aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorChristoph Hellwig <hch@lst.de>2016-09-19 11:50:48 -0400
committerMartin K. Petersen <martin.petersen@oracle.com>2016-09-26 20:49:24 -0400
commit2393b111ed8839e58e6590998483748b1efb35ff (patch)
treee13207967d938532854265f3ae9139e9ceed69b1
parent9b3a34fb2125141720515b79ed2228545645a7bc (diff)
scsi: in2000: remove from tree
The driver has not seen any maintainer activity or other work that wasn't tree wide conversion or clenaups in the entire history of the git tree. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinicke <hare@suse.de> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
-rw-r--r--Documentation/scsi/00-INDEX2
-rw-r--r--Documentation/scsi/in2000.txt202
-rw-r--r--Documentation/scsi/scsi-parameters.txt3
-rw-r--r--drivers/scsi/Kconfig12
-rw-r--r--drivers/scsi/Makefile1
-rw-r--r--drivers/scsi/in2000.c2302
-rw-r--r--drivers/scsi/in2000.h412
7 files changed, 0 insertions, 2934 deletions
diff --git a/Documentation/scsi/00-INDEX b/Documentation/scsi/00-INDEX
index c4b978a72f78..bb4a76f823e1 100644
--- a/Documentation/scsi/00-INDEX
+++ b/Documentation/scsi/00-INDEX
@@ -64,8 +64,6 @@ hpsa.txt
64 - HP Smart Array Controller SCSI driver. 64 - HP Smart Array Controller SCSI driver.
65hptiop.txt 65hptiop.txt
66 - HIGHPOINT ROCKETRAID 3xxx RAID DRIVER 66 - HIGHPOINT ROCKETRAID 3xxx RAID DRIVER
67in2000.txt
68 - info on in2000 driver
69libsas.txt 67libsas.txt
70 - Serial Attached SCSI management layer. 68 - Serial Attached SCSI management layer.
71link_power_management_policy.txt 69link_power_management_policy.txt
diff --git a/Documentation/scsi/in2000.txt b/Documentation/scsi/in2000.txt
deleted file mode 100644
index c3e2a90475d2..000000000000
--- a/Documentation/scsi/in2000.txt
+++ /dev/null
@@ -1,202 +0,0 @@
1
2UPDATE NEWS: version 1.33 - 26 Aug 98
3
4 Interrupt management in this driver has become, over
5 time, increasingly odd and difficult to explain - this
6 has been mostly due to my own mental inadequacies. In
7 recent kernels, it has failed to function at all when
8 compiled for SMP. I've fixed that problem, and after
9 taking a fresh look at interrupts in general, greatly
10 reduced the number of places where they're fiddled
11 with. Done some heavy testing and it looks very good.
12 The driver now makes use of the __initfunc() and
13 __initdata macros to save about 4k of kernel memory.
14 Once again, the same code works for both 2.0.xx and
15 2.1.xx kernels.
16
17UPDATE NEWS: version 1.32 - 28 Mar 98
18
19 Removed the check for legal IN2000 hardware versions:
20 It appears that the driver works fine with serial
21 EPROMs (the 8-pin chip that defines hardware rev) as
22 old as 2.1, so we'll assume that all cards are OK.
23
24UPDATE NEWS: version 1.31 - 6 Jul 97
25
26 Fixed a bug that caused incorrect SCSI status bytes to be
27 returned from commands sent to LUNs greater than 0. This
28 means that CDROM changers work now! Fixed a bug in the
29 handling of command-line arguments when loaded as a module.
30 Also put all the header data in in2000.h where it belongs.
31 There are no longer any differences between this driver in
32 the 2.1.xx source tree and the 2.0.xx tree, as of 2.0.31
33 and 2.1.45 (or is it .46?) - this makes things much easier
34 for me...
35
36UPDATE NEWS: version 1.30 - 14 Oct 96
37
38 Fixed a bug in the code that sets the transfer direction
39 bit (DESTID_DPD in the WD_DESTINATION_ID register). There
40 are quite a few SCSI commands that do a write-to-device;
41 now we deal with all of them correctly. Thanks to Joerg
42 Dorchain for catching this one.
43
44UPDATE NEWS: version 1.29 - 24 Sep 96
45
46 The memory-mapped hardware on the card is now accessed via
47 the 'readb()' and 'readl()' macros - required by the new
48 memory management scheme in the 2.1.x kernel series.
49 As suggested by Andries Brouwer, 'bios_param()' no longer
50 forces an artificial 1023 track limit on drives. Also
51 removed some kludge-code left over from struggles with
52 older (buggy) compilers.
53
54UPDATE NEWS: version 1.28 - 07 May 96
55
56 Tightened up the "interrupts enabled/disabled" discipline
57 in 'in2000_queuecommand()' and maybe 1 or 2 other places.
58 I _think_ it may have been a little too lax, causing an
59 occasional crash during full moon. A fully functional
60 /proc interface is now in place - if you want to play
61 with it, start by doing 'cat /proc/scsi/in2000/0'. You
62 can also use it to change a few run-time parameters on
63 the fly, but it's mostly for debugging. The curious
64 should take a good look at 'in2000_proc_info()' in the
65 in2000.c file to get an understanding of what it's all
66 about; I figure that people who are really into it will
67 want to add features suited to their own needs...
68 Also, sync is now DISABLED by default.
69
70UPDATE NEWS: version 1.27 - 10 Apr 96
71
72 Fixed a well-hidden bug in the adaptive-disconnect code
73 that would show up every now and then during extreme
74 heavy loads involving 2 or more simultaneously active
75 devices. Thanks to Joe Mack for keeping my nose to the
76 grindstone on this one.
77
78UPDATE NEWS: version 1.26 - 07 Mar 96
79
80 1.25 had a nasty bug that bit people with swap partitions
81 and tape drives. Also, in my attempt to guess my way
82 through Intel assembly language, I made an error in the
83 inline code for IO writes. Made a few other changes and
84 repairs - this version (fingers crossed) should work well.
85
86UPDATE NEWS: version 1.25 - 05 Mar 96
87
88 Kernel 1.3.70 interrupt mods added; old kernels still OK.
89 Big help from Bill Earnest and David Willmore on speed
90 testing and optimizing: I think there's a real improvement
91 in this area.
92 New! User-friendly command-line interface for LILO and
93 module loading - the old method is gone, so you'll need
94 to read the comments for 'setup_strings' near the top
95 of in2000.c. For people with CDROM's or other devices
96 that have a tough time with sync negotiation, you can
97 now selectively disable sync on individual devices -
98 search for the 'nosync' keyword in the command-line
99 comments. Some of you disable the BIOS on the card, which
100 caused the auto-detect function to fail; there is now a
101 command-line option to force detection of a ROM-less card.
102
103UPDATE NEWS: version 1.24a - 24 Feb 96
104
105 There was a bug in the synchronous transfer code. Only
106 a few people downloaded before I caught it - could have
107 been worse.
108
109UPDATE NEWS: version 1.24 - 23 Feb 96
110
111 Lots of good changes. Advice from Bill Earnest resulted
112 in much better detection of cards, more efficient usage
113 of the fifo, and (hopefully) faster data transfers. The
114 jury is still out on speed - I hope it's improved some.
115 One nifty new feature is a cool way of doing disconnect/
116 reselect. The driver defaults to what I'm calling
117 'adaptive disconnect' - meaning that each command is
118 evaluated individually as to whether or not it should be
119 run with the option to disconnect/reselect (if the device
120 chooses), or as a "SCSI-bus-hog". When several devices
121 are operating simultaneously, disconnects are usually an
122 advantage. In a single device system, or if only 1 device
123 is being accessed, transfers usually go faster if disconnects
124 are not allowed.
125
126
127
128The default arguments (you get these when you don't give an 'in2000'
129command-line argument, or you give a blank argument) will cause
130the driver to do adaptive disconnect, synchronous transfers, and a
131minimum of debug messages. If you want to fool with the options,
132search for 'setup_strings' near the top of the in2000.c file and
133check the 'hostdata->args' section in in2000.h - but be warned! Not
134everything is working yet (some things will never work, probably).
135I believe that disabling disconnects (DIS_NEVER) will allow you
136to choose a LEVEL2 value higher than 'L2_BASIC', but I haven't
137spent a lot of time testing this. You might try 'ENABLE_CLUSTERING'
138to see what happens: my tests showed little difference either way.
139There's also a define called 'DEFAULT_SX_PER'; this sets the data
140transfer speed for the asynchronous mode. I've put it at 500 ns
141despite the fact that the card could handle settings of 376 or
142252, because higher speeds may be a problem with poor quality
143cables or improper termination; 500 ns is a compromise. You can
144choose your own default through the command-line with the
145'period' keyword.
