmere_ps->performance_level_count; i++) { | ||
3303 | ellesmere_ps->performance_levels[i].engine_clock = stable_pstate_sclk; | ||
3304 | ellesmere_ps->performance_levels[i].memory_clock = stable_pstate_mclk; | ||
3305 | ellesmere_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; | ||
3306 | ellesmere_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; | ||
3307 | } | ||
3308 | } | ||
3309 | return 0; | ||
3310 | } | ||
3311 | |||
3312 | |||
3313 | static int ellesmere_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) | ||
3314 | { | ||
3315 | struct pp_power_state *ps; | ||
3316 | struct ellesmere_power_state *ellesmere_ps; | ||
3317 | |||
3318 | if (hwmgr == NULL) | ||
3319 | return -EINVAL; | ||
3320 | |||
3321 | ps = hwmgr->request_ps; | ||
3322 | |||
3323 | if (ps == NULL) | ||
3324 | return -EINVAL; | ||
3325 | |||
3326 | ellesmere_ps = cast_phw_ellesmere_power_state(&ps->hardware); | ||
3327 | |||
3328 | if (low) | ||
3329 | return ellesmere_ps->performance_levels[0].memory_clock; | ||
3330 | else | ||
3331 | return ellesmere_ps->performance_levels | ||
3332 | [ellesmere_ps->performance_level_count-1].memory_clock; | ||
3333 | } | ||
3334 | |||
3335 | static int ellesmere_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) | ||
3336 | { | ||
3337 | struct pp_power_state *ps; | ||
3338 | struct ellesmere_power_state *ellesmere_ps; | ||
3339 | |||
3340 | if (hwmgr == NULL) | ||
3341 | return -EINVAL; | ||
3342 | |||
3343 | ps = hwmgr->request_ps; | ||
3344 | |||
3345 | if (ps == NULL) | ||
3346 | return -EINVAL; | ||
3347 | |||
3348 | ellesmere_ps = cast_phw_ellesmere_power_state(&ps->hardware); | ||
3349 | |||
3350 | if (low) | ||
3351 | return ellesmere_ps->performance_levels[0].engine_clock; | ||
3352 | else | ||
3353 | return ellesmere_ps->performance_levels | ||
3354 | [ellesmere_ps->performance_level_count-1].engine_clock; | ||
3355 | } | ||
3356 | |||
3357 | static int ellesmere_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, | ||
3358 | struct pp_hw_power_state *hw_ps) | ||
3359 | { | ||
3360 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3361 | struct ellesmere_power_state *ps = (struct ellesmere_power_state *)hw_ps; | ||
3362 | ATOM_FIRMWARE_INFO_V2_2 *fw_info; | ||
3363 | uint16_t size; | ||
3364 | uint8_t frev, crev; | ||
3365 | int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); | ||
3366 | |||
3367 | /* First retrieve the Boot clocks and VDDC from the firmware info table. | ||
3368 | * We assume here that fw_info is unchanged if this call fails. | ||
3369 | */ | ||
3370 | fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table( | ||
3371 | hwmgr->device, index, | ||
3372 | &size, &frev, &crev); | ||
3373 | if (!fw_info) | ||
3374 | /* During a test, there is no firmware info table. */ | ||
3375 | return 0; | ||
3376 | |||
3377 | /* Patch the state. */ | ||
3378 | data->vbios_boot_state.sclk_bootup_value = | ||
3379 | le32_to_cpu(fw_info->ulDefaultEngineClock); | ||
3380 | data->vbios_boot_state.mclk_bootup_value = | ||
3381 | le32_to_cpu(fw_info->ulDefaultMemoryClock); | ||
3382 | data->vbios_boot_state.mvdd_bootup_value = | ||
3383 | le16_to_cpu(fw_info->usBootUpMVDDCVoltage); | ||
3384 | data->vbios_boot_state.vddc_bootup_value = | ||
3385 | le16_to_cpu(fw_info->usBootUpVDDCVoltage); | ||
3386 | data->vbios_boot_state.vddci_bootup_value = | ||
3387 | le16_to_cpu(fw_info->usBootUpVDDCIVoltage); | ||
3388 | data->vbios_boot_state.pcie_gen_bootup_value = | ||
3389 | phm_get_current_pcie_speed(hwmgr); | ||
3390 | |||
3391 | data->vbios_boot_state.pcie_lane_bootup_value = | ||
3392 | (uint16_t)phm_get_current_pcie_lane_number(hwmgr); | ||
3393 | |||
3394 | /* set boot power state */ | ||
3395 | ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; | ||
3396 | ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; | ||
3397 | ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; | ||
3398 | ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; | ||
3399 | |||
3400 | return 0; | ||
3401 | } | ||
3402 | |||
3403 | static int ellesmere_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, | ||
3404 | void *state, struct pp_power_state *power_state, | ||
3405 | void *pp_table, uint32_t classification_flag) | ||
3406 | { | ||
3407 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3408 | struct ellesmere_power_state *ellesmere_power_state = | ||
3409 | (struct ellesmere_power_state *)(&(power_state->hardware)); | ||
3410 | struct ellesmere_performance_level *performance_level; | ||
3411 | ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; | ||
3412 | ATOM_Tonga_POWERPLAYTABLE *powerplay_table = | ||
3413 | (ATOM_Tonga_POWERPLAYTABLE *)pp_table; | ||
3414 | ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = | ||
3415 | (ATOM_Tonga_SCLK_Dependency_Table *) | ||
3416 | (((unsigned long)powerplay_table) + | ||
3417 | le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); | ||
3418 | ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = | ||
3419 | (ATOM_Tonga_MCLK_Dependency_Table *) | ||
3420 | (((unsigned long)powerplay_table) + | ||
3421 | le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); | ||
3422 | |||
3423 | /* The following fields are not initialized here: id orderedList allStatesList */ | ||
3424 | power_state->classification.ui_label = | ||
3425 | (le16_to_cpu(state_entry->usClassification) & | ||
3426 | ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> | ||
3427 | ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; | ||
3428 | power_state->classification.flags = classification_flag; | ||
3429 | /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ | ||
3430 | |||
3431 | power_state->classification.temporary_state = false; | ||
3432 | power_state->classification.to_be_deleted = false; | ||
3433 | |||
3434 | power_state->validation.disallowOnDC = | ||
3435 | (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & | ||
3436 | ATOM_Tonga_DISALLOW_ON_DC)); | ||
3437 | |||
3438 | power_state->pcie.lanes = 0; | ||
3439 | |||
3440 | power_state->display.disableFrameModulation = false; | ||
3441 | power_state->display.limitRefreshrate = false; | ||
3442 | power_state->display.enableVariBright = | ||
3443 | (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & | ||
3444 | ATOM_Tonga_ENABLE_VARIBRIGHT)); | ||
3445 | |||
3446 | power_state->validation.supportedPowerLevels = 0; | ||
3447 | power_state->uvd_clocks.VCLK = 0; | ||
3448 | power_state->uvd_clocks.DCLK = 0; | ||
3449 | power_state->temperatures.min = 0; | ||
3450 | power_state->temperatures.max = 0; | ||
3451 | |||
3452 | performance_level = &(ellesmere_power_state->performance_levels | ||
3453 | [ellesmere_power_state->performance_level_count++]); | ||
3454 | |||
3455 | PP_ASSERT_WITH_CODE( | ||
3456 | (ellesmere_power_state->performance_level_count < SMU74_MAX_LEVELS_GRAPHICS), | ||
3457 | "Performance levels exceeds SMC limit!", | ||
3458 | return -1); | ||
3459 | |||
3460 | PP_ASSERT_WITH_CODE( | ||
3461 | (ellesmere_power_state->performance_level_count <= | ||
3462 | hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), | ||
3463 | "Performance levels exceeds Driver limit!", | ||
3464 | return -1); | ||
3465 | |||
3466 | /* Performance levels are arranged from low to high. */ | ||
3467 | performance_level->memory_clock = mclk_dep_table->entries | ||
3468 | [state_entry->ucMemoryClockIndexLow].ulMclk; | ||
3469 | performance_level->engine_clock = sclk_dep_table->entries | ||
3470 | [state_entry->ucEngineClockIndexLow].ulSclk; | ||
3471 | performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, | ||
3472 | state_entry->ucPCIEGenLow); | ||
3473 | performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, | ||
3474 | state_entry->ucPCIELaneHigh); | ||
3475 | |||
3476 | performance_level = &(ellesmere_power_state->performance_levels | ||
3477 | [ellesmere_power_state->performance_level_count++]); | ||
3478 | performance_level->memory_clock = mclk_dep_table->entries | ||
3479 | [state_entry->ucMemoryClockIndexHigh].ulMclk; | ||
3480 | performance_level->engine_clock = sclk_dep_table->entries | ||
3481 | [state_entry->ucEngineClockIndexHigh].ulSclk; | ||
3482 | performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, | ||
3483 | state_entry->ucPCIEGenHigh); | ||
3484 | performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, | ||
3485 | state_entry->ucPCIELaneHigh); | ||
3486 | |||
3487 | return 0; | ||
3488 | } | ||
3489 | |||
3490 | static int ellesmere_get_pp_table_entry(struct pp_hwmgr *hwmgr, | ||
3491 | unsigned long entry_index, struct pp_power_state *state) | ||
3492 | { | ||
3493 | int result; | ||
3494 | struct ellesmere_power_state *ps; | ||
3495 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3496 | struct phm_ppt_v1_information *table_info = | ||
3497 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
3498 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = | ||
3499 | table_info->vdd_dep_on_mclk; | ||
3500 | |||
3501 | state->hardware.magic = PHM_VIslands_Magic; | ||
3502 | |||
3503 | ps = (struct ellesmere_power_state *)(&state->hardware); | ||
3504 | |||
3505 | result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state, | ||
3506 | ellesmere_get_pp_table_entry_callback_func); | ||
3507 | |||
3508 | /* This is the earliest time we have all the dependency table and the VBIOS boot state | ||
3509 | * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state | ||
3510 | * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state | ||
3511 | */ | ||
3512 | if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { | ||
3513 | if (dep_mclk_table->entries[0].clk != | ||
3514 | data->vbios_boot_state.mclk_bootup_value) | ||
3515 | printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table " | ||
3516 | "does not match VBIOS boot MCLK level"); | ||
3517 | if (dep_mclk_table->entries[0].vddci != | ||
3518 | data->vbios_boot_state.vddci_bootup_value) | ||
3519 | printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table " | ||
3520 | "does not match VBIOS boot VDDCI level"); | ||
3521 | } | ||
3522 | |||
3523 | /* set DC compatible flag if this state supports DC */ | ||
3524 | if (!state->validation.disallowOnDC) | ||
3525 | ps->dc_compatible = true; | ||
3526 | |||
3527 | if (state->classification.flags & PP_StateClassificationFlag_ACPI) | ||
3528 | data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; | ||
3529 | |||
3530 | ps->uvd_clks.vclk = state->uvd_clocks.VCLK; | ||
3531 | ps->uvd_clks.dclk = state->uvd_clocks.DCLK; | ||
3532 | |||
3533 | if (!result) { | ||
3534 | uint32_t i; | ||
3535 | |||
3536 | switch (state->classification.ui_label) { | ||
3537 | case PP_StateUILabel_Performance: | ||
3538 | data->use_pcie_performance_levels = true; | ||
3539 | |||
3540 | for (i = 0; i < ps->performance_level_count; i++) { | ||
3541 | if (data->pcie_gen_performance.max < | ||
3542 | ps->performance_levels[i].pcie_gen) | ||
3543 | data->pcie_gen_performance.max = | ||
3544 | ps->performance_levels[i].pcie_gen; | ||
3545 | |||
3546 | if (data->pcie_gen_performance.min > | ||
3547 | ps->performance_levels[i].pcie_gen) | ||
3548 | data->pcie_gen_performance.min = | ||
3549 | ps->performance_levels[i].pcie_gen; | ||
3550 | |||
3551 | if (data->pcie_lane_performance.max < | ||
3552 | ps->performance_levels[i].pcie_lane) | ||
3553 | data->pcie_lane_performance.max = | ||
3554 | ps->performance_levels[i].pcie_lane; | ||
3555 | |||
3556 | if (data->pcie_lane_performance.min > | ||
3557 | ps->performance_levels[i].pcie_lane) | ||
3558 | data->pcie_lane_performance.min = | ||
3559 | ps->performance_levels[i].pcie_lane; | ||
3560 | } | ||
3561 | break; | ||
3562 | case PP_StateUILabel_Battery: | ||
3563 | data->use_pcie_power_saving_levels = true; | ||
3564 | |||
3565 | for (i = 0; i < ps->performance_level_count; i++) { | ||
3566 | if (data->pcie_gen_power_saving.max < | ||
3567 | ps->performance_levels[i].pcie_gen) | ||
3568 | data->pcie_gen_power_saving.max = | ||
3569 | ps->performance_levels[i].pcie_gen; | ||
3570 | |||
3571 | if (data->pcie_gen_power_saving.min > | ||
3572 | ps->performance_levels[i].pcie_gen) | ||
3573 | data->pcie_gen_power_saving.min = | ||
3574 | ps->performance_levels[i].pcie_gen; | ||
3575 | |||
3576 | if (data->pcie_lane_power_saving.max < | ||