146
147
148------------------------------------------------
149*********** DIP switch settings **************
150------------------------------------------------
151
152 sw1-1 sw1-2 BIOS address (hex)
153 -----------------------------------------
154 off off C8000 - CBFF0
155 on off D8000 - DBFF0
156 off on D0000 - D3FF0
157 on on BIOS disabled
158
159 sw1-3 sw1-4 IO port address (hex)
160 ------------------------------------
161 off off 220 - 22F
162 on off 200 - 20F
163 off on 110 - 11F
164 on on 100 - 10F
165
166 sw1-5 sw1-6 sw1-7 Interrupt
167 ------------------------------
168 off off off 15
169 off on off 14
170 off off on 11
171 off on on 10
172 on - - disabled
173
174 sw1-8 function depends on BIOS version. In earlier versions this
175 controlled synchronous data transfer support for MSDOS:
176 off = disabled
177 on = enabled
178 In later ROMs (starting with 01.3 in April 1994) sw1-8 controls
179 the "greater than 2 disk drive" feature that first appeared in
180 MSDOS 5.0 (ignored by Linux):
181 off = 2 drives maximum
182 on = 7 drives maximum
183
184 sw1-9 Floppy controller
185 --------------------------
186 off disabled
187 on enabled
188
189------------------------------------------------
190
191 I should mention that Drew Eckhardt's 'Generic NCR5380' sources
192 were my main inspiration, with lots of reference to the IN2000
193 driver currently distributed in the kernel source. I also owe
194 much to a driver written by Hamish Macdonald for Linux-m68k(!).
195 And to Eric Wright for being an ALPHA guinea pig. And to Bill
196 Earnest for 2 tons of great input and information. And to David
197 Willmore for extensive 'bonnie' testing. And to Joe Mack for
198 continual testing and feedback.
199
200
201 John Shifflett jshiffle@netcom.com
202
diff --git a/Documentation/scsi/scsi-parameters.txt b/Documentation/scsi/scsi-parameters.txt
index 5a5c6088a6ec..2135ff4d1099 100644
--- a/Documentation/scsi/scsi-parameters.txt
+++ b/Documentation/scsi/scsi-parameters.txt
@@ -47,9 +47,6 @@ parameters may be changed at runtime by the command
47 47
48 gvp11= [HW,SCSI] 48 gvp11= [HW,SCSI]
49 49
50 in2000= [HW,SCSI]
51 See header of drivers/scsi/in2000.c.
52
53 ips= [HW,SCSI] Adaptec / IBM ServeRAID controller 50 ips= [HW,SCSI] Adaptec / IBM ServeRAID controller
54 See header of drivers/scsi/ips.c. 51 See header of drivers/scsi/ips.c.
55 52
diff --git a/drivers/scsi/Kconfig b/drivers/scsi/Kconfig
index 15c6e9f2162d..543005b00546 100644
--- a/drivers/scsi/Kconfig
+++ b/drivers/scsi/Kconfig
@@ -500,18 +500,6 @@ config SCSI_ADVANSYS
500 To compile this driver as a module, choose M here: the 500 To compile this driver as a module, choose M here: the
501 module will be called advansys. 501 module will be called advansys.
502 502
503config SCSI_IN2000
504 tristate "Always IN2000 SCSI support"
505 depends on ISA && SCSI
506 help
507 This is support for an ISA bus SCSI host adapter. You'll find more
508 information in <file:Documentation/scsi/in2000.txt>. If it doesn't work
509 out of the box, you may have to change the jumpers for IRQ or
510 address selection.
511
512 To compile this driver as a module, choose M here: the
513 module will be called in2000.
514
515config SCSI_ARCMSR 503config SCSI_ARCMSR
516 tristate "ARECA (ARC11xx/12xx/13xx/16xx) SATA/SAS RAID Host Adapter" 504 tristate "ARECA (ARC11xx/12xx/13xx/16xx) SATA/SAS RAID Host Adapter"
517 depends on PCI && SCSI 505 depends on PCI && SCSI
diff --git a/drivers/scsi/Makefile b/drivers/scsi/Makefile
index d870cc51d0bb..07bf799bf8a9 100644
--- a/drivers/scsi/Makefile
+++ b/drivers/scsi/Makefile
@@ -75,7 +75,6 @@ obj-$(CONFIG_SCSI_PM8001) += pm8001/
75obj-$(CONFIG_SCSI_ISCI) += isci/ 75obj-$(CONFIG_SCSI_ISCI) += isci/
76obj-$(CONFIG_SCSI_IPS) += ips.o 76obj-$(CONFIG_SCSI_IPS) += ips.o
77obj-$(CONFIG_SCSI_FUTURE_DOMAIN)+= fdomain.o 77obj-$(CONFIG_SCSI_FUTURE_DOMAIN)+= fdomain.o
78obj-$(CONFIG_SCSI_IN2000) += in2000.o
79obj-$(CONFIG_SCSI_GENERIC_NCR5380) += g_NCR5380.o 78obj-$(CONFIG_SCSI_GENERIC_NCR5380) += g_NCR5380.o
80obj-$(CONFIG_SCSI_GENERIC_NCR5380_MMIO) += g_NCR5380_mmio.o 79obj-$(CONFIG_SCSI_GENERIC_NCR5380_MMIO) += g_NCR5380_mmio.o
81obj-$(CONFIG_SCSI_NCR53C406A) += NCR53c406a.o 80obj-$(CONFIG_SCSI_NCR53C406A) += NCR53c406a.o
diff --git a/drivers/scsi/in2000.c b/drivers/scsi/in2000.c
deleted file mode 100644
index 3882d9f519c8..000000000000
--- a/drivers/scsi/in2000.c
+++ /dev/null
@@ -1,2302 +0,0 @@
1/*
2 * in2000.c - Linux device driver for the
3 * Always IN2000 ISA SCSI card.
4 *
5 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
6 * john@geolog.com
7 * jshiffle@netcom.com
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 *
25 * Drew Eckhardt's excellent 'Generic NCR5380' sources provided
26 * much of the inspiration and some of the code for this driver.
27 * The Linux IN2000 driver distributed in the Linux kernels through
28 * version 1.2.13 was an extremely valuable reference on the arcane
29 * (and still mysterious) workings of the IN2000's fifo. It also
30 * is where I lifted in2000_biosparam(), the gist of the card
31 * detection scheme, and other bits of code. Many thanks to the
32 * talented and courageous people who wrote, contributed to, and
33 * maintained that driver (including Brad McLean, Shaun Savage,
34 * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
35 * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
36 * Youngdale). I should also mention the driver written by
37 * Hamish Macdonald for the (GASP!) Amiga A2091 card, included
38 * in the Linux-m68k distribution; it gave me a good initial
39 * understanding of the proper way to run a WD33c93 chip, and I
40 * ended up stealing lots of code from it.
41 *
42 * _This_ driver is (I feel) an improvement over the old one in
43 * several respects:
44 * - All problems relating to the data size of a SCSI request are
45 * gone (as far as I know). The old driver couldn't handle
46 * swapping to partitions because that involved 4k blocks, nor
47 * could it deal with the st.c tape driver unmodified, because
48 * that usually involved 4k - 32k blocks. The old driver never
49 * quite got away from a morbid dependence on 2k block sizes -
50 * which of course is the size of the card's fifo.
51 *
52 * - Target Disconnection/Reconnection is now supported. Any
53 * system with more than one device active on the SCSI bus
54 * will benefit from this. The driver defaults to what I'm
55 * calling 'adaptive disconnect' - meaning that each command
56 * is evaluated individually as to whether or not it should
57 * be run with the option to disconnect/reselect (if the
58 * device chooses), or as a "SCSI-bus-hog".
59 *
60 * - Synchronous data transfers are now supported. Because there
61 * are a few devices (and many improperly terminated systems)
62 * that choke when doing sync, the default is sync DISABLED
63 * for all devices. This faster protocol can (and should!)
64 * be enabled on selected devices via the command-line.
65 *
66 * - Runtime operating parameters can now be specified through
67 * either the LILO or the 'insmod' command line. For LILO do:
68 * "in2000=blah,blah,blah"
69 * and with insmod go like:
70 * "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
71 * The defaults should be good for most people. See the comment
72 * for 'setup_strings' below for more details.
73 *
74 * - The old driver relied exclusively on what the Western Digital
75 * docs call "Combination Level 2 Commands", which are a great
76 * idea in that the CPU is relieved of a lot of interrupt
77 * overhead. However, by accepting a certain (user-settable)
78 * amount of additional interrupts, this driver achieves
79 * better control over the SCSI bus, and data transfers are
80 * almost as fast while being much easier to define, track,
81 * and debug.
82 *
83 * - You can force detection of a card whose BIOS has been disabled.
84 *
85 * - Multiple IN2000 cards might almost be supported. I've tried to
86 * keep it in mind, but have no way to test...
87 *
88 *
89 * TODO:
90 * tagged queuing. multiple cards.
91 *
92 *
93 * NOTE:
94 * When using this or any other SCSI driver as a module, you'll
95 * find that with the stock kernel, at most _two_ SCSI hard
96 * drives will be linked into the device list (ie, usable).
97 * If your IN2000 card has more than 2 disks on its bus, you
98 * might want to change the define of 'SD_EXTRA_DEVS' in the
99 * 'hosts.h' file from 2 to whatever is appropriate. It took
100 * me a while to track down this surprisingly obscure and
101 * undocumented little "feature".