3577 | ps->performance_levels[i].pcie_lane) | ||
3578 | data->pcie_lane_power_saving.max = | ||
3579 | ps->performance_levels[i].pcie_lane; | ||
3580 | |||
3581 | if (data->pcie_lane_power_saving.min > | ||
3582 | ps->performance_levels[i].pcie_lane) | ||
3583 | data->pcie_lane_power_saving.min = | ||
3584 | ps->performance_levels[i].pcie_lane; | ||
3585 | } | ||
3586 | break; | ||
3587 | default: | ||
3588 | break; | ||
3589 | } | ||
3590 | } | ||
3591 | return 0; | ||
3592 | } | ||
3593 | |||
3594 | static void | ||
3595 | ellesmere_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m) | ||
3596 | { | ||
3597 | uint32_t sclk, mclk; | ||
3598 | |||
3599 | smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency); | ||
3600 | |||
3601 | sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); | ||
3602 | |||
3603 | smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency); | ||
3604 | |||
3605 | mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); | ||
3606 | seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", | ||
3607 | mclk / 100, sclk / 100); | ||
3608 | } | ||
3609 | |||
3610 | static int ellesmere_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) | ||
3611 | { | ||
3612 | const struct phm_set_power_state_input *states = | ||
3613 | (const struct phm_set_power_state_input *)input; | ||
3614 | const struct ellesmere_power_state *ellesmere_ps = | ||
3615 | cast_const_phw_ellesmere_power_state(states->pnew_state); | ||
3616 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3617 | struct ellesmere_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); | ||
3618 | uint32_t sclk = ellesmere_ps->performance_levels | ||
3619 | [ellesmere_ps->performance_level_count - 1].engine_clock; | ||
3620 | struct ellesmere_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); | ||
3621 | uint32_t mclk = ellesmere_ps->performance_levels | ||
3622 | [ellesmere_ps->performance_level_count - 1].memory_clock; | ||
3623 | struct PP_Clocks min_clocks = {0}; | ||
3624 | uint32_t i; | ||
3625 | struct cgs_display_info info = {0}; | ||
3626 | |||
3627 | data->need_update_smu7_dpm_table = 0; | ||
3628 | |||
3629 | for (i = 0; i < sclk_table->count; i++) { | ||
3630 | if (sclk == sclk_table->dpm_levels[i].value) | ||
3631 | break; | ||
3632 | } | ||
3633 | |||
3634 | if (i >= sclk_table->count) | ||
3635 | data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; | ||
3636 | else { | ||
3637 | /* TODO: Check SCLK in DAL's minimum clocks | ||
3638 | * in case DeepSleep divider update is required. | ||
3639 | */ | ||
3640 | if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR) | ||
3641 | data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; | ||
3642 | } | ||
3643 | |||
3644 | for (i = 0; i < mclk_table->count; i++) { | ||
3645 | if (mclk == mclk_table->dpm_levels[i].value) | ||
3646 | break; | ||
3647 | } | ||
3648 | |||
3649 | if (i >= mclk_table->count) | ||
3650 | data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; | ||
3651 | |||
3652 | cgs_get_active_displays_info(hwmgr->device, &info); | ||
3653 | |||
3654 | if (data->display_timing.num_existing_displays != info.display_count) | ||
3655 | data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; | ||
3656 | |||
3657 | return 0; | ||
3658 | } | ||
3659 | |||
3660 | static uint16_t ellesmere_get_maximum_link_speed(struct pp_hwmgr *hwmgr, | ||
3661 | const struct ellesmere_power_state *ellesmere_ps) | ||
3662 | { | ||
3663 | uint32_t i; | ||
3664 | uint32_t sclk, max_sclk = 0; | ||
3665 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3666 | struct ellesmere_dpm_table *dpm_table = &data->dpm_table; | ||
3667 | |||
3668 | for (i = 0; i < ellesmere_ps->performance_level_count; i++) { | ||
3669 | sclk = ellesmere_ps->performance_levels[i].engine_clock; | ||
3670 | if (max_sclk < sclk) | ||
3671 | max_sclk = sclk; | ||
3672 | } | ||
3673 | |||
3674 | for (i = 0; i < dpm_table->sclk_table.count; i++) { | ||
3675 | if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk) | ||
3676 | return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ? | ||
3677 | dpm_table->pcie_speed_table.dpm_levels | ||
3678 | [dpm_table->pcie_speed_table.count - 1].value : | ||
3679 | dpm_table->pcie_speed_table.dpm_levels[i].value); | ||
3680 | } | ||
3681 | |||
3682 | return 0; | ||
3683 | } | ||
3684 | |||
3685 | static int ellesmere_request_link_speed_change_before_state_change( | ||
3686 | struct pp_hwmgr *hwmgr, const void *input) | ||
3687 | { | ||
3688 | const struct phm_set_power_state_input *states = | ||
3689 | (const struct phm_set_power_state_input *)input; | ||
3690 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3691 | const struct ellesmere_power_state *ellesmere_nps = | ||
3692 | cast_const_phw_ellesmere_power_state(states->pnew_state); | ||
3693 | const struct ellesmere_power_state *ellesmere_cps = | ||
3694 | cast_const_phw_ellesmere_power_state(states->pcurrent_state); | ||
3695 | |||
3696 | uint16_t target_link_speed = ellesmere_get_maximum_link_speed(hwmgr, ellesmere_nps); | ||
3697 | uint16_t current_link_speed; | ||
3698 | |||
3699 | if (data->force_pcie_gen == PP_PCIEGenInvalid) | ||
3700 | current_link_speed = ellesmere_get_maximum_link_speed(hwmgr, ellesmere_cps); | ||
3701 | else | ||
3702 | current_link_speed = data->force_pcie_gen; | ||
3703 | |||
3704 | data->force_pcie_gen = PP_PCIEGenInvalid; | ||
3705 | data->pspp_notify_required = false; | ||
3706 | |||
3707 | if (target_link_speed > current_link_speed) { | ||
3708 | switch (target_link_speed) { | ||
3709 | case PP_PCIEGen3: | ||
3710 | if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false)) | ||
3711 | break; | ||
3712 | data->force_pcie_gen = PP_PCIEGen2; | ||
3713 | if (current_link_speed == PP_PCIEGen2) | ||
3714 | break; | ||
3715 | case PP_PCIEGen2: | ||
3716 | if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false)) | ||
3717 | break; | ||
3718 | default: | ||
3719 | data->force_pcie_gen = phm_get_current_pcie_speed(hwmgr); | ||
3720 | break; | ||
3721 | } | ||
3722 | } else { | ||
3723 | if (target_link_speed < current_link_speed) | ||
3724 | data->pspp_notify_required = true; | ||
3725 | } | ||
3726 | |||
3727 | return 0; | ||
3728 | } | ||
3729 | |||
3730 | static int ellesmere_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) | ||
3731 | { | ||
3732 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3733 | |||
3734 | if (0 == data->need_update_smu7_dpm_table) | ||
3735 | return 0; | ||
3736 | |||
3737 | if ((0 == data->sclk_dpm_key_disabled) && | ||
3738 | (data->need_update_smu7_dpm_table & | ||
3739 | (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { | ||
3740 | PP_ASSERT_WITH_CODE(true == ellesmere_is_dpm_running(hwmgr), | ||
3741 | "Trying to freeze SCLK DPM when DPM is disabled", | ||
3742 | ); | ||
3743 | PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, | ||
3744 | PPSMC_MSG_SCLKDPM_FreezeLevel), | ||
3745 | "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", | ||
3746 | return -1); | ||
3747 | } | ||
3748 | |||
3749 | if ((0 == data->mclk_dpm_key_disabled) && | ||
3750 | (data->need_update_smu7_dpm_table & | ||
3751 | DPMTABLE_OD_UPDATE_MCLK)) { | ||
3752 | PP_ASSERT_WITH_CODE(true == ellesmere_is_dpm_running(hwmgr), | ||
3753 | "Trying to freeze MCLK DPM when DPM is disabled", | ||
3754 | ); | ||
3755 | PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, | ||
3756 | PPSMC_MSG_MCLKDPM_FreezeLevel), | ||
3757 | "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", | ||
3758 | return -1); | ||
3759 | } | ||
3760 | |||
3761 | return 0; | ||
3762 | } | ||
3763 | |||
3764 | static int ellesmere_populate_and_upload_sclk_mclk_dpm_levels( | ||
3765 | struct pp_hwmgr *hwmgr, const void *input) | ||
3766 | { | ||
3767 | int result = 0; | ||
3768 | const struct phm_set_power_state_input *states = | ||
3769 | (const struct phm_set_power_state_input *)input; | ||
3770 | const struct ellesmere_power_state *ellesmere_ps = | ||
3771 | cast_const_phw_ellesmere_power_state(states->pnew_state); | ||
3772 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3773 | uint32_t sclk = ellesmere_ps->performance_levels | ||
3774 | [ellesmere_ps->performance_level_count - 1].engine_clock; | ||
3775 | uint32_t mclk = ellesmere_ps->performance_levels | ||
3776 | [ellesmere_ps->performance_level_count - 1].memory_clock; | ||
3777 | struct ellesmere_dpm_table *dpm_table = &data->dpm_table; | ||
3778 | |||
3779 | struct ellesmere_dpm_table *golden_dpm_table = &data->golden_dpm_table; | ||
3780 | uint32_t dpm_count, clock_percent; | ||
3781 | uint32_t i; | ||
3782 | |||
3783 | if (0 == data->need_update_smu7_dpm_table) | ||
3784 | return 0; | ||
3785 | |||
3786 | if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { | ||
3787 | dpm_table->sclk_table.dpm_levels | ||
3788 | [dpm_table->sclk_table.count - 1].value = sclk; | ||
3789 | |||
3790 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || | ||
3791 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { | ||
3792 | /* Need to do calculation based on the golden DPM table | ||
3793 | * as the Heatmap GPU Clock axis is also based on the default values | ||
3794 | */ | ||
3795 | PP_ASSERT_WITH_CODE( | ||
3796 | (golden_dpm_table->sclk_table.dpm_levels | ||
3797 | [golden_dpm_table->sclk_table.count - 1].value != 0), | ||
3798 | "Divide by 0!", | ||
3799 | return -1); | ||
3800 | dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2; | ||
3801 | |||
3802 | for (i = dpm_count; i > 1; i--) { | ||
3803 | if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) { | ||
3804 | clock_percent = | ||
3805 | ((sclk | ||
3806 | - golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value | ||
3807 | ) * 100) | ||
3808 | / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value; | ||
3809 | |||
3810 | dpm_table->sclk_table.dpm_levels[i].value = | ||
3811 | golden_dpm_table->sclk_table.dpm_levels[i].value + | ||
3812 | (golden_dpm_table->sclk_table.dpm_levels[i].value * | ||
3813 | clock_percent)/100; | ||
3814 | |||
3815 | } else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) { | ||
3816 | clock_percent = | ||
3817 | ((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value | ||
3818 | - sclk) * 100) | ||
3819 | / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value; | ||
3820 | |||
3821 | dpm_table->sclk_table.dpm_levels[i].value = | ||
3822 | golden_dpm_table->sclk_table.dpm_levels[i].value - | ||
3823 | (golden_dpm_table->sclk_table.dpm_levels[i].value * | ||
3824 | clock_percent) / 100; | ||
3825 | } else | ||
3826 | dpm_table->sclk_table.dpm_levels[i].value = | ||
3827 | golden_dpm_table->sclk_table.dpm_levels[i].value; | ||
3828 | } | ||
3829 | } | ||
3830 | } | ||
3831 | |||
3832 | if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { | ||
3833 | dpm_table->mclk_table.dpm_levels | ||
3834 | [dpm_table->mclk_table.count - 1].value = mclk; | ||
3835 | |||
3836 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || | ||
3837 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { | ||
3838 | |||
3839 | PP_ASSERT_WITH_CODE( | ||
3840 | (golden_dpm_table->mclk_table.dpm_levels | ||
3841 | [golden_dpm_table->mclk_table.count-1].value != 0), | ||
3842 | "Divide by 0!", | ||
3843 | return -1); | ||
3844 | dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2; | ||
3845 | for (i = dpm_count; i > 1; i--) { | ||
3846 | if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) { | ||
3847 | clock_percent = ((mclk - | ||
3848 | golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100) | ||
3849 | / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value; | ||
3850 | |||
3851 | dpm_table->mclk_table.dpm_levels[i].value = | ||
3852 | golden_dpm_table->mclk_table.dpm_levels[i].value + | ||
3853 | (golden_dpm_table->mclk_table.dpm_levels[i].value * | ||
3854 | clock_percent) / 100; | ||
3855 | |||
3856 | } else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) { | ||
3857 | clock_percent = ( | ||
3858 | (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk) | ||
3859 | * 100) | ||
3860 | / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value; | ||
3861 | |||
3862 | dpm_table->mclk_table.dpm_levels[i].value = | ||
3863 | golden_dpm_table->mclk_table.dpm_levels[i].value - | ||
3864 | (golden_dpm_table->mclk_table.dpm_levels[i].value * | ||
3865 | clock_percent) / 100; | ||
3866 | } else | ||
3867 | dpm_table->mclk_table.dpm_levels[i].value = | ||
3868 | golden_dpm_table->mclk_table.dpm_levels[i].value; | ||
3869 | } | ||
3870 | } | ||
3871 | } | ||
3872 | |||
3873 | if (data->need_update_smu7_dpm_table & | ||
3874 | (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { | ||
3875 | result = ellesmere_populate_all_graphic_levels(hwmgr); | ||
3876 | PP_ASSERT_WITH_CODE((0 == result), | ||
3877 | "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", | ||
3878 | return result); | ||
3879 | } | ||
3880 | |||
3881 | if (data->need_update_smu7_dpm_table & | ||
3882 | (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { | ||
3883 | /*populate MCLK dpm table to SMU7 */ | ||
3884 | result = ellesmere_populate_all_memory_levels(hwmgr); | ||
3885 | PP_ASSERT_WITH_CODE((0 == result), | ||
3886 | "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", | ||
3887 | return result); | ||
3888 | } | ||
3889 | |||
3890 | return result; | ||
3891 | } | ||
3892 | |||
3893 | static int ellesmere_trim_single_dpm_states(struct pp_hwmgr *hwmgr, | ||
3894 | struct ellesmere_single_dpm_table *dpm_table, | ||
3895 | uint32_t low_limit, uint32_t high_limit) | ||
3896 | { | ||
3897 | uint32_t i; | ||
3898 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3899 | |||
3900 | for (i = 0; i < dpm_table->count; i++) { | ||
3901 | if ((dpm_table->dpm_levels[i].value < low_limit) | ||
3902 | || (dpm_table->dpm_levels[i].value > high_limit)) | ||
3903 | dpm_table->dpm_levels[i].enabled = false; | ||
3904 | else if (((1 << i) & data->disable_dpm_mask) == 0) | ||
3905 | dpm_table->dpm_levels[i].enabled = false; | ||
3906 | else | ||
3907 | dpm_table->dpm_levels[i].enabled = true; | ||
3908 | } | ||
3909 | |||
3910 | return 0; | ||
3911 | } | ||
3912 | |||
3913 | static int ellesmere_trim_dpm_states(struct pp_hwmgr *hwmgr, | ||
3914 | const struct ellesmere_power_state *ellesmere_ps) | ||
3915 | { | ||
3916 | int result = 0; | ||
3917 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3918 | uint32_t high_limit_count; | ||
3919 | |||
3920 | PP_ASSERT_WITH_CODE((ellesmere_ps->performance_level_count >= 1), | ||
3921 | "power state did not have any performance level", | ||
3922 | return -1); | ||
3923 | |||
3924 | high_limit_count = (1 == ellesmere_ps->performance_level_count) ? 0 : 1; | ||
3925 | |||
3926 | ellesmere_trim_single_dpm_states(hwmgr, | ||
3927 | &(data->dpm_table.sclk_table), | ||
3928 | ellesmere_ps->performance_levels[0].engine_clock, | ||
3929 | ellesmere_ps->performance_levels[high_limit_count].engine_clock); | ||
3930 | |||
3931 | ellesmere_trim_single_dpm_states(hwmgr, | ||
3932 | &(data->dpm_table.mclk_table), | ||
3933 | ellesmere_ps->performance_levels[0].memory_clock, | ||
3934 | ellesmere_ps->performance_levels[high_limit_count].memory_clock); | ||
3935 | |||
3936 | return result; | ||
3937 | } | ||
3938 | |||
3939 | static int ellesmere_generate_dpm_level_enable_mask( | ||
3940 | struct pp_hwmgr *hwmgr, const void *input) | ||
3941 | { | ||
3942 | int result; | ||
3943 | const struct phm_set_power_state_input *states = | ||
3944 | (const struct phm_set_power_state_input *)input; | ||
3945 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3946 | const struct ellesmere_power_state *ellesmere_ps = | ||
3947 | cast_const_phw_ellesmere_power_state(states->pnew_state); | ||
3948 | |||
3949 | result = ellesmere_trim_dpm_states(hwmgr, ellesmere_ps); | ||
3950 | if (result) | ||
3951 | return result; | ||
3952 | |||
3953 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = | ||
3954 | phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); | ||
3955 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = | ||
3956 | phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); | ||
3957 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = | ||
3958 | phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); | ||
3959 | |||
3960 | return 0; | ||
3961 | } | ||
3962 | |||
3963 | static int ellesmere_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) | ||
3964 | { | ||
3965 | return smum_send_msg_to_smc(hwmgr->smumgr, enable ? | ||
3966 | PPSMC_MSG_VCEDPM_Enable : | ||
3967 | PPSMC_MSG_VCEDPM_Disable); | ||
3968 | } | ||
3969 | |||
3970 | static int ellesmere_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input) | ||
3971 | { | ||
3972 | const struct phm_set_power_state_input *states = | ||
3973 | (const struct phm_set_power_state_input *)input; | ||
3974 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
3975 | const struct ellesmere_power_state *ellesmere_nps = | ||
3976 | cast_const_phw_ellesmere_power_state(states->pnew_state); | ||
3977 | const struct ellesmere_power_state *ellesmere_cps = | ||
3978 | cast_const_phw_ellesmere_power_state(states->pcurrent_state); | ||
3979 | |||
3980 | uint32_t mm_boot_level_offset, mm_boot_level_value; | ||
3981 | struct phm_ppt_v1_information *table_info = | ||
3982 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
3983 | |||
3984 | if (ellesmere_nps->vce_clks.evclk > 0 && | ||
3985 | (ellesmere_cps == NULL || ellesmere_cps->vce_clks.evclk == 0)) { | ||
3986 | |||
3987 | data->smc_state_table.VceBootLevel = | ||
3988 | (uint8_t) (table_info->mm_dep_table->count - 1); | ||
3989 | |||
3990 | mm_boot_level_offset = data->dpm_table_start + | ||
3991 | offsetof(SMU74_Discrete_DpmTable, VceBootLevel); | ||
3992 | mm_boot_level_offset /= 4; | ||
3993 | mm_boot_level_offset *= 4; | ||
3994 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device, | ||
3995 | CGS_IND_REG__SMC, mm_boot_level_offset); | ||
3996 | mm_boot_level_value &= 0xFF00FFFF; | ||
3997 | mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16; | ||
3998 | cgs_write_ind_register(hwmgr->device, | ||
3999 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); | ||
4000 | |||
4001 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { | ||
4002 | smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
4003 | PPSMC_MSG_VCEDPM_SetEnabledMask, | ||
4004 | (uint32_t)1 << data->smc_state_table.VceBootLevel); | ||
4005 | |||
4006 | ellesmere_enable_disable_vce_dpm(hwmgr, true); | ||
4007 | } else if (ellesmere_nps->vce_clks.evclk == 0 && | ||
4008 | ellesmere_cps != NULL && | ||
4009 | ellesmere_cps->vce_clks.evclk > 0) | ||
4010 | ellesmere_enable_disable_vce_dpm(hwmgr, false); | ||
4011 | } | ||
4012 | |||
4013 | return 0; | ||
4014 | } | ||
4015 | |||
4016 | static int ellesmere_update_sclk_threshold(struct pp_hwmgr *hwmgr) | ||
4017 | { | ||
4018 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4019 | |||
4020 | int result = 0; | ||
4021 | uint32_t low_sclk_interrupt_threshold = 0; | ||
4022 | |||
4023 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
4024 | PHM_PlatformCaps_SclkThrottleLowNotification) | ||
4025 | && (hwmgr->gfx_arbiter.sclk_threshold != | ||
4026 | data->low_sclk_interrupt_threshold)) { | ||
4027 | data->low_sclk_interrupt_threshold = | ||
4028 | hwmgr->gfx_arbiter.sclk_threshold; | ||
4029 | low_sclk_interrupt_threshold = | ||
4030 | data->low_sclk_interrupt_threshold; | ||
4031 | |||
4032 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); | ||
4033 | |||
4034 | result = ellesmere_copy_bytes_to_smc( | ||
4035 | hwmgr->smumgr, | ||
4036 | data->dpm_table_start + | ||
4037 | offsetof(SMU74_Discrete_DpmTable, | ||
4038 | LowSclkInterruptThreshold), | ||
4039 | (uint8_t *)&low_sclk_interrupt_threshold, | ||
4040 | sizeof(uint32_t), | ||
4041 | data->sram_end); | ||
4042 | } | ||
4043 | |||
4044 | return result; | ||
4045 | } | ||
4046 | |||
4047 | static int ellesmere_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) | ||
4048 | { | ||
4049 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4050 | |||
4051 | if (data->need_update_smu7_dpm_table & | ||
4052 | (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) | ||
4053 | return ellesmere_program_memory_timing_parameters(hwmgr); | ||
4054 | |||
4055 | return 0; | ||
4056 | } | ||
4057 | |||
4058 | static int ellesmere_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) | ||
4059 | { | ||
4060 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4061 | |||
4062 | if (0 == data->need_update_smu7_dpm_table) | ||
4063 | return 0; | ||
4064 | |||
4065 | if ((0 == data->sclk_dpm_key_disabled) && | ||
4066 | (data->need_update_smu7_dpm_table & | ||
4067 | (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { | ||
4068 | |||
4069 | PP_ASSERT_WITH_CODE(true == ellesmere_is_dpm_running(hwmgr), | ||
4070 | "Trying to Unfreeze SCLK DPM when DPM is disabled", | ||
4071 | ); | ||
4072 | PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, | ||
4073 | PPSMC_MSG_SCLKDPM_UnfreezeLevel), | ||
4074 | "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", | ||
4075 | return -1); | ||
4076 | } | ||
4077 | |||
4078 | if ((0 == data->mclk_dpm_key_disabled) && | ||
4079 | (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { | ||
4080 | |||
4081 | PP_ASSERT_WITH_CODE(true == ellesmere_is_dpm_running(hwmgr), | ||
4082 | "Trying to Unfreeze MCLK DPM when DPM is disabled", | ||
4083 | ); | ||
4084 | PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr, | ||
4085 | PPSMC_MSG_SCLKDPM_UnfreezeLevel), | ||
4086 | "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", | ||
4087 | return -1); | ||
4088 | } | ||
4089 | |||
4090 | data->need_update_smu7_dpm_table = 0; | ||
4091 | |||
4092 | return 0; | ||
4093 | } | ||
4094 | |||
4095 | static int ellesmere_notify_link_speed_change_after_state_change( | ||
4096 | struct pp_hwmgr *hwmgr, const void *input) | ||
4097 | { | ||
4098 | const struct phm_set_power_state_input *states = | ||
4099 | (const struct phm_set_power_state_input *)input; | ||
4100 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4101 | const struct ellesmere_power_state *ellesmere_ps = | ||
4102 | cast_const_phw_ellesmere_power_state(states->pnew_state); | ||
4103 | uint16_t target_link_speed = ellesmere_get_maximum_link_speed(hwmgr, ellesmere_ps); | ||
4104 | uint8_t request; | ||
4105 | |||
4106 | if (data->pspp_notify_required) { | ||
4107 | if (target_link_speed == PP_PCIEGen3) | ||
4108 | request = PCIE_PERF_REQ_GEN3; | ||
4109 | else if (target_link_speed == PP_PCIEGen2) | ||
4110 | request = PCIE_PERF_REQ_GEN2; | ||
4111 | else | ||
4112 | request = PCIE_PERF_REQ_GEN1; | ||
4113 | |||
4114 | if (request == PCIE_PERF_REQ_GEN1 && | ||
4115 | phm_get_current_pcie_speed(hwmgr) > 0) | ||
4116 | return 0; | ||
4117 | |||
4118 | if (acpi_pcie_perf_request(hwmgr->device, request, false)) { | ||
4119 | if (PP_PCIEGen2 == target_link_speed) | ||
4120 | printk("PSPP request to switch to Gen2 from Gen3 Failed!"); | ||
4121 | else | ||
4122 | printk("PSPP request to switch to Gen1 from Gen2 Failed!"); | ||
4123 | } | ||
4124 | } | ||
4125 | |||
4126 | return 0; | ||
4127 | } | ||
4128 | |||
4129 | static int ellesmere_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) | ||
4130 | { | ||
4131 | int tmp_result, result = 0; | ||
4132 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4133 | |||
4134 | tmp_result = ellesmere_find_dpm_states_clocks_in_dpm_table(hwmgr, input); | ||
4135 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4136 | "Failed to find DPM states clocks in DPM table!", | ||
4137 | result = tmp_result); | ||
4138 | |||
4139 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
4140 | PHM_PlatformCaps_PCIEPerformanceRequest)) { | ||
4141 | tmp_result = | ||
4142 | ellesmere_request_link_speed_change_before_state_change(hwmgr, input); | ||
4143 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4144 | "Failed to request link speed change before state change!", | ||
4145 | result = tmp_result); | ||
4146 | } | ||
4147 | |||
4148 | tmp_result = ellesmere_freeze_sclk_mclk_dpm(hwmgr); | ||
4149 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4150 | "Failed to freeze SCLK MCLK DPM!", result = tmp_result); | ||
4151 | |||
4152 | tmp_result = ellesmere_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); | ||
4153 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4154 | "Failed to populate and upload SCLK MCLK DPM levels!", | ||
4155 | result = tmp_result); | ||
4156 | |||
4157 | tmp_result = ellesmere_generate_dpm_level_enable_mask(hwmgr, input); | ||