102 *
103 *
104 * People with bug reports, wish-lists, complaints, comments,
105 * or improvements are asked to pah-leeez email me (John Shifflett)
106 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
107 * this thing into as good a shape as possible, and I'm positive
108 * there are lots of lurking bugs and "Stupid Places".
109 *
110 * Updated for Linux 2.5 by Alan Cox <alan@lxorguk.ukuu.org.uk>
111 * - Using new_eh handler
112 * - Hopefully got all the locking right again
113 * See "FIXME" notes for items that could do with more work
114 */
115
116#include <linux/module.h>
117#include <linux/blkdev.h>
118#include <linux/interrupt.h>
119#include <linux/string.h>
120#include <linux/delay.h>
121#include <linux/proc_fs.h>
122#include <linux/ioport.h>
123#include <linux/stat.h>
124
125#include <asm/io.h>
126
127#include "scsi.h"
128#include <scsi/scsi_host.h>
129
130#define IN2000_VERSION "1.33-2.5"
131#define IN2000_DATE "2002/11/03"
132
133#include "in2000.h"
134
135
136/*
137 * 'setup_strings' is a single string used to pass operating parameters and
138 * settings from the kernel/module command-line to the driver. 'setup_args[]'
139 * is an array of strings that define the compile-time default values for
140 * these settings. If Linux boots with a LILO or insmod command-line, those
141 * settings are combined with 'setup_args[]'. Note that LILO command-lines
142 * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
143 * The driver recognizes the following keywords (lower case required) and
144 * arguments:
145 *
146 * - ioport:addr -Where addr is IO address of a (usually ROM-less) card.
147 * - noreset -No optional args. Prevents SCSI bus reset at boot time.
148 * - nosync:x -x is a bitmask where the 1st 7 bits correspond with
149 * the 7 possible SCSI devices (bit 0 for device #0, etc).
150 * Set a bit to PREVENT sync negotiation on that device.
151 * The driver default is sync DISABLED on all devices.
152 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
153 * period. Default is 500; acceptable values are 250 - 1000.
154 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
155 * x = 1 does 'adaptive' disconnects, which is the default
156 * and generally the best choice.
157 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
158 * various types of debug output to printed - see the DB_xxx
159 * defines in in2000.h
160 * - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that
161 * determines how the /proc interface works and what it
162 * does - see the PR_xxx defines in in2000.h
163 *
164 * Syntax Notes:
165 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
166 * _must_ be a colon between a keyword and its numeric argument, with no
167 * spaces.
168 * - Keywords are separated by commas, no spaces, in the standard kernel
169 * command-line manner.
170 * - A keyword in the 'nth' comma-separated command-line member will overwrite
171 * the 'nth' element of setup_args[]. A blank command-line member (in
172 * other words, a comma with no preceding keyword) will _not_ overwrite
173 * the corresponding setup_args[] element.
174 *
175 * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
176 * - in2000=ioport:0x220,noreset
177 * - in2000=period:250,disconnect:2,nosync:0x03
178 * - in2000=debug:0x1e
179 * - in2000=proc:3
180 */
181
182/* Normally, no defaults are specified... */
183static char *setup_args[] = { "", "", "", "", "", "", "", "", "" };
184
185/* filled in by 'insmod' */
186static char *setup_strings;
187
188module_param(setup_strings, charp, 0);
189
190static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num)
191{
192 write1_io(reg_num, IO_WD_ADDR);
193 return read1_io(IO_WD_DATA);
194}
195
196
197#define READ_AUX_STAT() read1_io(IO_WD_ASR)
198
199
200static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value)
201{
202 write1_io(reg_num, IO_WD_ADDR);
203 write1_io(value, IO_WD_DATA);
204}
205
206
207static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd)
208{
209/* while (READ_AUX_STAT() & ASR_CIP)
210 printk("|");*/
211 write1_io(WD_COMMAND, IO_WD_ADDR);
212 write1_io(cmd, IO_WD_DATA);
213}
214
215
216static uchar read_1_byte(struct IN2000_hostdata *hostdata)
217{
218 uchar asr, x = 0;
219
220 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
221 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO | 0x80);
222 do {
223 asr = READ_AUX_STAT();
224 if (asr & ASR_DBR)
225 x = read_3393(hostdata, WD_DATA);
226 } while (!(asr & ASR_INT));
227 return x;
228}
229
230
231static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value)
232{
233 write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
234 write1_io((value >> 16), IO_WD_DATA);
235 write1_io((value >> 8), IO_WD_DATA);
236 write1_io(value, IO_WD_DATA);
237}
238
239
240static unsigned long read_3393_count(struct IN2000_hostdata *hostdata)
241{
242 unsigned long value;
243
244 write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
245 value = read1_io(IO_WD_DATA) << 16;
246 value |= read1_io(IO_WD_DATA) << 8;
247 value |= read1_io(IO_WD_DATA);
248 return value;
249}
250
251
252/* The 33c93 needs to be told which direction a command transfers its
253 * data; we use this function to figure it out. Returns true if there
254 * will be a DATA_OUT phase with this command, false otherwise.
255 * (Thanks to Joerg Dorchain for the research and suggestion.)
256 */
257static int is_dir_out(Scsi_Cmnd * cmd)
258{
259 switch (cmd->cmnd[0]) {
260 case WRITE_6:
261 case WRITE_10:
262 case WRITE_12:
263 case WRITE_LONG:
264 case WRITE_SAME:
265 case WRITE_BUFFER:
266 case WRITE_VERIFY:
267 case WRITE_VERIFY_12:
268 case COMPARE:
269 case COPY:
270 case COPY_VERIFY:
271 case SEARCH_EQUAL:
272 case SEARCH_HIGH:
273 case SEARCH_LOW:
274 case SEARCH_EQUAL_12:
275 case SEARCH_HIGH_12:
276 case SEARCH_LOW_12:
277 case FORMAT_UNIT:
278 case REASSIGN_BLOCKS:
279 case RESERVE:
280 case MODE_SELECT:
281 case MODE_SELECT_10:
282 case LOG_SELECT:
283 case SEND_DIAGNOSTIC:
284 case CHANGE_DEFINITION:
285 case UPDATE_BLOCK:
286 case SET_WINDOW:
287 case MEDIUM_SCAN:
288 case SEND_VOLUME_TAG:
289 case 0xea:
290 return 1;
291 default:
292 return 0;
293 }
294}
295
296
297
298static struct sx_period sx_table[] = {
299 {1, 0x20},
300 {252, 0x20},
301 {376, 0x30},
302 {500, 0x40},
303 {624, 0x50},
304 {752, 0x60},
305 {876, 0x70},
306 {1000, 0x00},
307 {0, 0}
308};
309
310static int round_period(unsigned int period)
311{
312 int x;
313
314 for (x = 1; sx_table[x].period_ns; x++) {
315 if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) {
316 return x;
317 }
318 }
319 return 7;
320}
321
322static uchar calc_sync_xfer(unsigned int period, unsigned int offset)
323{
324 uchar result;
325
326 period *= 4; /* convert SDTR code to ns */
327 result = sx_table[round_period(period)].reg_value;
328 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
329 return result;
330}
331
332
333
334static void in2000_execute(struct Scsi_Host *instance);
335
336static int in2000_queuecommand_lck(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *))
337{
338 struct Scsi_Host *instance;
339 struct IN2000_hostdata *hostdata;
340 Scsi_Cmnd *tmp;
341
342 instance = cmd->device->host;
343 hostdata = (struct IN2000_hostdata *) instance->hostdata;
344
345 DB(DB_QUEUE_COMMAND, scmd_printk(KERN_DEBUG, cmd, "Q-%02x(", cmd->cmnd[0]))
346
347/* Set up a few fields in the Scsi_Cmnd structure for our own use:
348 * - host_scribble is the pointer to the next cmd in the input queue
349 * - scsi_done points to the routine we call when a cmd is finished
350 * - result is what you'd expect
351 */
352 cmd->host_scribble = NULL;
353 cmd->scsi_done = done;
354 cmd->result = 0;
355
356/* We use the Scsi_Pointer structure that's included with each command
357 * as a scratchpad (as it's intended to be used!). The handy thing about
358 * the SCp.xxx fields is that they're always associated with a given
359 * cmd, and are preserved across disconnect-reselect. This means we
360 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
361 * if we keep all the critical pointers and counters in SCp:
362 * - SCp.ptr is the pointer into the RAM buffer
363 * - SCp.this_residual is the size of that buffer
364 * - SCp.buffer points to the current scatter-gather buffer
365 * - SCp.buffers_residual tells us how many S.G. buffers there are
366 * - SCp.have_data_in helps keep track of >2048 byte transfers
367 * - SCp.sent_command is not used
368 * - SCp.phase records this command's SRCID_ER bit setting
369 */
370
371 if (scsi_bufflen(cmd)) {
372 cmd->SCp.buffer = scsi_sglist(cmd);
373 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
374 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
375 cmd->SCp.this_residual = cmd->SCp.buffer->length;
376 } else {
377 cmd->SCp.buffer = NULL;
378 cmd->SCp.buffers_residual = 0;
379 cmd->SCp.ptr = NULL;
380 cmd->SCp.this_residual = 0;
381 }
382 cmd->SCp.have_data_in = 0;
383
384/* We don't set SCp.phase here - that's done in in2000_execute() */
385
386/* WD docs state that at the conclusion of a "LEVEL2" command, the
387 * status byte can be retrieved from the LUN register. Apparently,
388 * this is the case only for *uninterrupted* LEVEL2 commands! If
389 * there are any unexpected phases entered, even if they are 100%
390 * legal (different devices may choose to do things differently),
391 * the LEVEL2 command sequence is exited. This often occurs prior
392 * to receiving the status byte, in which case the driver does a
393 * status phase interrupt and gets the status byte on its own.