4158 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4159 | "Failed to generate DPM level enabled mask!", | ||
4160 | result = tmp_result); | ||
4161 | |||
4162 | tmp_result = ellesmere_update_vce_dpm(hwmgr, input); | ||
4163 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4164 | "Failed to update VCE DPM!", | ||
4165 | result = tmp_result); | ||
4166 | |||
4167 | tmp_result = ellesmere_update_sclk_threshold(hwmgr); | ||
4168 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4169 | "Failed to update SCLK threshold!", | ||
4170 | result = tmp_result); | ||
4171 | |||
4172 | tmp_result = ellesmere_program_mem_timing_parameters(hwmgr); | ||
4173 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4174 | "Failed to program memory timing parameters!", | ||
4175 | result = tmp_result); | ||
4176 | |||
4177 | tmp_result = ellesmere_unfreeze_sclk_mclk_dpm(hwmgr); | ||
4178 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4179 | "Failed to unfreeze SCLK MCLK DPM!", | ||
4180 | result = tmp_result); | ||
4181 | |||
4182 | tmp_result = ellesmere_upload_dpm_level_enable_mask(hwmgr); | ||
4183 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4184 | "Failed to upload DPM level enabled mask!", | ||
4185 | result = tmp_result); | ||
4186 | |||
4187 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
4188 | PHM_PlatformCaps_PCIEPerformanceRequest)) { | ||
4189 | tmp_result = | ||
4190 | ellesmere_notify_link_speed_change_after_state_change(hwmgr, input); | ||
4191 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4192 | "Failed to notify link speed change after state change!", | ||
4193 | result = tmp_result); | ||
4194 | } | ||
4195 | data->apply_optimized_settings = false; | ||
4196 | return result; | ||
4197 | } | ||
4198 | |||
4199 | static int ellesmere_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) | ||
4200 | { | ||
4201 | |||
4202 | return 0; | ||
4203 | } | ||
4204 | |||
4205 | int ellesmere_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display) | ||
4206 | { | ||
4207 | PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay; | ||
4208 | |||
4209 | return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1; | ||
4210 | } | ||
4211 | |||
4212 | int ellesmere_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr) | ||
4213 | { | ||
4214 | uint32_t num_active_displays = 0; | ||
4215 | struct cgs_display_info info = {0}; | ||
4216 | info.mode_info = NULL; | ||
4217 | |||
4218 | cgs_get_active_displays_info(hwmgr->device, &info); | ||
4219 | |||
4220 | num_active_displays = info.display_count; | ||
4221 | |||
4222 | if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */ | ||
4223 | ellesmere_notify_smc_display_change(hwmgr, false); | ||
4224 | else | ||
4225 | ellesmere_notify_smc_display_change(hwmgr, true); | ||
4226 | |||
4227 | return 0; | ||
4228 | } | ||
4229 | |||
4230 | /** | ||
4231 | * Programs the display gap | ||
4232 | * | ||
4233 | * @param hwmgr the address of the powerplay hardware manager. | ||
4234 | * @return always OK | ||
4235 | */ | ||
4236 | int ellesmere_program_display_gap(struct pp_hwmgr *hwmgr) | ||
4237 | { | ||
4238 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4239 | uint32_t num_active_displays = 0; | ||
4240 | uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); | ||
4241 | uint32_t display_gap2; | ||
4242 | uint32_t pre_vbi_time_in_us; | ||
4243 | uint32_t frame_time_in_us; | ||
4244 | uint32_t ref_clock; | ||
4245 | uint32_t refresh_rate = 0; | ||
4246 | struct cgs_display_info info = {0}; | ||
4247 | struct cgs_mode_info mode_info; | ||
4248 | |||
4249 | info.mode_info = &mode_info; | ||
4250 | |||
4251 | cgs_get_active_displays_info(hwmgr->device, &info); | ||
4252 | num_active_displays = info.display_count; | ||
4253 | |||
4254 | display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); | ||
4255 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); | ||
4256 | |||
4257 | ref_clock = mode_info.ref_clock; | ||
4258 | refresh_rate = mode_info.refresh_rate; | ||
4259 | |||
4260 | if (0 == refresh_rate) | ||
4261 | refresh_rate = 60; | ||
4262 | |||
4263 | frame_time_in_us = 1000000 / refresh_rate; | ||
4264 | |||
4265 | pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us; | ||
4266 | display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); | ||
4267 | |||
4268 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); | ||
4269 | |||
4270 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, PreVBlankGap), 0x64); | ||
4271 | |||
4272 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us)); | ||
4273 | |||
4274 | if (num_active_displays == 1) | ||
4275 | ellesmere_notify_smc_display_change(hwmgr, true); | ||
4276 | |||
4277 | return 0; | ||
4278 | } | ||
4279 | |||
4280 | |||
4281 | int ellesmere_display_configuration_changed_task(struct pp_hwmgr *hwmgr) | ||
4282 | { | ||
4283 | return ellesmere_program_display_gap(hwmgr); | ||
4284 | } | ||
4285 | |||
4286 | /** | ||
4287 | * Set maximum target operating fan output RPM | ||
4288 | * | ||
4289 | * @param hwmgr: the address of the powerplay hardware manager. | ||
4290 | * @param usMaxFanRpm: max operating fan RPM value. | ||
4291 | * @return The response that came from the SMC. | ||
4292 | */ | ||
4293 | static int ellesmere_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) | ||
4294 | { | ||
4295 | return 0; | ||
4296 | } | ||
4297 | |||
4298 | int ellesmere_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr, | ||
4299 | const void *thermal_interrupt_info) | ||
4300 | { | ||
4301 | return 0; | ||
4302 | } | ||
4303 | |||
4304 | bool ellesmere_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) | ||
4305 | { | ||
4306 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4307 | bool is_update_required = false; | ||
4308 | struct cgs_display_info info = {0, 0, NULL}; | ||
4309 | |||
4310 | cgs_get_active_displays_info(hwmgr->device, &info); | ||
4311 | |||
4312 | if (data->display_timing.num_existing_displays != info.display_count) | ||
4313 | is_update_required = true; | ||
4314 | /* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL | ||
4315 | if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { | ||
4316 | cgs_get_min_clock_settings(hwmgr->device, &min_clocks); | ||
4317 | if (min_clocks.engineClockInSR != data->display_timing.minClockInSR) | ||
4318 | is_update_required = true; | ||
4319 | */ | ||
4320 | return is_update_required; | ||
4321 | } | ||
4322 | |||
4323 | static inline bool ellesmere_are_power_levels_equal(const struct ellesmere_performance_level *pl1, | ||
4324 | const struct ellesmere_performance_level *pl2) | ||
4325 | { | ||
4326 | return ((pl1->memory_clock == pl2->memory_clock) && | ||
4327 | (pl1->engine_clock == pl2->engine_clock) && | ||
4328 | (pl1->pcie_gen == pl2->pcie_gen) && | ||
4329 | (pl1->pcie_lane == pl2->pcie_lane)); | ||
4330 | } | ||
4331 | |||
4332 | int ellesmere_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal) | ||
4333 | { | ||
4334 | const struct ellesmere_power_state *psa = cast_const_phw_ellesmere_power_state(pstate1); | ||
4335 | const struct ellesmere_power_state *psb = cast_const_phw_ellesmere_power_state(pstate2); | ||
4336 | int i; | ||
4337 | |||
4338 | if (pstate1 == NULL || pstate2 == NULL || equal == NULL) | ||
4339 | return -EINVAL; | ||
4340 | |||
4341 | /* If the two states don't even have the same number of performance levels they cannot be the same state. */ | ||
4342 | if (psa->performance_level_count != psb->performance_level_count) { | ||
4343 | *equal = false; | ||
4344 | return 0; | ||
4345 | } | ||
4346 | |||
4347 | for (i = 0; i < psa->performance_level_count; i++) { | ||
4348 | if (!ellesmere_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { | ||
4349 | /* If we have found even one performance level pair that is different the states are different. */ | ||
4350 | *equal = false; | ||
4351 | return 0; | ||
4352 | } | ||
4353 | } | ||
4354 | |||
4355 | /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ | ||
4356 | *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); | ||
4357 | *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); | ||
4358 | *equal &= (psa->sclk_threshold == psb->sclk_threshold); | ||
4359 | |||
4360 | return 0; | ||
4361 | } | ||
4362 | |||
4363 | int ellesmere_upload_mc_firmware(struct pp_hwmgr *hwmgr) | ||
4364 | { | ||
4365 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4366 | |||
4367 | uint32_t vbios_version; | ||
4368 | |||
4369 | /* Read MC indirect register offset 0x9F bits [3:0] to see if VBIOS has already loaded a full version of MC ucode or not.*/ | ||
4370 | |||
4371 | phm_get_mc_microcode_version(hwmgr); | ||
4372 | vbios_version = hwmgr->microcode_version_info.MC & 0xf; | ||
4373 | /* Full version of MC ucode has already been loaded. */ | ||
4374 | if (vbios_version == 0) { | ||
4375 | data->need_long_memory_training = false; | ||
4376 | return 0; | ||
4377 | } | ||
4378 | |||
4379 | data->need_long_memory_training = true; | ||
4380 | |||
4381 | /* | ||
4382 | * PPMCME_FirmwareDescriptorEntry *pfd = NULL; | ||
4383 | pfd = &tonga_mcmeFirmware; | ||
4384 | if (0 == PHM_READ_FIELD(hwmgr->device, MC_SEQ_SUP_CNTL, RUN)) | ||
4385 | ellesmere_load_mc_microcode(hwmgr, pfd->dpmThreshold, | ||
4386 | pfd->cfgArray, pfd->cfgSize, pfd->ioDebugArray, | ||
4387 | pfd->ioDebugSize, pfd->ucodeArray, pfd->ucodeSize); | ||
4388 | */ | ||
4389 | return 0; | ||
4390 | } | ||
4391 | |||
4392 | /** | ||
4393 | * Read clock related registers. | ||
4394 | * | ||
4395 | * @param hwmgr the address of the powerplay hardware manager. | ||
4396 | * @return always 0 | ||
4397 | */ | ||
4398 | static int ellesmere_read_clock_registers(struct pp_hwmgr *hwmgr) | ||
4399 | { | ||
4400 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4401 | |||
4402 | data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device, | ||
4403 | CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL) | ||
4404 | & CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN_MASK; | ||
4405 | |||
4406 | data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device, | ||
4407 | CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2) | ||
4408 | & CG_SPLL_FUNC_CNTL_2__SCLK_MUX_SEL_MASK; | ||
4409 | |||
4410 | data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device, | ||
4411 | CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4) | ||
4412 | & CG_SPLL_FUNC_CNTL_4__SPLL_SPARE_MASK; | ||
4413 | |||
4414 | return 0; | ||
4415 | } | ||
4416 | |||
4417 | /** | ||
4418 | * Find out if memory is GDDR5. | ||
4419 | * | ||
4420 | * @param hwmgr the address of the powerplay hardware manager. | ||
4421 | * @return always 0 | ||
4422 | */ | ||
4423 | static int ellesmere_get_memory_type(struct pp_hwmgr *hwmgr) | ||
4424 | { | ||
4425 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4426 | uint32_t temp; | ||
4427 | |||
4428 | temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0); | ||
4429 | |||
4430 | data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE == | ||
4431 | ((temp & MC_SEQ_MISC0_GDDR5_MASK) >> | ||
4432 | MC_SEQ_MISC0_GDDR5_SHIFT)); | ||
4433 | |||
4434 | return 0; | ||
4435 | } | ||
4436 | |||
4437 | /** | ||
4438 | * Enables Dynamic Power Management by SMC | ||
4439 | * | ||
4440 | * @param hwmgr the address of the powerplay hardware manager. | ||
4441 | * @return always 0 | ||
4442 | */ | ||
4443 | static int ellesmere_enable_acpi_power_management(struct pp_hwmgr *hwmgr) | ||
4444 | { | ||
4445 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, | ||
4446 | GENERAL_PWRMGT, STATIC_PM_EN, 1); | ||
4447 | |||
4448 | return 0; | ||
4449 | } | ||
4450 | |||
4451 | /** | ||
4452 | * Initialize PowerGating States for different engines | ||
4453 | * | ||
4454 | * @param hwmgr the address of the powerplay hardware manager. | ||
4455 | * @return always 0 | ||
4456 | */ | ||
4457 | static int ellesmere_init_power_gate_state(struct pp_hwmgr *hwmgr) | ||
4458 | { | ||
4459 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4460 | |||
4461 | data->uvd_power_gated = false; | ||
4462 | data->vce_power_gated = false; | ||
4463 | data->samu_power_gated = false; | ||
4464 | |||
4465 | return 0; | ||
4466 | } | ||
4467 | |||
4468 | static int ellesmere_init_sclk_threshold(struct pp_hwmgr *hwmgr) | ||
4469 | { | ||
4470 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
4471 | data->low_sclk_interrupt_threshold = 0; | ||
4472 | |||
4473 | return 0; | ||
4474 | } | ||
4475 | |||
4476 | int ellesmere_setup_asic_task(struct pp_hwmgr *hwmgr) | ||
4477 | { | ||
4478 | int tmp_result, result = 0; | ||
4479 | |||
4480 | ellesmere_upload_mc_firmware(hwmgr); | ||
4481 | |||
4482 | tmp_result = ellesmere_read_clock_registers(hwmgr); | ||
4483 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4484 | "Failed to read clock registers!", result = tmp_result); | ||
4485 | |||
4486 | tmp_result = ellesmere_get_memory_type(hwmgr); | ||
4487 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4488 | "Failed to get memory type!", result = tmp_result); | ||
4489 | |||
4490 | tmp_result = ellesmere_enable_acpi_power_management(hwmgr); | ||
4491 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4492 | "Failed to enable ACPI power management!", result = tmp_result); | ||
4493 | |||
4494 | tmp_result = ellesmere_init_power_gate_state(hwmgr); | ||
4495 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4496 | "Failed to init power gate state!", result = tmp_result); | ||
4497 | |||
4498 | tmp_result = phm_get_mc_microcode_version(hwmgr); | ||
4499 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4500 | "Failed to get MC microcode version!", result = tmp_result); | ||
4501 | |||
4502 | tmp_result = ellesmere_init_sclk_threshold(hwmgr); | ||
4503 | PP_ASSERT_WITH_CODE((0 == tmp_result), | ||
4504 | "Failed to init sclk threshold!", result = tmp_result); | ||
4505 | |||
4506 | return result; | ||
4507 | } | ||
4508 | |||
4509 | static const struct pp_hwmgr_func ellesmere_hwmgr_funcs = { | ||
4510 | .backend_init = &ellesmere_hwmgr_backend_init, | ||
4511 | .backend_fini = &ellesmere_hwmgr_backend_fini, | ||
4512 | .asic_setup = &ellesmere_setup_asic_task, | ||
4513 | .dynamic_state_management_enable = &ellesmere_enable_dpm_tasks, | ||
4514 | .apply_state_adjust_rules = ellesmere_apply_state_adjust_rules, | ||
4515 | .force_dpm_level = &ellesmere_force_dpm_level, | ||
4516 | .power_state_set = ellesmere_set_power_state_tasks, | ||
4517 | .get_power_state_size = ellesmere_get_power_state_size, | ||
4518 | .get_mclk = ellesmere_dpm_get_mclk, | ||
4519 | .get_sclk = ellesmere_dpm_get_sclk, | ||
4520 | .patch_boot_state = ellesmere_dpm_patch_boot_state, | ||
4521 | .get_pp_table_entry = ellesmere_get_pp_table_entry, | ||
4522 | .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries, | ||
4523 | .print_current_perforce_level = ellesmere_print_current_perforce_level, | ||
4524 | .powerdown_uvd = NULL, | ||
4525 | .powergate_uvd = NULL, | ||
4526 | .powergate_vce = NULL, | ||
4527 | .disable_clock_power_gating = NULL, | ||
4528 | .notify_smc_display_config_after_ps_adjustment = ellesmere_notify_smc_display_config_after_ps_adjustment, | ||
4529 | .display_config_changed = ellesmere_display_configuration_changed_task, | ||
4530 | .set_max_fan_pwm_output = ellesmere_set_max_fan_pwm_output, | ||
4531 | .set_max_fan_rpm_output = ellesmere_set_max_fan_rpm_output, | ||
4532 | .get_temperature = NULL, | ||
4533 | .stop_thermal_controller = NULL, | ||
4534 | .get_fan_speed_info = NULL, | ||
4535 | .get_fan_speed_percent = NULL, | ||
4536 | .set_fan_speed_percent = NULL, | ||
4537 | .reset_fan_speed_to_default = NULL, | ||
4538 | .get_fan_speed_rpm = NULL, | ||
4539 | .set_fan_speed_rpm = NULL, | ||
4540 | .uninitialize_thermal_controller = NULL, | ||
4541 | .register_internal_thermal_interrupt = ellesmere_register_internal_thermal_interrupt, | ||
4542 | .check_smc_update_required_for_display_configuration = ellesmere_check_smc_update_required_for_display_configuration, | ||
4543 | .check_states_equal = ellesmere_check_states_equal, | ||
4544 | }; | ||
4545 | |||
4546 | int ellesemere_hwmgr_init(struct pp_hwmgr *hwmgr) | ||
4547 | { | ||
4548 | struct ellesmere_hwmgr *data; | ||
4549 | |||
4550 | data = kzalloc (sizeof(struct ellesmere_hwmgr), GFP_KERNEL); | ||
4551 | if (data == NULL) | ||
4552 | return -ENOMEM; | ||
4553 | |||
4554 | hwmgr->backend = data; | ||
4555 | hwmgr->hwmgr_func = &ellesmere_hwmgr_funcs; | ||
4556 | hwmgr->pptable_func = &tonga_pptable_funcs; | ||
4557 | |||
4558 | |||
4559 | return 0; | ||
4560 | } | ||
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_hwmgr.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_hwmgr.h new file mode 100644 index 000000000000..4d576984928d --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_hwmgr.h | |||
@@ -0,0 +1,349 @@ | |||
1 | /* | ||
2 | * Copyright 2015 Advanced Micro Devices, Inc. | ||
3 | * | ||
4 | * Permission is hereby granted, free of charge, to any person obtaining a | ||
5 | * copy of this software and associated documentation files (the "Software"), | ||
6 | * to deal in the Software without restriction, including without limitation | ||
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
8 | * and/or sell copies of the Software, and to permit persons to whom the | ||
9 | * Software is furnished to do so, subject to the following conditions: | ||
10 | * | ||
11 | * The above copyright notice and this permission notice shall be included in | ||
12 | * all copies or substantial portions of the Software. | ||
13 | * | ||
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | ||
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | ||
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | ||
20 | * OTHER DEALINGS IN THE SOFTWARE. | ||
21 | * | ||
22 | */ | ||
23 | |||
24 | #ifndef ELLESMERE_HWMGR_H | ||
25 | #define ELLESMERE_HWMGR_H | ||
26 | |||
27 | #include "hwmgr.h" | ||
28 | #include "smu74.h" | ||
29 | #include "smu74_discrete.h" | ||
30 | #include "ppatomctrl.h" | ||
31 | #include "ellesmere_ppsmc.h" | ||
32 | #include "ellesmere_powertune.h" | ||
33 | |||
34 | #define ELLESMERE_MAX_HARDWARE_POWERLEVELS 2 | ||
35 | |||
36 | #define ELLESMERE_VOLTAGE_CONTROL_NONE 0x0 | ||
37 | #define ELLESMERE_VOLTAGE_CONTROL_BY_GPIO 0x1 | ||
38 | #define ELLESMERE_VOLTAGE_CONTROL_BY_SVID2 0x2 | ||
39 | #define ELLESMERE_VOLTAGE_CONTROL_MERGED 0x3 | ||
40 | |||
41 | #define DPMTABLE_OD_UPDATE_SCLK 0x00000001 | ||
42 | #define DPMTABLE_OD_UPDATE_MCLK 0x00000002 | ||
43 | #define DPMTABLE_UPDATE_SCLK 0x00000004 | ||
44 | #define DPMTABLE_UPDATE_MCLK 0x00000008 | ||
45 | |||
46 | struct ellesmere_performance_level { | ||
47 | uint32_t memory_clock; | ||
48 | uint32_t engine_clock; | ||
49 | uint16_t pcie_gen; | ||
50 | uint16_t pcie_lane; | ||
51 | }; | ||
52 | |||
53 | struct ellesmere_uvd_clocks { | ||
54 | uint32_t vclk; | ||
55 | uint32_t dclk; | ||
56 | }; | ||
57 | |||
58 | struct ellesmere_vce_clocks { | ||
59 | uint32_t evclk; | ||
60 | uint32_t ecclk; | ||
61 | }; | ||
62 | |||
63 | struct ellesmere_power_state { | ||
64 | uint32_t magic; | ||
65 | struct ellesmere_uvd_clocks uvd_clks; | ||
66 | struct ellesmere_vce_clocks vce_clks; | ||
67 | uint32_t sam_clk; | ||
68 | uint16_t performance_level_count; | ||
69 | bool dc_compatible; | ||
70 | uint32_t sclk_threshold; | ||
71 | struct ellesmere_performance_level performance_levels[ELLESMERE_MAX_HARDWARE_POWERLEVELS]; | ||
72 | }; | ||
73 | |||
74 | struct ellesmere_dpm_level { | ||
75 | bool enabled; | ||
76 | uint32_t value; | ||
77 | uint32_t param1; | ||
78 | }; | ||
79 | |||
80 | #define ELLESMERE_MAX_DEEPSLEEP_DIVIDER_ID 5 | ||
81 | #define MAX_REGULAR_DPM_NUMBER 8 | ||
82 | #define ELLESMERE_MINIMUM_ENGINE_CLOCK 2500 | ||
83 | |||
84 | struct ellesmere_single_dpm_table { | ||
85 | uint32_t count; | ||
86 | struct ellesmere_dpm_level dpm_levels[MAX_REGULAR_DPM_NUMBER]; | ||
87 | }; | ||
88 | |||
89 | struct ellesmere_dpm_table { | ||
90 | struct ellesmere_single_dpm_table sclk_table; | ||
91 | struct ellesmere_single_dpm_table mclk_table; | ||
92 | struct ellesmere_single_dpm_table pcie_speed_table; | ||
93 | struct ellesmere_single_dpm_table vddc_table; | ||
94 | struct ellesmere_single_dpm_table vddci_table; | ||
95 | struct ellesmere_single_dpm_table mvdd_table; | ||
96 | }; | ||
97 | |||
98 | struct ellesmere_clock_registers { | ||
99 | uint32_t vCG_SPLL_FUNC_CNTL; | ||
100 | uint32_t vCG_SPLL_FUNC_CNTL_2; | ||
101 | uint32_t vCG_SPLL_FUNC_CNTL_3; | ||
102 | uint32_t vCG_SPLL_FUNC_CNTL_4; | ||
103 | uint32_t vCG_SPLL_SPREAD_SPECTRUM; | ||
104 | uint32_t vCG_SPLL_SPREAD_SPECTRUM_2; | ||
105 | uint32_t vDLL_CNTL; | ||
106 | uint32_t vMCLK_PWRMGT_CNTL; | ||
107 | uint32_t vMPLL_AD_FUNC_CNTL; | ||
108 | uint32_t vMPLL_DQ_FUNC_CNTL; | ||
109 | uint32_t vMPLL_FUNC_CNTL; | ||
110 | uint32_t vMPLL_FUNC_CNTL_1; | ||
111 | uint32_t vMPLL_FUNC_CNTL_2; | ||
112 | uint32_t vMPLL_SS1; | ||
113 | uint32_t vMPLL_SS2; | ||
114 | }; | ||
115 | |||
116 | #define DISABLE_MC_LOADMICROCODE 1 | ||
117 | #define DISABLE_MC_CFGPROGRAMMING 2 | ||
118 | |||
119 | struct ellesmere_voltage_smio_registers { | ||
120 | uint32_t vS0_VID_LOWER_SMIO_CNTL; | ||
121 | }; | ||
122 | |||
123 | #define ELLESMERE_MAX_LEAKAGE_COUNT 8 | ||
124 | |||
125 | struct ellesmere_leakage_voltage { | ||
126 | uint16_t count; | ||
127 | uint16_t leakage_id[ELLESMERE_MAX_LEAKAGE_COUNT]; | ||
128 | uint16_t actual_voltage[ELLESMERE_MAX_LEAKAGE_COUNT]; | ||
129 | }; | ||
130 | |||
131 | struct ellesmere_vbios_boot_state { | ||
132 | uint16_t mvdd_bootup_value; | ||
133 | uint16_t vddc_bootup_value; | ||
134 | uint16_t vddci_bootup_value; | ||
135 | uint32_t sclk_bootup_value; | ||
136 | uint32_t mclk_bootup_value; | ||
137 | uint16_t pcie_gen_bootup_value; | ||
138 | uint16_t pcie_lane_bootup_value; | ||
139 | }; | ||
140 | |||
141 | /* Ultra Low Voltage parameter structure */ | ||
142 | struct ellesmere_ulv_parm { | ||
143 | bool ulv_supported; | ||
144 | uint32_t cg_ulv_parameter; | ||
145 | uint32_t ulv_volt_change_delay; | ||
146 | struct ellesmere_performance_level ulv_power_level; | ||
147 | }; | ||
148 | |||
149 | struct ellesmere_display_timing { | ||
150 | uint32_t min_clock_in_sr; | ||
151 | uint32_t num_existing_displays; | ||
152 | }; | ||
153 | |||
154 | struct ellesmere_dpmlevel_enable_mask { | ||
155 | uint32_t uvd_dpm_enable_mask; | ||
156 | uint32_t vce_dpm_enable_mask; | ||
157 | uint32_t acp_dpm_enable_mask; | ||
158 | uint32_t samu_dpm_enable_mask; | ||
159 | uint32_t sclk_dpm_enable_mask; | ||
160 | uint32_t mclk_dpm_enable_mask; | ||
161 | uint32_t pcie_dpm_enable_mask; | ||
162 | }; | ||
163 | |||
164 | struct ellesmere_pcie_perf_range { | ||
165 | uint16_t max; | ||
166 | uint16_t min; | ||
167 | }; | ||
168 | struct ellesmere_range_table { | ||
169 | uint32_t trans_lower_frequency; /* in 10khz */ | ||
170 | uint32_t trans_upper_frequency; | ||
171 | }; | ||
172 | |||
173 | struct ellesmere_hwmgr { | ||
174 | struct ellesmere_dpm_table dpm_table; | ||
175 | struct ellesmere_dpm_table golden_dpm_table; | ||
176 | SMU74_Discrete_DpmTable smc_state_table; | ||
177 | struct SMU74_Discrete_Ulv ulv_setting; | ||
178 | |||
179 | struct ellesmere_range_table range_table[NUM_SCLK_RANGE]; | ||
180 | uint32_t voting_rights_clients0; | ||
181 | uint32_t voting_rights_clients1; | ||
182 | uint32_t voting_rights_clients2; | ||
183 | uint32_t voting_rights_clients3; | ||
184 | uint32_t voting_rights_clients4; | ||
185 | uint32_t voting_rights_clients5; | ||
186 | uint32_t voting_rights_clients6; | ||
187 | uint32_t voting_rights_clients7; | ||
188 | uint32_t static_screen_threshold_unit; | ||
189 | uint32_t static_screen_threshold; | ||
190 | uint32_t voltage_control; | ||
191 | uint32_t vddc_vddci_delta; | ||
192 | |||
193 | uint32_t active_auto_throttle_sources; | ||
194 | |||
195 | struct ellesmere_clock_registers clock_registers; | ||
196 | struct ellesmere_voltage_smio_registers voltage_smio_registers; | ||
197 | |||
198 | bool is_memory_gddr5; | ||
199 | uint16_t acpi_vddc; | ||
200 | bool pspp_notify_required; | ||
201 | uint16_t force_pcie_gen; | ||
202 | uint16_t acpi_pcie_gen; | ||
203 | uint32_t pcie_gen_cap; | ||
204 | uint32_t pcie_lane_cap; | ||
205 | uint32_t pcie_spc_cap; | ||
206 | struct ellesmere_leakage_voltage vddc_leakage; | ||
207 | struct ellesmere_leakage_voltage Vddci_leakage; | ||
208 | |||
209 | uint32_t mvdd_control; | ||
210 | uint32_t vddc_mask_low; | ||
211 | uint32_t mvdd_mask_low; | ||
212 | uint16_t max_vddc_in_pptable; | ||