394 * While such a command can then be "resumed" (ie restarted to
395 * finish up as a LEVEL2 command), the LUN register will NOT be
396 * a valid status byte at the command's conclusion, and we must
397 * use the byte obtained during the earlier interrupt. Here, we
398 * preset SCp.Status to an illegal value (0xff) so that when
399 * this command finally completes, we can tell where the actual
400 * status byte is stored.
401 */
402
403 cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
404
405/* We need to disable interrupts before messing with the input
406 * queue and calling in2000_execute().
407 */
408
409 /*
410 * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
411 * commands are added to the head of the queue so that the desired
412 * sense data is not lost before REQUEST_SENSE executes.
413 */
414
415 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
416 cmd->host_scribble = (uchar *) hostdata->input_Q;
417 hostdata->input_Q = cmd;
418 } else { /* find the end of the queue */
419 for (tmp = (Scsi_Cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (Scsi_Cmnd *) tmp->host_scribble);
420 tmp->host_scribble = (uchar *) cmd;
421 }
422
423/* We know that there's at least one command in 'input_Q' now.
424 * Go see if any of them are runnable!
425 */
426
427 in2000_execute(cmd->device->host);
428
429 DB(DB_QUEUE_COMMAND, printk(")Q "))
430 return 0;
431}
432
433static DEF_SCSI_QCMD(in2000_queuecommand)
434
435
436
437/*
438 * This routine attempts to start a scsi command. If the host_card is
439 * already connected, we give up immediately. Otherwise, look through
440 * the input_Q, using the first command we find that's intended
441 * for a currently non-busy target/lun.
442 * Note that this function is always called with interrupts already
443 * disabled (either from in2000_queuecommand() or in2000_intr()).
444 */
445static void in2000_execute(struct Scsi_Host *instance)
446{
447 struct IN2000_hostdata *hostdata;
448 Scsi_Cmnd *cmd, *prev;
449 int i;
450 unsigned short *sp;
451 unsigned short f;
452 unsigned short flushbuf[16];
453
454
455 hostdata = (struct IN2000_hostdata *) instance->hostdata;
456
457 DB(DB_EXECUTE, printk("EX("))
458
459 if (hostdata->selecting || hostdata->connected) {
460
461 DB(DB_EXECUTE, printk(")EX-0 "))
462
463 return;
464 }
465
466 /*
467 * Search through the input_Q for a command destined
468 * for an idle target/lun.
469 */
470
471 cmd = (Scsi_Cmnd *) hostdata->input_Q;
472 prev = NULL;
473 while (cmd) {
474 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
475 break;
476 prev = cmd;
477 cmd = (Scsi_Cmnd *) cmd->host_scribble;
478 }
479
480 /* quit if queue empty or all possible targets are busy */
481
482 if (!cmd) {
483
484 DB(DB_EXECUTE, printk(")EX-1 "))
485
486 return;
487 }
488
489 /* remove command from queue */
490
491 if (prev)
492 prev->host_scribble = cmd->host_scribble;
493 else
494 hostdata->input_Q = (Scsi_Cmnd *) cmd->host_scribble;
495
496#ifdef PROC_STATISTICS
497 hostdata->cmd_cnt[cmd->device->id]++;
498#endif
499
500/*
501 * Start the selection process
502 */
503
504 if (is_dir_out(cmd))
505 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
506 else
507 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
508
509/* Now we need to figure out whether or not this command is a good
510 * candidate for disconnect/reselect. We guess to the best of our
511 * ability, based on a set of hierarchical rules. When several
512 * devices are operating simultaneously, disconnects are usually
513 * an advantage. In a single device system, or if only 1 device
514 * is being accessed, transfers usually go faster if disconnects
515 * are not allowed:
516 *
517 * + Commands should NEVER disconnect if hostdata->disconnect =
518 * DIS_NEVER (this holds for tape drives also), and ALWAYS
519 * disconnect if hostdata->disconnect = DIS_ALWAYS.
520 * + Tape drive commands should always be allowed to disconnect.
521 * + Disconnect should be allowed if disconnected_Q isn't empty.
522 * + Commands should NOT disconnect if input_Q is empty.
523 * + Disconnect should be allowed if there are commands in input_Q
524 * for a different target/lun. In this case, the other commands
525 * should be made disconnect-able, if not already.
526 *
527 * I know, I know - this code would flunk me out of any
528 * "C Programming 101" class ever offered. But it's easy
529 * to change around and experiment with for now.
530 */
531
532 cmd->SCp.phase = 0; /* assume no disconnect */
533 if (hostdata->disconnect == DIS_NEVER)
534 goto no;
535 if (hostdata->disconnect == DIS_ALWAYS)
536 goto yes;
537 if (cmd->device->type == 1) /* tape drive? */
538 goto yes;
539 if (hostdata->disconnected_Q) /* other commands disconnected? */
540 goto yes;
541 if (!(hostdata->input_Q)) /* input_Q empty? */
542 goto no;
543 for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) {
544 if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) {
545 for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble)
546 prev->SCp.phase = 1;
547 goto yes;
548 }
549 }
550 goto no;
551
552 yes:
553 cmd->SCp.phase = 1;
554
555#ifdef PROC_STATISTICS
556 hostdata->disc_allowed_cnt[cmd->device->id]++;
557#endif
558
559 no:
560 write_3393(hostdata, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
561
562 write_3393(hostdata, WD_TARGET_LUN, cmd->device->lun);
563 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
564 hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
565
566 if ((hostdata->level2 <= L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
567
568 /*
569 * Do a 'Select-With-ATN' command. This will end with
570 * one of the following interrupts:
571 * CSR_RESEL_AM: failure - can try again later.
572 * CSR_TIMEOUT: failure - give up.
573 * CSR_SELECT: success - proceed.
574 */
575
576 hostdata->selecting = cmd;
577
578/* Every target has its own synchronous transfer setting, kept in
579 * the sync_xfer array, and a corresponding status byte in sync_stat[].
580 * Each target's sync_stat[] entry is initialized to SS_UNSET, and its
581 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
582 * means that the parameters are undetermined as yet, and that we
583 * need to send an SDTR message to this device after selection is
584 * complete. We set SS_FIRST to tell the interrupt routine to do so,
585 * unless we don't want to even _try_ synchronous transfers: In this
586 * case we set SS_SET to make the defaults final.
587 */
588 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) {
589 if (hostdata->sync_off & (1 << cmd->device->id))
590 hostdata->sync_stat[cmd->device->id] = SS_SET;
591 else
592 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
593 }
594 hostdata->state = S_SELECTING;
595 write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */
596 write_3393_cmd(hostdata, WD_CMD_SEL_ATN);
597 }
598
599 else {
600
601 /*
602 * Do a 'Select-With-ATN-Xfer' command. This will end with
603 * one of the following interrupts:
604 * CSR_RESEL_AM: failure - can try again later.
605 * CSR_TIMEOUT: failure - give up.
606 * anything else: success - proceed.
607 */
608
609 hostdata->connected = cmd;
610 write_3393(hostdata, WD_COMMAND_PHASE, 0);
611
612 /* copy command_descriptor_block into WD chip
613 * (take advantage of auto-incrementing)
614 */
615
616 write1_io(WD_CDB_1, IO_WD_ADDR);
617 for (i = 0; i < cmd->cmd_len; i++)
618 write1_io(cmd->cmnd[i], IO_WD_DATA);
619
620 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
621 * it's doing a 'select-and-transfer'. To be safe, we write the
622 * size of the CDB into the OWN_ID register for every case. This
623 * way there won't be problems with vendor-unique, audio, etc.
624 */
625
626 write_3393(hostdata, WD_OWN_ID, cmd->cmd_len);
627
628 /* When doing a non-disconnect command, we can save ourselves a DATA
629 * phase interrupt later by setting everything up now. With writes we
630 * need to pre-fill the fifo; if there's room for the 32 flush bytes,
631 * put them in there too - that'll avoid a fifo interrupt. Reads are
632 * somewhat simpler.
633 * KLUDGE NOTE: It seems that you can't completely fill the fifo here:
634 * This results in the IO_FIFO_COUNT register rolling over to zero,
635 * and apparently the gate array logic sees this as empty, not full,
636 * so the 3393 chip is never signalled to start reading from the
637 * fifo. Or maybe it's seen as a permanent fifo interrupt condition.
638 * Regardless, we fix this by temporarily pretending that the fifo
639 * is 16 bytes smaller. (I see now that the old driver has a comment
640 * about "don't fill completely" in an analogous place - must be the
641 * same deal.) This results in CDROM, swap partitions, and tape drives
642 * needing an extra interrupt per write command - I think we can live
643 * with that!
644 */
645
646 if (!(cmd->SCp.phase)) {
647 write_3393_count(hostdata, cmd->SCp.this_residual);
648 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
649 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter, write mode */
650
651 if (is_dir_out(cmd)) {
652 hostdata->fifo = FI_FIFO_WRITING;
653 if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16))
654 i = IN2000_FIFO_SIZE - 16;
655 cmd->SCp.have_data_in = i; /* this much data in fifo */
656 i >>= 1; /* Gulp. Assuming modulo 2. */
657 sp = (unsigned short *) cmd->SCp.ptr;
658 f = hostdata->io_base + IO_FIFO;
659
660#ifdef FAST_WRITE_IO
661
662 FAST_WRITE2_IO();
663#else
664 while (i--)
665 write2_io(*sp++, IO_FIFO);
666
667#endif
668
669 /* Is there room for the flush bytes? */
670
671 if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) {
672 sp = flushbuf;
673 i = 16;
674
675#ifdef FAST_WRITE_IO
676
677 FAST_WRITE2_IO();
678#else
679 while (i--)
680 write2_io(0, IO_FIFO);
681
682#endif
683
684 }
685 }
686
687 else {
688 write1_io(0, IO_FIFO_READ); /* put fifo in read mode */
689 hostdata->fifo = FI_FIFO_READING;
690 cmd->SCp.have_data_in = 0; /* nothing transferred yet */
691 }
692
693 } else {
694 write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */
695 }
696 hostdata->state = S_RUNNING_LEVEL2;
697 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
698 }
699
700 /*
701 * Since the SCSI bus can handle only 1 connection at a time,
702 * we get out of here now. If the selection fails, or when
703 * the command disconnects, we'll come back to this routine
704 * to search the input_Q again...
705 */
706
707 DB(DB_EXECUTE, printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : ""))
708
709}
710
711
712
713static void transfer_pio(uchar * buf, int cnt, int data_in_dir, struct IN2000_hostdata *hostdata)
714{
715 uchar asr;
716
717 DB(DB_TRANSFER, printk("(%p,%d,%s)", buf, cnt, data_in_dir ? "in" : "out"))
718
719 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
720 write_3393_count(hostdata, cnt);
721 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
722 if (data_in_dir) {
723 do {
724 asr = READ_AUX_STAT();
725 if (asr & ASR_DBR)
726 *buf++ = read_3393(hostdata, WD_DATA);
727 } while (!(asr & ASR_INT));
728 } else {
729 do {
730 asr = READ_AUX_STAT();
731 if (asr & ASR_DBR)
732 write_3393(hostdata, WD_DATA, *buf++);
733 } while (!(asr & ASR_INT));
734 }
735
736 /* Note: we are returning with the interrupt UN-cleared.
737 * Since (presumably) an entire I/O operation has
738 * completed, the bus phase is probably different, and
739 * the interrupt routine will discover this when it
740 * responds to the uncleared int.
741 */
742
743}
744
745
746
747static void transfer_bytes(Scsi_Cmnd * cmd, int data_in_dir)
748{
749 struct IN2000_hostdata *hostdata;
750 unsigned short *sp;
751 unsigned short f;
752 int i;
753
754 hostdata = (struct IN2000_hostdata *) cmd->device->host->hostdata;
755
756/* Normally, you'd expect 'this_residual' to be non-zero here.
757 * In a series of scatter-gather transfers, however, this
758 * routine will usually be called with 'this_residual' equal
759 * to 0 and 'buffers_residual' non-zero. This means that a
760 * previous transfer completed, clearing 'this_residual', and
761 * now we need to setup the next scatter-gather buffer as the
762 * source or destination for THIS transfer.
763 */
764 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
765 ++cmd->SCp.buffer;
766 --cmd->SCp.buffers_residual;
767 cmd->SCp.this_residual = cmd->SCp.buffer->length;
768 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
769 }
770
771/* Set up hardware registers */
772
773 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
774 write_3393_count(hostdata, cmd->SCp.this_residual);
775 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
776 write1_io(0, IO_FIFO_WRITE); /* zero counter, assume write */
777
778/* Reading is easy. Just issue the command and return - we'll
779 * get an interrupt later when we have actual data to worry about.
780 */
781
782 if (data_in_dir) {
783 write1_io(0, IO_FIFO_READ);
784 if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
785 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
786 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
787 hostdata->state = S_RUNNING_LEVEL2;
788 } else
789 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
790 hostdata->fifo = FI_FIFO_READING;
791 cmd->SCp.have_data_in = 0;
792 return;
793 }
794
795/* Writing is more involved - we'll start the WD chip and write as
796 * much data to the fifo as we can right now. Later interrupts will
797 * write any bytes that don't make it at this stage.
798 */
799
800 if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
801 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
802 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
803 hostdata->state = S_RUNNING_LEVEL2;
804 } else
805 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
806 hostdata->fifo = FI_FIFO_WRITING;
807 sp = (unsigned short *) cmd->SCp.ptr;
808
809 if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE)
810 i = IN2000_FIFO_SIZE;
811 cmd->SCp.have_data_in = i;
812 i >>= 1; /* Gulp. We assume this_residual is modulo 2 */
813 f = hostdata->io_base + IO_FIFO;
814
815#ifdef FAST_WRITE_IO
816
817 FAST_WRITE2_IO();
818#else
819 while (i--)
820 write2_io(*sp++, IO_FIFO);
821
822#endif
823
824}
825
826
827/* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
828 * function in order to work in an SMP environment. (I'd be surprised
829 * if the driver is ever used by anyone on a real multi-CPU motherboard,
830 * but it _does_ need to be able to compile and run in an SMP kernel.)
831 */
832
833static irqreturn_t in2000_intr(int irqnum, void *dev_id)
834{
835 struct Scsi_Host *instance = dev_id;
836 struct IN2000_hostdata *hostdata;
837 Scsi_Cmnd *patch, *cmd;
838 uchar asr, sr, phs, id, lun, *ucp, msg;
839 int i, j;
840 unsigned long length;
841 unsigned short *sp;
842 unsigned short f;
843 unsigned long flags;
844
845 hostdata = (struct IN2000_hostdata *) instance->hostdata;
846
847/* Get the spin_lock and disable further ints, for SMP */
848
849 spin_lock_irqsave(instance->host_lock, flags);
850
851#ifdef PROC_STATISTICS
852 hostdata->int_cnt++;
853#endif
854
855/* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
856 * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
857 * with a big logic array, so it's a little different than what you might
858 * expect). As far as I know, there's no reason that BOTH can't be active
859 * at the same time, but there's a problem: while we can read the 3393
860 * to tell if _it_ wants an interrupt, I don't know of a way to ask the
861 * fifo the same question. The best we can do is check the 3393 and if
862 * it _isn't_ the source of the interrupt, then we can be pretty sure
863 * that the fifo is the culprit.
864 * UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
865 * IO_FIFO_COUNT register mirrors the fifo interrupt state. I
866 * assume that bit clear means interrupt active. As it turns
867 * out, the driver really doesn't need to check for this after
868 * all, so my remarks above about a 'problem' can safely be
869 * ignored. The way the logic is set up, there's no advantage
870 * (that I can see) to worrying about it.
871 *
872 * It seems that the fifo interrupt signal is negated when we extract
873 * bytes during read or write bytes during write.
874 * - fifo will interrupt when data is moving from it to the 3393, and
875 * there are 31 (or less?) bytes left to go. This is sort of short-
876 * sighted: what if you don't WANT to do more? In any case, our
877 * response is to push more into the fifo - either actual data or
878 * dummy bytes if need be. Note that we apparently have to write at
879 * least 32 additional bytes to the fifo after an interrupt in order
880 * to get it to release the ones it was holding on to - writing fewer
881 * than 32 will result in another fifo int.
882 * UPDATE: Again, info from Bill Earnest makes this more understandable:
883 * 32 bytes = two counts of the fifo counter register. He tells
884 * me that the fifo interrupt is a non-latching signal derived
885 * from a straightforward boolean interpretation of the 7
886 * highest bits of the fifo counter and the fifo-read/fifo-write
887 * state. Who'd a thought?
888 */
889
890 write1_io(0, IO_LED_ON);
891 asr = READ_AUX_STAT();
892 if (!(asr & ASR_INT)) { /* no WD33c93 interrupt? */
893
894/* Ok. This is definitely a FIFO-only interrupt.
895 *
896 * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
897 * maybe more to come from the SCSI bus. Read as many as we can out of the
898 * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
899 * update have_data_in afterwards.