213 | uint16_t min_vddc_in_pptable; | ||
214 | uint16_t max_vddci_in_pptable; | ||
215 | uint16_t min_vddci_in_pptable; | ||
216 | uint32_t mclk_strobe_mode_threshold; | ||
217 | uint32_t mclk_stutter_mode_threshold; | ||
218 | uint32_t mclk_edc_enable_threshold; | ||
219 | uint32_t mclk_edcwr_enable_threshold; | ||
220 | bool is_uvd_enabled; | ||
221 | struct ellesmere_vbios_boot_state vbios_boot_state; | ||
222 | |||
223 | bool pcie_performance_request; | ||
224 | bool battery_state; | ||
225 | bool is_tlu_enabled; | ||
226 | |||
227 | /* ---- SMC SRAM Address of firmware header tables ---- */ | ||
228 | uint32_t sram_end; | ||
229 | uint32_t dpm_table_start; | ||
230 | uint32_t soft_regs_start; | ||
231 | uint32_t mc_reg_table_start; | ||
232 | uint32_t fan_table_start; | ||
233 | uint32_t arb_table_start; | ||
234 | |||
235 | /* ---- Stuff originally coming from Evergreen ---- */ | ||
236 | uint32_t vddci_control; | ||
237 | struct pp_atomctrl_voltage_table vddc_voltage_table; | ||
238 | struct pp_atomctrl_voltage_table vddci_voltage_table; | ||
239 | struct pp_atomctrl_voltage_table mvdd_voltage_table; | ||
240 | |||
241 | uint32_t mgcg_cgtt_local2; | ||
242 | uint32_t mgcg_cgtt_local3; | ||
243 | uint32_t gpio_debug; | ||
244 | uint32_t mc_micro_code_feature; | ||
245 | uint32_t highest_mclk; | ||
246 | uint16_t acpi_vddci; | ||
247 | uint8_t mvdd_high_index; | ||
248 | uint8_t mvdd_low_index; | ||
249 | bool dll_default_on; | ||
250 | bool performance_request_registered; | ||
251 | |||
252 | /* ---- Low Power Features ---- */ | ||
253 | struct ellesmere_ulv_parm ulv; | ||
254 | |||
255 | /* ---- CAC Stuff ---- */ | ||
256 | uint32_t cac_table_start; | ||
257 | bool cac_configuration_required; | ||
258 | bool driver_calculate_cac_leakage; | ||
259 | bool cac_enabled; | ||
260 | |||
261 | /* ---- DPM2 Parameters ---- */ | ||
262 | uint32_t power_containment_features; | ||
263 | bool enable_dte_feature; | ||
264 | bool enable_tdc_limit_feature; | ||
265 | bool enable_pkg_pwr_tracking_feature; | ||
266 | bool disable_uvd_power_tune_feature; | ||
267 | struct ellesmere_pt_defaults *power_tune_defaults; | ||
268 | struct SMU74_Discrete_PmFuses power_tune_table; | ||
269 | uint32_t dte_tj_offset; | ||
270 | uint32_t fast_watermark_threshold; | ||
271 | |||
272 | /* ---- Phase Shedding ---- */ | ||
273 | bool vddc_phase_shed_control; | ||
274 | |||
275 | /* ---- DI/DT ---- */ | ||
276 | struct ellesmere_display_timing display_timing; | ||
277 | |||
278 | /* ---- Thermal Temperature Setting ---- */ | ||
279 | struct ellesmere_dpmlevel_enable_mask dpm_level_enable_mask; | ||
280 | uint32_t need_update_smu7_dpm_table; | ||
281 | uint32_t sclk_dpm_key_disabled; | ||
282 | uint32_t mclk_dpm_key_disabled; | ||
283 | uint32_t pcie_dpm_key_disabled; | ||
284 | uint32_t min_engine_clocks; | ||
285 | struct ellesmere_pcie_perf_range pcie_gen_performance; | ||
286 | struct ellesmere_pcie_perf_range pcie_lane_performance; | ||
287 | struct ellesmere_pcie_perf_range pcie_gen_power_saving; | ||
288 | struct ellesmere_pcie_perf_range pcie_lane_power_saving; | ||
289 | bool use_pcie_performance_levels; | ||
290 | bool use_pcie_power_saving_levels; | ||
291 | uint32_t activity_target[SMU74_MAX_LEVELS_GRAPHICS]; | ||
292 | uint32_t mclk_activity_target; | ||
293 | uint32_t mclk_dpm0_activity_target; | ||
294 | uint32_t low_sclk_interrupt_threshold; | ||
295 | uint32_t last_mclk_dpm_enable_mask; | ||
296 | bool uvd_enabled; | ||
297 | |||
298 | /* ---- Power Gating States ---- */ | ||
299 | bool uvd_power_gated; | ||
300 | bool vce_power_gated; | ||
301 | bool samu_power_gated; | ||
302 | bool need_long_memory_training; | ||
303 | |||
304 | /* Application power optimization parameters */ | ||
305 | bool update_up_hyst; | ||
306 | bool update_down_hyst; | ||
307 | uint32_t down_hyst; | ||
308 | uint32_t up_hyst; | ||
309 | uint32_t disable_dpm_mask; | ||
310 | bool apply_optimized_settings; | ||
311 | }; | ||
312 | |||
313 | /* To convert to Q8.8 format for firmware */ | ||
314 | #define ELLESMERE_Q88_FORMAT_CONVERSION_UNIT 256 | ||
315 | |||
316 | enum Ellesmere_I2CLineID { | ||
317 | Ellesmere_I2CLineID_DDC1 = 0x90, | ||
318 | Ellesmere_I2CLineID_DDC2 = 0x91, | ||
319 | Ellesmere_I2CLineID_DDC3 = 0x92, | ||
320 | Ellesmere_I2CLineID_DDC4 = 0x93, | ||
321 | Ellesmere_I2CLineID_DDC5 = 0x94, | ||
322 | Ellesmere_I2CLineID_DDC6 = 0x95, | ||
323 | Ellesmere_I2CLineID_SCLSDA = 0x96, | ||
324 | Ellesmere_I2CLineID_DDCVGA = 0x97 | ||
325 | }; | ||
326 | |||
327 | #define ELLESMERE_I2C_DDC1DATA 0 | ||
328 | #define ELLESMERE_I2C_DDC1CLK 1 | ||
329 | #define ELLESMERE_I2C_DDC2DATA 2 | ||
330 | #define ELLESMERE_I2C_DDC2CLK 3 | ||
331 | #define ELLESMERE_I2C_DDC3DATA 4 | ||
332 | #define ELLESMERE_I2C_DDC3CLK 5 | ||
333 | #define ELLESMERE_I2C_SDA 40 | ||
334 | #define ELLESMERE_I2C_SCL 41 | ||
335 | #define ELLESMERE_I2C_DDC4DATA 65 | ||
336 | #define ELLESMERE_I2C_DDC4CLK 66 | ||
337 | #define ELLESMERE_I2C_DDC5DATA 0x48 | ||
338 | #define ELLESMERE_I2C_DDC5CLK 0x49 | ||
339 | #define ELLESMERE_I2C_DDC6DATA 0x4a | ||
340 | #define ELLESMERE_I2C_DDC6CLK 0x4b | ||
341 | #define ELLESMERE_I2C_DDCVGADATA 0x4c | ||
342 | #define ELLESMERE_I2C_DDCVGACLK 0x4d | ||
343 | |||
344 | #define ELLESMERE_UNUSED_GPIO_PIN 0x7F | ||
345 | |||
346 | int ellesemere_hwmgr_init(struct pp_hwmgr *hwmgr); | ||
347 | |||
348 | #endif | ||
349 | |||
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_powertune.c b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_powertune.c new file mode 100644 index 000000000000..ff41c41b0b0f --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_powertune.c | |||
@@ -0,0 +1,396 @@ | |||
1 | /* | ||
2 | * Copyright 2015 Advanced Micro Devices, Inc. | ||
3 | * | ||
4 | * Permission is hereby granted, free of charge, to any person obtaining a | ||
5 | * copy of this software and associated documentation files (the "Software"), | ||
6 | * to deal in the Software without restriction, including without limitation | ||
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
8 | * and/or sell copies of the Software, and to permit persons to whom the | ||
9 | * Software is furnished to do so, subject to the following conditions: | ||
10 | * | ||
11 | * The above copyright notice and this permission notice shall be included in | ||
12 | * all copies or substantial portions of the Software. | ||
13 | * | ||
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | ||
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | ||
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | ||
20 | * OTHER DEALINGS IN THE SOFTWARE. | ||
21 | * | ||
22 | */ | ||
23 | |||
24 | #include "hwmgr.h" | ||
25 | #include "smumgr.h" | ||
26 | #include "ellesmere_hwmgr.h" | ||
27 | #include "ellesmere_powertune.h" | ||
28 | #include "ellesmere_smumgr.h" | ||
29 | #include "smu74_discrete.h" | ||
30 | #include "pp_debug.h" | ||
31 | |||
32 | #define VOLTAGE_SCALE 4 | ||
33 | #define POWERTUNE_DEFAULT_SET_MAX 1 | ||
34 | |||
35 | struct ellesmere_pt_defaults ellesmere_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { | ||
36 | /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, | ||
37 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */ | ||
38 | { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, | ||
39 | { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, | ||
40 | { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } }, | ||
41 | }; | ||
42 | |||
43 | void ellesmere_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) | ||
44 | { | ||
45 | struct ellesmere_hwmgr *ellesmere_hwmgr = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
46 | struct phm_ppt_v1_information *table_info = | ||
47 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
48 | |||
49 | if (table_info && | ||
50 | table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && | ||
51 | table_info->cac_dtp_table->usPowerTuneDataSetID) | ||
52 | ellesmere_hwmgr->power_tune_defaults = | ||
53 | &ellesmere_power_tune_data_set_array | ||
54 | [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; | ||
55 | else | ||
56 | ellesmere_hwmgr->power_tune_defaults = &ellesmere_power_tune_data_set_array[0]; | ||
57 | |||
58 | } | ||
59 | |||
60 | int ellesmere_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) | ||
61 | { | ||
62 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
63 | struct ellesmere_pt_defaults *defaults = data->power_tune_defaults; | ||
64 | SMU74_Discrete_DpmTable *dpm_table = &(data->smc_state_table); | ||
65 | struct phm_ppt_v1_information *table_info = | ||
66 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
67 | struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; | ||
68 | int i, j, k; | ||
69 | uint16_t *pdef1; | ||
70 | uint16_t *pdef2; | ||
71 | |||
72 | dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); | ||
73 | dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); | ||
74 | |||
75 | PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, | ||
76 | "Target Operating Temp is out of Range!", | ||
77 | ); | ||
78 | /* This is the same value as TemperatureLimitHigh except it is integer with no fraction bit. */ | ||
79 | dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); | ||
80 | |||
81 | /* HW request to hard code this value to 8 which is 0.5C */ | ||
82 | dpm_table->GpuTjHyst = 8; | ||
83 | |||
84 | dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase; | ||
85 | dpm_table->DTETjOffset = (uint8_t)(data->dte_tj_offset); | ||
86 | dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->BAPM_TEMP_GRADIENT); | ||
87 | pdef1 = defaults->BAPMTI_R; | ||
88 | pdef2 = defaults->BAPMTI_RC; | ||
89 | |||
90 | for (i = 0; i < SMU74_DTE_ITERATIONS; i++) { | ||
91 | for (j = 0; j < SMU74_DTE_SOURCES; j++) { | ||
92 | for (k = 0; k < SMU74_DTE_SINKS; k++) { | ||
93 | dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1); | ||
94 | dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2); | ||
95 | pdef1++; | ||
96 | pdef2++; | ||
97 | } | ||
98 | } | ||
99 | } | ||
100 | |||
101 | return 0; | ||
102 | } | ||
103 | |||
104 | static int ellesmere_populate_svi_load_line(struct pp_hwmgr *hwmgr) | ||
105 | { | ||
106 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
107 | struct ellesmere_pt_defaults *defaults = data->power_tune_defaults; | ||
108 | |||
109 | data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; | ||
110 | data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; | ||
111 | data->power_tune_table.SviLoadLineTrimVddC = 3; | ||
112 | data->power_tune_table.SviLoadLineOffsetVddC = 0; | ||
113 | |||
114 | return 0; | ||
115 | } | ||
116 | |||
117 | static int ellesmere_populate_tdc_limit(struct pp_hwmgr *hwmgr) | ||
118 | { | ||
119 | uint16_t tdc_limit; | ||
120 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
121 | struct phm_ppt_v1_information *table_info = | ||
122 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
123 | struct ellesmere_pt_defaults *defaults = data->power_tune_defaults; | ||
124 | |||
125 | tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); | ||
126 | data->power_tune_table.TDC_VDDC_PkgLimit = | ||
127 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); | ||
128 | data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = | ||
129 | defaults->TDC_VDDC_ThrottleReleaseLimitPerc; | ||
130 | data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; | ||
131 | |||
132 | return 0; | ||
133 | } | ||
134 | |||
135 | static int ellesmere_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) | ||
136 | { | ||
137 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
138 | struct ellesmere_pt_defaults *defaults = data->power_tune_defaults; | ||
139 | uint32_t temp; | ||
140 | |||
141 | if (ellesmere_read_smc_sram_dword(hwmgr->smumgr, | ||
142 | fuse_table_offset + | ||
143 | offsetof(SMU74_Discrete_PmFuses, TdcWaterfallCtl), | ||
144 | (uint32_t *)&temp, data->sram_end)) | ||
145 | PP_ASSERT_WITH_CODE(false, | ||
146 | "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", | ||
147 | return -EINVAL); | ||
148 | else { | ||
149 | data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; | ||
150 | data->power_tune_table.LPMLTemperatureMin = | ||
151 | (uint8_t)((temp >> 16) & 0xff); | ||
152 | data->power_tune_table.LPMLTemperatureMax = | ||
153 | (uint8_t)((temp >> 8) & 0xff); | ||
154 | data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); | ||
155 | } | ||
156 | return 0; | ||
157 | } | ||
158 | |||
159 | static int ellesmere_populate_temperature_scaler(struct pp_hwmgr *hwmgr) | ||
160 | { | ||
161 | int i; | ||
162 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
163 | |||
164 | /* Currently not used. Set all to zero. */ | ||
165 | for (i = 0; i < 16; i++) | ||
166 | data->power_tune_table.LPMLTemperatureScaler[i] = 0; | ||
167 | |||
168 | return 0; | ||
169 | } | ||
170 | |||
171 | static int ellesmere_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) | ||
172 | { | ||
173 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
174 | |||
175 | if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) | ||
176 | || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) | ||
177 | hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = | ||
178 | hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; | ||
179 | |||
180 | data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US( | ||
181 | hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity); | ||
182 | return 0; | ||
183 | } | ||
184 | |||
185 | static int ellesmere_populate_gnb_lpml(struct pp_hwmgr *hwmgr) | ||
186 | { | ||
187 | int i; | ||
188 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
189 | |||
190 | /* Currently not used. Set all to zero. */ | ||
191 | for (i = 0; i < 16; i++) | ||
192 | data->power_tune_table.GnbLPML[i] = 0; | ||
193 | |||
194 | return 0; | ||
195 | } | ||
196 | |||
197 | static int ellesmere_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr) | ||
198 | { | ||
199 | return 0; | ||
200 | } | ||
201 | |||
202 | static int ellesmere_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) | ||
203 | { | ||
204 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
205 | struct phm_ppt_v1_information *table_info = | ||
206 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
207 | uint16_t hi_sidd = data->power_tune_table.BapmVddCBaseLeakageHiSidd; | ||
208 | uint16_t lo_sidd = data->power_tune_table.BapmVddCBaseLeakageLoSidd; | ||
209 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; | ||
210 | |||
211 | hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); | ||
212 | lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); | ||
213 | |||
214 | data->power_tune_table.BapmVddCBaseLeakageHiSidd = | ||
215 | CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); | ||
216 | data->power_tune_table.BapmVddCBaseLeakageLoSidd = | ||
217 | CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); | ||
218 | |||
219 | return 0; | ||
220 | } | ||
221 | |||
222 | int ellesmere_populate_pm_fuses(struct pp_hwmgr *hwmgr) | ||
223 | { | ||
224 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
225 | uint32_t pm_fuse_table_offset; | ||
226 | |||
227 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
228 | PHM_PlatformCaps_PowerContainment)) { | ||
229 | if (ellesmere_read_smc_sram_dword(hwmgr->smumgr, | ||
230 | SMU7_FIRMWARE_HEADER_LOCATION + | ||
231 | offsetof(SMU74_Firmware_Header, PmFuseTable), | ||
232 | &pm_fuse_table_offset, data->sram_end)) | ||
233 | PP_ASSERT_WITH_CODE(false, | ||
234 | "Attempt to get pm_fuse_table_offset Failed!", | ||
235 | return -EINVAL); | ||
236 | |||
237 | if (ellesmere_populate_svi_load_line(hwmgr)) | ||
238 | PP_ASSERT_WITH_CODE(false, | ||
239 | "Attempt to populate SviLoadLine Failed!", | ||
240 | return -EINVAL); | ||
241 | |||
242 | if (ellesmere_populate_tdc_limit(hwmgr)) | ||
243 | PP_ASSERT_WITH_CODE(false, | ||
244 | "Attempt to populate TDCLimit Failed!", return -EINVAL); | ||
245 | |||
246 | if (ellesmere_populate_dw8(hwmgr, pm_fuse_table_offset)) | ||
247 | PP_ASSERT_WITH_CODE(false, | ||
248 | "Attempt to populate TdcWaterfallCtl, " | ||
249 | "LPMLTemperature Min and Max Failed!", | ||
250 | return -EINVAL); | ||
251 | |||
252 | if (0 != ellesmere_populate_temperature_scaler(hwmgr)) | ||
253 | PP_ASSERT_WITH_CODE(false, | ||
254 | "Attempt to populate LPMLTemperatureScaler Failed!", | ||
255 | return -EINVAL); | ||
256 | |||
257 | if (ellesmere_populate_fuzzy_fan(hwmgr)) | ||
258 | PP_ASSERT_WITH_CODE(false, | ||
259 | "Attempt to populate Fuzzy Fan Control parameters Failed!", | ||
260 | return -EINVAL); | ||
261 | |||
262 | if (ellesmere_populate_gnb_lpml(hwmgr)) | ||
263 | PP_ASSERT_WITH_CODE(false, | ||
264 | "Attempt to populate GnbLPML Failed!", | ||
265 | return -EINVAL); | ||
266 | |||
267 | if (ellesmere_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr)) | ||
268 | PP_ASSERT_WITH_CODE(false, | ||
269 | "Attempt to populate GnbLPML Min and Max Vid Failed!", | ||
270 | return -EINVAL); | ||
271 | |||
272 | if (ellesmere_populate_bapm_vddc_base_leakage_sidd(hwmgr)) | ||
273 | PP_ASSERT_WITH_CODE(false, | ||
274 | "Attempt to populate BapmVddCBaseLeakage Hi and Lo " | ||
275 | "Sidd Failed!", return -EINVAL); | ||
276 | |||
277 | if (ellesmere_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset, | ||
278 | (uint8_t *)&data->power_tune_table, | ||
279 | sizeof(struct SMU74_Discrete_PmFuses), data->sram_end)) | ||
280 | PP_ASSERT_WITH_CODE(false, | ||
281 | "Attempt to download PmFuseTable Failed!", | ||
282 | return -EINVAL); | ||
283 | } | ||
284 | return 0; | ||
285 | } | ||
286 | |||
287 | int ellesmere_enable_smc_cac(struct pp_hwmgr *hwmgr) | ||
288 | { | ||
289 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
290 | int result = 0; | ||
291 | |||
292 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
293 | PHM_PlatformCaps_CAC)) { | ||
294 | int smc_result; | ||
295 | smc_result = smum_send_msg_to_smc(hwmgr->smumgr, | ||
296 | (uint16_t)(PPSMC_MSG_EnableCac)); | ||
297 | PP_ASSERT_WITH_CODE((0 == smc_result), | ||
298 | "Failed to enable CAC in SMC.", result = -1); | ||
299 | |||
300 | data->cac_enabled = (0 == smc_result) ? true : false; | ||
301 | } | ||
302 | return result; | ||
303 | } | ||
304 | |||
305 | int ellesmere_set_power_limit(struct pp_hwmgr *hwmgr, uint32_t n) | ||
306 | { | ||
307 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
308 | |||
309 | if (data->power_containment_features & | ||
310 | POWERCONTAINMENT_FEATURE_PkgPwrLimit) | ||
311 | return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, | ||
312 | PPSMC_MSG_PkgPwrSetLimit, n); | ||
313 | return 0; | ||
314 | } | ||
315 | |||
316 | static int ellesmere_set_overdriver_target_tdp(struct pp_hwmgr *pHwMgr, uint32_t target_tdp) | ||
317 | { | ||
318 | return smum_send_msg_to_smc_with_parameter(pHwMgr->smumgr, | ||
319 | PPSMC_MSG_OverDriveSetTargetTdp, target_tdp); | ||
320 | } | ||
321 | |||
322 | int ellesmere_enable_power_containment(struct pp_hwmgr *hwmgr) | ||
323 | { | ||
324 | struct ellesmere_hwmgr *data = (struct ellesmere_hwmgr *)(hwmgr->backend); | ||
325 | struct phm_ppt_v1_information *table_info = | ||
326 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
327 | int smc_result; | ||
328 | int result = 0; | ||
329 | |||
330 | data->power_containment_features = 0; | ||
331 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
332 | PHM_PlatformCaps_PowerContainment)) { | ||
333 | if (data->enable_dte_feature) { | ||
334 | smc_result = smum_send_msg_to_smc(hwmgr->smumgr, | ||
335 | (uint16_t)(PPSMC_MSG_EnableDTE)); | ||
336 | PP_ASSERT_WITH_CODE((0 == smc_result), | ||
337 | "Failed to enable DTE in SMC.", result = -1;); | ||
338 | if (0 == smc_result) | ||
339 | data->power_containment_features |= POWERCONTAINMENT_FEATURE_DTE; | ||
340 | } | ||
341 | |||
342 | if (data->enable_tdc_limit_feature) { | ||
343 | smc_result = smum_send_msg_to_smc(hwmgr->smumgr, | ||
344 | (uint16_t)(PPSMC_MSG_TDCLimitEnable)); | ||
345 | PP_ASSERT_WITH_CODE((0 == smc_result), | ||
346 | "Failed to enable TDCLimit in SMC.", result = -1;); | ||
347 | if (0 == smc_result) | ||
348 | data->power_containment_features |= | ||
349 | POWERCONTAINMENT_FEATURE_TDCLimit; | ||
350 | } | ||
351 | |||
352 | if (data->enable_pkg_pwr_tracking_feature) { | ||
353 | smc_result = smum_send_msg_to_smc(hwmgr->smumgr, | ||
354 | (uint16_t)(PPSMC_MSG_PkgPwrLimitEnable)); | ||
355 | PP_ASSERT_WITH_CODE((0 == smc_result), | ||
356 | "Failed to enable PkgPwrTracking in SMC.", result = -1;); | ||
357 | if (0 == smc_result) { | ||
358 | struct phm_cac_tdp_table *cac_table = | ||
359 | table_info->cac_dtp_table; | ||
360 | uint32_t default_limit = | ||
361 | (uint32_t)(cac_table->usMaximumPowerDeliveryLimit * 256); | ||
362 | |||
363 | data->power_containment_features |= | ||
364 | POWERCONTAINMENT_FEATURE_PkgPwrLimit; | ||
365 | |||
366 | if (ellesmere_set_power_limit(hwmgr, default_limit)) | ||
367 | printk(KERN_ERR "Failed to set Default Power Limit in SMC!"); | ||
368 | } | ||
369 | } | ||
370 | } | ||
371 | return result; | ||
372 | } | ||
373 | |||
374 | int ellesmere_power_control_set_level(struct pp_hwmgr *hwmgr) | ||
375 | { | ||
376 | struct phm_ppt_v1_information *table_info = | ||
377 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | ||
378 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; | ||
379 | int adjust_percent, target_tdp; | ||
380 | int result = 0; | ||
381 | |||
382 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | ||
383 | PHM_PlatformCaps_PowerContainment)) { | ||
384 | /* adjustment percentage has already been validated */ | ||
385 | adjust_percent = hwmgr->platform_descriptor.TDPAdjustmentPolarity ? | ||
386 | hwmgr->platform_descriptor.TDPAdjustment : | ||
387 | (-1 * hwmgr->platform_descriptor.TDPAdjustment); | ||
388 | /* SMC requested that target_tdp to be 7 bit fraction in DPM table | ||
389 | * but message to be 8 bit fraction for messages | ||
390 | */ | ||
391 | target_tdp = ((100 + adjust_percent) * (int)(cac_table->usTDP * 256)) / 100; | ||
392 | result = ellesmere_set_overdriver_target_tdp(hwmgr, (uint32_t)target_tdp); | ||
393 | } | ||
394 | |||
395 | return result; | ||
396 | } | ||
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_powertune.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_powertune.h new file mode 100644 index 000000000000..5772bf929eaf --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ellesmere_powertune.h | |||
@@ -0,0 +1,70 @@ | |||
1 | /* | ||
2 | * Copyright 2015 Advanced Micro Devices, Inc. | ||
3 | * | ||
4 | * Permission is hereby granted, free of charge, to any person obtaining a | ||
5 | * copy of this software and associated documentation files (the "Software"), | ||
6 | * to deal in the Software without restriction, including without limitation | ||
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
8 | * and/or sell copies of the Software, and to permit persons to whom the | ||
9 | * Software is furnished to do so, subject to the following conditions: | ||
10 | * | ||
11 | * The above copyright notice and this permission notice shall be included in | ||
12 | * all copies or substantial portions of the Software. | ||
13 | * | ||
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | ||
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | ||
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | ||
20 | * OTHER DEALINGS IN THE SOFTWARE. | ||
21 | * | ||
22 | */ | ||
23 | #ifndef ELLESMERE_POWERTUNE_H | ||
24 | #define ELLESMERE_POWERTUNE_H | ||
25 | |||
26 | enum ellesmere_pt_config_reg_type { | ||
27 | ELLESMERE_CONFIGREG_MMR = 0, | ||
28 | ELLESMERE_CONFIGREG_SMC_IND, | ||
29 | ELLESMERE_CONFIGREG_DIDT_IND, | ||
30 | ELLESMERE_CONFIGREG_CACHE, | ||
31 | ELLESMERE_CONFIGREG_MAX | ||
32 | }; | ||
33 | |||
34 | /* PowerContainment Features */ | ||
35 | #define POWERCONTAINMENT_FEATURE_DTE 0x00000001 | ||
36 | #define POWERCONTAINMENT_FEATURE_TDCLimit 0x00000002 | ||
37 | #define POWERCONTAINMENT_FEATURE_PkgPwrLimit 0x00000004 | ||
38 | |||
39 | struct ellesmere_pt_config_reg { | ||
40 | uint32_t offset; | ||
41 | uint32_t mask; | ||
42 | uint32_t shift; | ||
43 | uint32_t value; | ||
44 | enum ellesmere_pt_config_reg_type type; | ||
45 | }; | ||
46 | |||
47 | struct ellesmere_pt_defaults { | ||
48 | uint8_t SviLoadLineEn; | ||
49 | uint8_t SviLoadLineVddC; | ||
50 | uint8_t TDC_VDDC_ThrottleReleaseLimitPerc; | ||
51 | uint8_t TDC_MAWt; | ||
52 | uint8_t TdcWaterfallCtl; | ||
53 | uint8_t DTEAmbientTempBase; | ||