900 *
901 * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
902 * into the WD3393 chip (I think the interrupt happens when there are 31
903 * bytes left, but it may be fewer...). The 3393 is still waiting, so we
904 * shove some more into the fifo, which gets things moving again. If the
905 * original SCSI command specified more than 2048 bytes, there may still
906 * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
907 * Don't forget to update have_data_in. If we've already written out the
908 * entire buffer, feed 32 dummy bytes to the fifo - they're needed to
909 * push out the remaining real data.
910 * (Big thanks to Bill Earnest for getting me out of the mud in here.)
911 */
912
913 cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */
914 CHECK_NULL(cmd, "fifo_int")
915
916 if (hostdata->fifo == FI_FIFO_READING) {
917
918 DB(DB_FIFO, printk("{R:%02x} ", read1_io(IO_FIFO_COUNT)))
919
920 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
921 i = read1_io(IO_FIFO_COUNT) & 0xfe;
922 i <<= 2; /* # of words waiting in the fifo */
923 f = hostdata->io_base + IO_FIFO;
924
925#ifdef FAST_READ_IO
926
927 FAST_READ2_IO();
928#else
929 while (i--)
930 *sp++ = read2_io(IO_FIFO);
931
932#endif
933
934 i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
935 i <<= 1;
936 cmd->SCp.have_data_in += i;
937 }
938
939 else if (hostdata->fifo == FI_FIFO_WRITING) {
940
941 DB(DB_FIFO, printk("{W:%02x} ", read1_io(IO_FIFO_COUNT)))
942
943/* If all bytes have been written to the fifo, flush out the stragglers.
944 * Note that while writing 16 dummy words seems arbitrary, we don't
945 * have another choice that I can see. What we really want is to read
946 * the 3393 transfer count register (that would tell us how many bytes
947 * needed flushing), but the TRANSFER_INFO command hasn't completed
948 * yet (not enough bytes!) and that register won't be accessible. So,
949 * we use 16 words - a number obtained through trial and error.
950 * UPDATE: Bill says this is exactly what Always does, so there.
951 * More thanks due him for help in this section.
952 */
953 if (cmd->SCp.this_residual == cmd->SCp.have_data_in) {
954 i = 16;
955 while (i--) /* write 32 dummy bytes */
956 write2_io(0, IO_FIFO);
957 }
958
959/* If there are still bytes left in the SCSI buffer, write as many as we
960 * can out to the fifo.
961 */
962
963 else {
964 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
965 i = cmd->SCp.this_residual - cmd->SCp.have_data_in; /* bytes yet to go */
966 j = read1_io(IO_FIFO_COUNT) & 0xfe;
967 j <<= 2; /* how many words the fifo has room for */
968 if ((j << 1) > i)
969 j = (i >> 1);
970 while (j--)
971 write2_io(*sp++, IO_FIFO);
972
973 i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
974 i <<= 1;
975 cmd->SCp.have_data_in += i;
976 }
977 }
978
979 else {
980 printk("*** Spurious FIFO interrupt ***");
981 }
982
983 write1_io(0, IO_LED_OFF);
984
985/* release the SMP spin_lock and restore irq state */
986 spin_unlock_irqrestore(instance->host_lock, flags);
987 return IRQ_HANDLED;
988 }
989
990/* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
991 * may also be asserted, but we don't bother to check it: we get more
992 * detailed info from FIFO_READING and FIFO_WRITING (see below).
993 */
994
995 cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */
996 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear the interrupt */
997 phs = read_3393(hostdata, WD_COMMAND_PHASE);
998
999 if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) {
1000 printk("\nNR:wd-intr-1\n");
1001 write1_io(0, IO_LED_OFF);
1002
1003/* release the SMP spin_lock and restore irq state */
1004 spin_unlock_irqrestore(instance->host_lock, flags);
1005 return IRQ_HANDLED;
1006 }
1007
1008 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
1009
1010/* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
1011 * guaranteed to be in response to the completion of the transfer.
1012 * If we were reading, there's probably data in the fifo that needs
1013 * to be copied into RAM - do that here. Also, we have to update
1014 * 'this_residual' and 'ptr' based on the contents of the
1015 * TRANSFER_COUNT register, in case the device decided to do an
1016 * intermediate disconnect (a device may do this if it has to
1017 * do a seek, or just to be nice and let other devices have
1018 * some bus time during long transfers).
1019 * After doing whatever is necessary with the fifo, we go on and
1020 * service the WD3393 interrupt normally.
1021 */
1022 if (hostdata->fifo == FI_FIFO_READING) {
1023
1024/* buffer index = start-of-buffer + #-of-bytes-already-read */
1025
1026 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
1027
1028/* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
1029
1030 i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in;
1031 i >>= 1; /* Gulp. We assume this will always be modulo 2 */
1032 f = hostdata->io_base + IO_FIFO;
1033
1034#ifdef FAST_READ_IO
1035
1036 FAST_READ2_IO();
1037#else
1038 while (i--)
1039 *sp++ = read2_io(IO_FIFO);
1040
1041#endif
1042
1043 hostdata->fifo = FI_FIFO_UNUSED;
1044 length = cmd->SCp.this_residual;
1045 cmd->SCp.this_residual = read_3393_count(hostdata);
1046 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1047
1048 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1049
1050 }
1051
1052 else if (hostdata->fifo == FI_FIFO_WRITING) {
1053 hostdata->fifo = FI_FIFO_UNUSED;
1054 length = cmd->SCp.this_residual;
1055 cmd->SCp.this_residual = read_3393_count(hostdata);
1056 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1057
1058 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1059
1060 }
1061
1062/* Respond to the specific WD3393 interrupt - there are quite a few! */
1063
1064 switch (sr) {
1065
1066 case CSR_TIMEOUT:
1067 DB(DB_INTR, printk("TIMEOUT"))
1068
1069 if (hostdata->state == S_RUNNING_LEVEL2)
1070 hostdata->connected = NULL;
1071 else {
1072 cmd = (Scsi_Cmnd *) hostdata->selecting; /* get a valid cmd */
1073 CHECK_NULL(cmd, "csr_timeout")
1074 hostdata->selecting = NULL;
1075 }
1076
1077 cmd->result = DID_NO_CONNECT << 16;
1078 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1079 hostdata->state = S_UNCONNECTED;
1080 cmd->scsi_done(cmd);
1081
1082/* We are not connected to a target - check to see if there
1083 * are commands waiting to be executed.
1084 */
1085
1086 in2000_execute(instance);
1087 break;
1088
1089
1090/* Note: this interrupt should not occur in a LEVEL2 command */
1091
1092 case CSR_SELECT:
1093 DB(DB_INTR, printk("SELECT"))
1094 hostdata->connected = cmd = (Scsi_Cmnd *) hostdata->selecting;
1095 CHECK_NULL(cmd, "csr_select")
1096 hostdata->selecting = NULL;
1097
1098 /* construct an IDENTIFY message with correct disconnect bit */
1099
1100 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
1101 if (cmd->SCp.phase)
1102 hostdata->outgoing_msg[0] |= 0x40;
1103
1104 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
1105#ifdef SYNC_DEBUG
1106 printk(" sending SDTR ");
1107#endif
1108
1109 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
1110
1111 /* tack on a 2nd message to ask about synchronous transfers */
1112
1113 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
1114 hostdata->outgoing_msg[2] = 3;
1115 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
1116 hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4;
1117 hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
1118 hostdata->outgoing_len = 6;
1119 } else
1120 hostdata->outgoing_len = 1;
1121
1122 hostdata->state = S_CONNECTED;
1123 break;
1124
1125
1126 case CSR_XFER_DONE | PHS_DATA_IN:
1127 case CSR_UNEXP | PHS_DATA_IN:
1128 case CSR_SRV_REQ | PHS_DATA_IN:
1129 DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1130 transfer_bytes(cmd, DATA_IN_DIR);
1131 if (hostdata->state != S_RUNNING_LEVEL2)
1132 hostdata->state = S_CONNECTED;
1133 break;
1134
1135
1136 case CSR_XFER_DONE | PHS_DATA_OUT:
1137 case CSR_UNEXP | PHS_DATA_OUT:
1138 case CSR_SRV_REQ | PHS_DATA_OUT:
1139 DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1140 transfer_bytes(cmd, DATA_OUT_DIR);
1141 if (hostdata->state != S_RUNNING_LEVEL2)
1142 hostdata->state = S_CONNECTED;
1143 break;
1144
1145
1146/* Note: this interrupt should not occur in a LEVEL2 command */
1147
1148 case CSR_XFER_DONE | PHS_COMMAND:
1149 case CSR_UNEXP | PHS_COMMAND:
1150 case CSR_SRV_REQ | PHS_COMMAND:
1151 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
1152 transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata);
1153 hostdata->state = S_CONNECTED;
1154 break;
1155
1156
1157 case CSR_XFER_DONE | PHS_STATUS:
1158 case CSR_UNEXP | PHS_STATUS:
1159 case CSR_SRV_REQ | PHS_STATUS:
1160 DB(DB_INTR, printk("STATUS="))
1161
1162 cmd->SCp.Status = read_1_byte(hostdata);
1163 DB(DB_INTR, printk("%02x", cmd->SCp.Status))
1164 if (hostdata->level2 >= L2_BASIC) {
1165 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1166 hostdata->state = S_RUNNING_LEVEL2;
1167 write_3393(hostdata, WD_COMMAND_PHASE, 0x50);
1168 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1169 } else {