54 | |||
55 | uint32_t DisplayCac; | ||
56 | uint32_t BAPM_TEMP_GRADIENT; | ||
57 | uint16_t BAPMTI_R[SMU74_DTE_ITERATIONS * SMU74_DTE_SOURCES * SMU74_DTE_SINKS]; | ||
58 | uint16_t BAPMTI_RC[SMU74_DTE_ITERATIONS * SMU74_DTE_SOURCES * SMU74_DTE_SINKS]; | ||
59 | }; | ||
60 | |||
61 | void ellesmere_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr); | ||
62 | int ellesmere_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr); | ||
63 | int ellesmere_populate_pm_fuses(struct pp_hwmgr *hwmgr); | ||
64 | int ellesmere_enable_smc_cac(struct pp_hwmgr *hwmgr); | ||
65 | int ellesmere_enable_power_containment(struct pp_hwmgr *hwmgr); | ||
66 | int ellesmere_set_power_limit(struct pp_hwmgr *hwmgr, uint32_t n); | ||
67 | int ellesmere_power_control_set_level(struct pp_hwmgr *hwmgr); | ||
68 | |||
69 | #endif /* ELLESMERE_POWERTUNE_H */ | ||
70 | |||
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c index 2a83a4af2904..8ba3ad5e7111 100644 --- a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c | |||
@@ -373,6 +373,37 @@ int atomctrl_get_engine_pll_dividers_vi( | |||
373 | return result; | 373 | return result; |
374 | } | 374 | } |
375 | 375 | ||
376 | int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr, | ||
377 | uint32_t clock_value, | ||
378 | pp_atomctrl_clock_dividers_ai *dividers) | ||
379 | { | ||
380 | COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters; | ||
381 | int result; | ||
382 | |||
383 | pll_patameters.ulClock.ulClock = clock_value; | ||
384 | pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK; | ||
385 | |||
386 | result = cgs_atom_exec_cmd_table | ||
387 | (hwmgr->device, | ||
388 | GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), | ||
389 | &pll_patameters); | ||
390 | |||
391 | if (0 == result) { | ||
392 | dividers->usSclk_fcw_frac = le16_to_cpu(pll_patameters.usSclk_fcw_frac); | ||
393 | dividers->usSclk_fcw_int = le16_to_cpu(pll_patameters.usSclk_fcw_int); | ||
394 | dividers->ucSclkPostDiv = pll_patameters.ucSclkPostDiv; | ||
395 | dividers->ucSclkVcoMode = pll_patameters.ucSclkVcoMode; | ||
396 | dividers->ucSclkPllRange = pll_patameters.ucSclkPllRange; | ||
397 | dividers->ucSscEnable = pll_patameters.ucSscEnable; | ||
398 | dividers->usSsc_fcw1_frac = le16_to_cpu(pll_patameters.usSsc_fcw1_frac); | ||
399 | dividers->usSsc_fcw1_int = le16_to_cpu(pll_patameters.usSsc_fcw1_int); | ||
400 | dividers->usPcc_fcw_int = le16_to_cpu(pll_patameters.usPcc_fcw_int); | ||
401 | dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac); | ||
402 | dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac); | ||
403 | } | ||
404 | return result; | ||
405 | } | ||
406 | |||
376 | int atomctrl_get_dfs_pll_dividers_vi( | 407 | int atomctrl_get_dfs_pll_dividers_vi( |
377 | struct pp_hwmgr *hwmgr, | 408 | struct pp_hwmgr *hwmgr, |
378 | uint32_t clock_value, | 409 | uint32_t clock_value, |
@@ -618,7 +649,7 @@ int atomctrl_calculate_voltage_evv_on_sclk( | |||
618 | if (!getASICProfilingInfo) | 649 | if (!getASICProfilingInfo) |
619 | return -1; | 650 | return -1; |
620 | 651 | ||
621 | if(getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 || | 652 | if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 || |
622 | (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 && | 653 | (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 && |
623 | getASICProfilingInfo->asHeader.ucTableContentRevision < 4)) | 654 | getASICProfilingInfo->asHeader.ucTableContentRevision < 4)) |
624 | return -1; | 655 | return -1; |
@@ -891,18 +922,18 @@ int atomctrl_calculate_voltage_evv_on_sclk( | |||
891 | *----------------------- | 922 | *----------------------- |
892 | */ | 923 | */ |
893 | 924 | ||
894 | fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4,fSclk), fSM_A5)); | 925 | fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5)); |
895 | fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b); | 926 | fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b); |
896 | fC_Term = fAdd(fMargin_RO_c, | 927 | fC_Term = fAdd(fMargin_RO_c, |
897 | fAdd(fMultiply(fSM_A0,fLkg_FT), | 928 | fAdd(fMultiply(fSM_A0,fLkg_FT), |
898 | fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT,fSclk)), | 929 | fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)), |
899 | fAdd(fMultiply(fSM_A3, fSclk), | 930 | fAdd(fMultiply(fSM_A3, fSclk), |
900 | fSubtract(fSM_A7,fRO_fused))))); | 931 | fSubtract(fSM_A7, fRO_fused))))); |
901 | 932 | ||
902 | fVDDC_base = fSubtract(fRO_fused, | 933 | fVDDC_base = fSubtract(fRO_fused, |
903 | fSubtract(fMargin_RO_c, | 934 | fSubtract(fMargin_RO_c, |
904 | fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk)))); | 935 | fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk)))); |
905 | fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0,fSclk), fSM_A2)); | 936 | fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2)); |
906 | 937 | ||
907 | repeat = fSubtract(fVDDC_base, | 938 | repeat = fSubtract(fVDDC_base, |
908 | fDivide(fMargin_DC_sigma, ConvertToFraction(1000))); | 939 | fDivide(fMargin_DC_sigma, ConvertToFraction(1000))); |
@@ -916,7 +947,7 @@ int atomctrl_calculate_voltage_evv_on_sclk( | |||
916 | fSubtract(fRO_DC_margin, | 947 | fSubtract(fRO_DC_margin, |
917 | fSubtract(fSM_A3, | 948 | fSubtract(fSM_A3, |
918 | fMultiply(fSM_A2, repeat)))); | 949 | fMultiply(fSM_A2, repeat)))); |
919 | fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0,repeat), fSM_A1)); | 950 | fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1)); |
920 | 951 | ||
921 | fSigma_DC = fSubtract(fSclk, fDC_SCLK); | 952 | fSigma_DC = fSubtract(fSclk, fDC_SCLK); |
922 | 953 | ||
@@ -996,7 +1027,7 @@ int atomctrl_calculate_voltage_evv_on_sclk( | |||
996 | fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0); | 1027 | fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0); |
997 | 1028 | ||
998 | if (GreaterThan(fV_max, fV_NL) && | 1029 | if (GreaterThan(fV_max, fV_NL) && |
999 | (GreaterThan(fV_NL,fEVV_V) || | 1030 | (GreaterThan(fV_NL, fEVV_V) || |
1000 | Equal(fV_NL, fEVV_V))) { | 1031 | Equal(fV_NL, fEVV_V))) { |
1001 | fV_NL = fMultiply(fV_NL, ConvertToFraction(1000)); | 1032 | fV_NL = fMultiply(fV_NL, ConvertToFraction(1000)); |
1002 | 1033 | ||
@@ -1205,3 +1236,69 @@ int atomctrl_read_efuse(void *device, uint16_t start_index, | |||
1205 | 1236 | ||
1206 | return result; | 1237 | return result; |
1207 | } | 1238 | } |
1239 | |||
1240 | int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock, | ||
1241 | uint8_t level) | ||
1242 | { | ||
1243 | DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters; | ||
1244 | int result; | ||
1245 | |||
1246 | memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq = memory_clock & SET_CLOCK_FREQ_MASK; | ||
1247 | memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag = ADJUST_MC_SETTING_PARAM; | ||
1248 | memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level; | ||
1249 | |||
1250 | result = cgs_atom_exec_cmd_table | ||
1251 | (hwmgr->device, | ||
1252 | GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings), | ||
1253 | &memory_clock_parameters); | ||
1254 | |||
1255 | return result; | ||
1256 | } | ||
1257 | |||
1258 | int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type, | ||
1259 | uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage) | ||
1260 | { | ||
1261 | |||
1262 | int result; | ||
1263 | GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space; | ||
1264 | |||
1265 | get_voltage_info_param_space.ucVoltageType = voltage_type; | ||
1266 | get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE; | ||
1267 | get_voltage_info_param_space.usVoltageLevel = virtual_voltage_Id; | ||
1268 | get_voltage_info_param_space.ulSCLKFreq = sclk; | ||
1269 | |||
1270 | result = cgs_atom_exec_cmd_table(hwmgr->device, | ||
1271 | GetIndexIntoMasterTable(COMMAND, GetVoltageInfo), | ||
1272 | &get_voltage_info_param_space); | ||
1273 | |||
1274 | if (0 != result) | ||
1275 | return result; | ||
1276 | |||
1277 | *voltage = get_voltage_info_param_space.usVoltageLevel; | ||
1278 | |||
1279 | return result; | ||
1280 | } | ||
1281 | |||
1282 | int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table) | ||
1283 | { | ||
1284 | |||
1285 | int i; | ||
1286 | u8 frev, crev; | ||
1287 | u16 size; | ||
1288 | |||
1289 | ATOM_SMU_INFO_V2_1 *psmu_info = | ||
1290 | (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device, | ||
1291 | GetIndexIntoMasterTable(DATA, SMU_Info), | ||
1292 | &size, &frev, &crev); | ||
1293 | |||
1294 | |||
1295 | for (i = 0; i < psmu_info->ucSclkEntryNum; i++) { | ||
1296 | table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting; | ||
1297 | table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv; | ||
1298 | table->entry[i].usFcw_pcc = psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc; | ||
1299 | table->entry[i].usFcw_trans_upper = psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper; | ||
1300 | table->entry[i].usRcw_trans_lower = psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower; | ||
1301 | } | ||
1302 | |||
1303 | return 0; | ||
1304 | } | ||
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h index 627420b80a5f..d24ebb566905 100644 --- a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h | |||
@@ -101,6 +101,23 @@ struct pp_atomctrl_clock_dividers_vi { | |||
101 | }; | 101 | }; |
102 | typedef struct pp_atomctrl_clock_dividers_vi pp_atomctrl_clock_dividers_vi; | 102 | typedef struct pp_atomctrl_clock_dividers_vi pp_atomctrl_clock_dividers_vi; |
103 | 103 | ||
104 | struct pp_atomctrl_clock_dividers_ai { | ||
105 | u16 usSclk_fcw_frac; | ||
106 | u16 usSclk_fcw_int; | ||
107 | u8 ucSclkPostDiv; | ||
108 | u8 ucSclkVcoMode; | ||
109 | u8 ucSclkPllRange; | ||
110 | u8 ucSscEnable; | ||
111 | u16 usSsc_fcw1_frac; | ||
112 | u16 usSsc_fcw1_int; | ||
113 | u16 usReserved; | ||
114 | u16 usPcc_fcw_int; | ||
115 | u16 usSsc_fcw_slew_frac; | ||
116 | u16 usPcc_fcw_slew_frac; | ||
117 | }; | ||
118 | typedef struct pp_atomctrl_clock_dividers_ai pp_atomctrl_clock_dividers_ai; | ||
119 | |||
120 | |||
104 | union pp_atomctrl_s_mpll_fb_divider { | 121 | union pp_atomctrl_s_mpll_fb_divider { |
105 | struct { | 122 | struct { |
106 | uint32_t cl_kf : 12; | 123 | uint32_t cl_kf : 12; |
@@ -204,6 +221,21 @@ struct pp_atomctrl_mc_register_address { | |||
204 | 221 | ||
205 | typedef struct pp_atomctrl_mc_register_address pp_atomctrl_mc_register_address; | 222 | typedef struct pp_atomctrl_mc_register_address pp_atomctrl_mc_register_address; |
206 | 223 | ||
224 | #define MAX_SCLK_RANGE 8 | ||
225 | |||
226 | struct pp_atom_ctrl_sclk_range_table_entry{ | ||
227 | uint8_t ucVco_setting; | ||
228 | uint8_t ucPostdiv; | ||
229 | uint16_t usFcw_pcc; | ||
230 | uint16_t usFcw_trans_upper; | ||
231 | uint16_t usRcw_trans_lower; | ||
232 | }; | ||
233 | |||
234 | |||
235 | struct pp_atom_ctrl_sclk_range_table{ | ||
236 | struct pp_atom_ctrl_sclk_range_table_entry entry[MAX_SCLK_RANGE]; | ||
237 | }; | ||
238 | |||
207 | struct pp_atomctrl_mc_reg_table { | 239 | struct pp_atomctrl_mc_reg_table { |
208 | uint8_t last; /* number of registers */ | 240 | uint8_t last; /* number of registers */ |
209 | uint8_t num_entries; /* number of AC timing entries */ | 241 | uint8_t num_entries; /* number of AC timing entries */ |
@@ -240,7 +272,11 @@ extern int atomctrl_read_efuse(void *device, uint16_t start_index, | |||
240 | uint16_t end_index, uint32_t mask, uint32_t *efuse); | 272 | uint16_t end_index, uint32_t mask, uint32_t *efuse); |
241 | extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type, | 273 | extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type, |
242 | uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug); | 274 | uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug); |
243 | 275 | extern int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_ai *dividers); | |
244 | 276 | extern int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock, | |
277 | uint8_t level); | ||
278 | extern int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type, | ||
279 | uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage); | ||
280 | extern int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table); | ||
245 | #endif | 281 | #endif |
246 | 282 | ||