1170 hostdata->state = S_CONNECTED;
1171 }
1172 break;
1173
1174
1175 case CSR_XFER_DONE | PHS_MESS_IN:
1176 case CSR_UNEXP | PHS_MESS_IN:
1177 case CSR_SRV_REQ | PHS_MESS_IN:
1178 DB(DB_INTR, printk("MSG_IN="))
1179
1180 msg = read_1_byte(hostdata);
1181 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1182
1183 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1184 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1185 msg = EXTENDED_MESSAGE;
1186 else
1187 hostdata->incoming_ptr = 0;
1188
1189 cmd->SCp.Message = msg;
1190 switch (msg) {
1191
1192 case COMMAND_COMPLETE:
1193 DB(DB_INTR, printk("CCMP"))
1194 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1195 hostdata->state = S_PRE_CMP_DISC;
1196 break;
1197
1198 case SAVE_POINTERS:
1199 DB(DB_INTR, printk("SDP"))
1200 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1201 hostdata->state = S_CONNECTED;
1202 break;
1203
1204 case RESTORE_POINTERS:
1205 DB(DB_INTR, printk("RDP"))
1206 if (hostdata->level2 >= L2_BASIC) {
1207 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1208 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1209 hostdata->state = S_RUNNING_LEVEL2;
1210 } else {
1211 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1212 hostdata->state = S_CONNECTED;
1213 }
1214 break;
1215
1216 case DISCONNECT:
1217 DB(DB_INTR, printk("DIS"))
1218 cmd->device->disconnect = 1;
1219 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1220 hostdata->state = S_PRE_TMP_DISC;
1221 break;
1222
1223 case MESSAGE_REJECT:
1224 DB(DB_INTR, printk("REJ"))
1225#ifdef SYNC_DEBUG
1226 printk("-REJ-");
1227#endif
1228 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING)
1229 hostdata->sync_stat[cmd->device->id] = SS_SET;
1230 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1231 hostdata->state = S_CONNECTED;
1232 break;
1233
1234 case EXTENDED_MESSAGE:
1235 DB(DB_INTR, printk("EXT"))
1236
1237 ucp = hostdata->incoming_msg;
1238
1239#ifdef SYNC_DEBUG
1240 printk("%02x", ucp[hostdata->incoming_ptr]);
1241#endif
1242 /* Is this the last byte of the extended message? */
1243
1244 if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) {
1245
1246 switch (ucp[2]) { /* what's the EXTENDED code? */
1247 case EXTENDED_SDTR:
1248 id = calc_sync_xfer(ucp[3], ucp[4]);
1249 if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) {
1250
1251/* A device has sent an unsolicited SDTR message; rather than go
1252 * through the effort of decoding it and then figuring out what
1253 * our reply should be, we're just gonna say that we have a
1254 * synchronous fifo depth of 0. This will result in asynchronous
1255 * transfers - not ideal but so much easier.
1256 * Actually, this is OK because it assures us that if we don't
1257 * specifically ask for sync transfers, we won't do any.
1258 */
1259
1260 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1261 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1262 hostdata->outgoing_msg[1] = 3;
1263 hostdata->outgoing_msg[2] = EXTENDED_SDTR;
1264 hostdata->outgoing_msg[3] = hostdata->default_sx_per / 4;
1265 hostdata->outgoing_msg[4] = 0;
1266 hostdata->outgoing_len = 5;
1267 hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0);
1268 } else {
1269 hostdata->sync_xfer[cmd->device->id] = id;
1270 }
1271#ifdef SYNC_DEBUG
1272 printk("sync_xfer=%02x", hostdata->sync_xfer[cmd->device->id]);
1273#endif
1274 hostdata->sync_stat[cmd->device->id] = SS_SET;
1275 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1276 hostdata->state = S_CONNECTED;
1277 break;
1278 case EXTENDED_WDTR:
1279 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1280 printk("sending WDTR ");
1281 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1282 hostdata->outgoing_msg[1] = 2;
1283 hostdata->outgoing_msg[2] = EXTENDED_WDTR;
1284 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1285 hostdata->outgoing_len = 4;
1286 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1287 hostdata->state = S_CONNECTED;
1288 break;
1289 default:
1290 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1291 printk("Rejecting Unknown Extended Message(%02x). ", ucp[2]);
1292 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1293 hostdata->outgoing_len = 1;
1294 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1295 hostdata->state = S_CONNECTED;
1296 break;
1297 }
1298 hostdata->incoming_ptr = 0;
1299 }
1300
1301 /* We need to read more MESS_IN bytes for the extended message */
1302
1303 else {
1304 hostdata->incoming_ptr++;
1305 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1306 hostdata->state = S_CONNECTED;
1307 }
1308 break;
1309
1310 default:
1311 printk("Rejecting Unknown Message(%02x) ", msg);
1312 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1313 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1314 hostdata->outgoing_len = 1;
1315 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1316 hostdata->state = S_CONNECTED;
1317 }
1318 break;
1319
1320
1321/* Note: this interrupt will occur only after a LEVEL2 command */
1322
1323 case CSR_SEL_XFER_DONE:
1324
1325/* Make sure that reselection is enabled at this point - it may
1326 * have been turned off for the command that just completed.
1327 */
1328
1329 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1330 if (phs == 0x60) {
1331 DB(DB_INTR, printk("SX-DONE"))
1332 cmd->SCp.Message = COMMAND_COMPLETE;
1333 lun = read_3393(hostdata, WD_TARGET_LUN);
1334 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1335 hostdata->connected = NULL;
1336 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1337 hostdata->state = S_UNCONNECTED;
1338 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1339 cmd->SCp.Status = lun;
1340 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1341 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1342 else
1343 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1344 cmd->scsi_done(cmd);
1345
1346/* We are no longer connected to a target - check to see if
1347 * there are commands waiting to be executed.
1348 */
1349
1350 in2000_execute(instance);
1351 } else {
1352 printk("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs);
1353 }
1354 break;
1355
1356
1357/* Note: this interrupt will occur only after a LEVEL2 command */
1358
1359 case CSR_SDP:
1360 DB(DB_INTR, printk("SDP"))
1361 hostdata->state = S_RUNNING_LEVEL2;
1362 write_3393(hostdata, WD_COMMAND_PHASE, 0x41);
1363 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1364 break;
1365
1366
1367 case CSR_XFER_DONE | PHS_MESS_OUT:
1368 case CSR_UNEXP | PHS_MESS_OUT:
1369 case CSR_SRV_REQ | PHS_MESS_OUT:
1370 DB(DB_INTR, printk("MSG_OUT="))
1371
1372/* To get here, we've probably requested MESSAGE_OUT and have
1373 * already put the correct bytes in outgoing_msg[] and filled
1374 * in outgoing_len. We simply send them out to the SCSI bus.
1375 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1376 * it - like when our SDTR message is rejected by a target. Some
1377 * targets send the REJECT before receiving all of the extended
1378 * message, and then seem to go back to MESSAGE_OUT for a byte
1379 * or two. Not sure why, or if I'm doing something wrong to
1380 * cause this to happen. Regardless, it seems that sending
1381 * NOP messages in these situations results in no harm and
1382 * makes everyone happy.
1383 */
1384 if (hostdata->outgoing_len == 0) {
1385 hostdata->outgoing_len = 1;
1386 hostdata->outgoing_msg[0] = NOP;
1387 }
1388 transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1389 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1390 hostdata->outgoing_len = 0;
1391 hostdata->state = S_CONNECTED;
1392 break;
1393
1394
1395 case CSR_UNEXP_DISC:
1396
1397/* I think I've seen this after a request-sense that was in response
1398 * to an error condition, but not sure. We certainly need to do
1399 * something when we get this interrupt - the question is 'what?'.
1400 * Let's think positively, and assume some command has finished
1401 * in a legal manner (like a command that provokes a request-sense),
1402 * so we treat it as a normal command-complete-disconnect.
1403 */
1404
1405
1406/* Make sure that reselection is enabled at this point - it may
1407 * have been turned off for the command that just completed.
1408 */
1409
1410 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1411 if (cmd == NULL) {
1412 printk(" - Already disconnected! ");
1413 hostdata->state = S_UNCONNECTED;
1414
1415/* release the SMP spin_lock and restore irq state */
1416 spin_unlock_irqrestore(instance->host_lock, flags);
1417 return IRQ_HANDLED;
1418 }
1419 DB(DB_INTR, printk("UNEXP_DISC"))
1420 hostdata->connected = NULL;
1421 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1422 hostdata->state = S_UNCONNECTED;
1423 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1424 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1425 else
1426 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1427 cmd->scsi_done(cmd);
1428
1429/* We are no longer connected to a target - check to see if
1430 * there are commands waiting to be executed.
1431 */
1432
1433 in2000_execute(instance);
1434 break;
1435
1436
1437 case CSR_DISC:
1438
1439/* Make sure that reselection is enabled at this point - it may
1440 * have been turned off for the command that just completed.
1441 */
1442
1443 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1444 DB(DB_INTR, printk("DISC"))
1445 if (cmd == NULL) {
1446 printk(" - Already disconnected! ");
1447 hostdata->state = S_UNCONNECTED;
1448 }
1449 switch (hostdata->state) {
1450 case S_PRE_CMP_DISC:
1451 hostdata->connected = NULL;
1452 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1453 hostdata->state = S_UNCONNECTED;
1454 DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1455 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1456 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1457 else
1458 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1459 cmd->scsi_done(cmd);
1460 break;
1461 case S_PRE_TMP_DISC:
1462 case S_RUNNING_LEVEL2:
1463 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1464 hostdata->disconnected_Q = cmd;
1465 hostdata->connected = NULL;
1466 hostdata->state = S_UNCONNECTED;
1467
1468#ifdef PROC_STATISTICS
1469 hostdata->disc_done_cnt[cmd->device->id]++;
1470#endif
1471
1472 break;
1473 default:
1474 printk("*** Unexpected DISCONNECT interrupt! ***");
1475 hostdata->state = S_UNCONNECTED;
1476 }
1477
1478/* We are no longer connected to a target - check to see if
1479 * there are commands waiting to be executed.
1480 */
1481
1482 in2000_execute(instance);
1483 break;
1484
1485
1486 case CSR_RESEL_AM:
1487 DB(DB_INTR, printk("RESEL"))
1488
1489 /* First we have to make sure this reselection didn't */
1490 /* happen during Arbitration/Selection of some other device. */
1491 /* If yes, put losing command back on top of input_Q. */
1492 if (hostdata->level2 <= L2_NONE) {
1493
1494 if (hostdata->selecting) {
1495 cmd = (Scsi_Cmnd *) hostdata->selecting;
1496 hostdata->selecting = NULL;
1497 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1498 cmd->host_scribble = (uchar *) hostdata->input_Q;
1499 hostdata->input_Q = cmd;
1500 }
1501 }
1502
1503 else {
1504
1505 if (cmd) {
1506 if (phs == 0x00) {
1507 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1508 cmd->host_scribble = (uchar *) hostdata->input_Q;
1509 hostdata->input_Q = cmd;
1510 } else {
1511 printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs);
1512 while (1)
1513 printk("\r");
1514 }
1515 }
1516
1517 }
1518
1519 /* OK - find out which device reselected us. */
1520
1521 id = read_3393(hostdata, WD_SOURCE_ID);
1522 id &= SRCID_MASK;
1523
1524 /* and extract the lun from the ID message. (Note that we don't
1525 * bother to check for a valid message here - I guess this is
1526 * not the right way to go, but....)
1527 */
1528
1529 lun = read_3393(hostdata, WD_DATA);
1530 if (hostdata->level2 < L2_RESELECT)
1531 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1532 lun &= 7;
1533
1534 /* Now we look for the command that's reconnecting. */
1535
1536 cmd = (Scsi_Cmnd *) hostdata->disconnected_Q;
1537 patch = NULL;
1538 while (cmd) {
1539 if (id == cmd->device->id && lun == cmd->device->lun)
1540 break;
1541 patch = cmd;
1542 cmd = (Scsi_Cmnd *) cmd->host_scribble;
1543 }
1544
1545 /* Hmm. Couldn't find a valid command.... What to do? */
1546
1547 if (!cmd) {
1548 printk("---TROUBLE: target %d.%d not in disconnect queue---", id, lun);
1549 break;
1550 }
1551
1552 /* Ok, found the command - now start it up again. */
1553
1554 if (patch)
1555 patch->host_scribble = cmd->host_scribble;
1556 else
1557 hostdata->disconnected_Q = (Scsi_Cmnd *) cmd->host_scribble;
1558 hostdata->connected = cmd;
1559
1560 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1561 * because these things are preserved over a disconnect.
1562 * But we DO need to fix the DPD bit so it's correct for this command.
1563 */
1564
1565 if (is_dir_out(cmd))
1566 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
1567 else
1568 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
1569 if (hostdata->level2 >= L2_RESELECT) {
1570 write_3393_count(hostdata, 0); /* we want a DATA_PHASE interrupt */
1571 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1572 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1573 hostdata->state = S_RUNNING_LEVEL2;
1574 } else
1575 hostdata->state = S_CONNECTED;
1576
1577 break;
1578
1579 default:
1580 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1581 }
1582
1583 write1_io(0, IO_LED_OFF);
1584
1585 DB(DB_INTR, printk("} "))
1586
1587/* release the SMP spin_lock and restore irq state */
1588 spin_unlock_irqrestore(instance->host_lock, flags);
1589 return IRQ_HANDLED;
1590}
1591
1592
1593
1594#define RESET_CARD 0
1595#define RESET_CARD_AND_BUS 1
1596#define B_FLAG 0x80
1597
1598/*
1599 * Caller must hold instance lock!
1600 */
1601
1602static int reset_hardware(struct Scsi_Host *instance, int type)
1603{
1604 struct IN2000_hostdata *hostdata;
1605 int qt, x;
1606
1607 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1608
1609 write1_io(0, IO_LED_ON);
1610 if (type == RESET_CARD_AND_BUS) {
1611 write1_io(0, IO_CARD_RESET);
1612 x = read1_io(IO_HARDWARE);
1613 }
1614 x = read_3393(hostdata, WD_SCSI_STATUS); /* clear any WD intrpt */
1615 write_3393(hostdata, WD_OWN_ID, instance->this_id | OWNID_EAF | OWNID_RAF | OWNID_FS_8);
1616 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1617 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF));
1618
1619 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */
1620 write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */
1621 write_3393(hostdata, WD_COMMAND, WD_CMD_RESET);
1622 /* FIXME: timeout ?? */
1623 while (!(READ_AUX_STAT() & ASR_INT))
1624 cpu_relax(); /* wait for RESET to complete */
1625
1626 x = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1627
1628 write_3393(hostdata, WD_QUEUE_TAG, 0xa5); /* any random number */
1629 qt = read_3393(hostdata, WD_QUEUE_TAG);
1630 if (qt == 0xa5) {
1631 x |= B_FLAG;
1632 write_3393(hostdata, WD_QUEUE_TAG, 0);
1633 }
1634 write_3393(hostdata, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1635 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1636 write1_io(0, IO_LED_OFF);
1637 return x;
1638}
1639
1640
1641
1642static int in2000_bus_reset(Scsi_Cmnd * cmd)
1643{
1644 struct Scsi_Host *instance;
1645 struct IN2000_hostdata *hostdata;
1646 int x;
1647 unsigned long flags;
1648
1649 instance = cmd->device->host;
1650 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1651
1652 printk(KERN_WARNING "scsi%d: Reset. ", instance->host_no);
1653
1654 spin_lock_irqsave(instance->host_lock, flags);
1655
1656 /* do scsi-reset here */
1657 reset_hardware(instance, RESET_CARD_AND_BUS);
1658 for (x = 0; x < 8; x++) {
1659 hostdata->busy[x] = 0;
1660 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
1661 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
1662 }
1663 hostdata->input_Q = NULL;
1664 hostdata->selecting = NULL;
1665 hostdata->connected = NULL;
1666 hostdata->disconnected_Q = NULL;
1667 hostdata->state = S_UNCONNECTED;
1668 hostdata->fifo = FI_FIFO_UNUSED;
1669 hostdata->incoming_ptr = 0;
1670 hostdata->outgoing_len = 0;
1671
1672 cmd->result = DID_RESET << 16;
1673
1674 spin_unlock_irqrestore(instance->host_lock, flags);
1675 return SUCCESS;
1676}
1677
1678static int __in2000_abort(Scsi_Cmnd * cmd)
1679{
1680 struct Scsi_Host *instance;
1681 struct IN2000_hostdata *hostdata;
1682 Scsi_Cmnd *tmp, *prev;
1683 uchar sr, asr;
1684 unsigned long timeout;
1685
1686 instance = cmd->device->host;
1687 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1688
1689 printk(KERN_DEBUG "scsi%d: Abort-", instance->host_no);
1690 printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", READ_AUX_STAT(), read_3393_count(hostdata), cmd->SCp.this_residual, cmd->SCp.buffers_residual, cmd->SCp.have_data_in, read1_io(IO_FIFO_COUNT));
1691
1692/*
1693 * Case 1 : If the command hasn't been issued yet, we simply remove it
1694 * from the inout_Q.
1695 */
1696
1697 tmp = (Scsi_Cmnd *) hostdata->input_Q;
1698 prev = NULL;
1699 while (tmp) {
1700 if (tmp == cmd) {
1701 if (prev)
1702 prev->host_scribble = cmd->host_scribble;
1703 cmd->host_scribble = NULL;
1704 cmd->result = DID_ABORT << 16;
1705 printk(KERN_WARNING "scsi%d: Abort - removing command from input_Q. ", instance->host_no);
1706 cmd->scsi_done(cmd);
1707 return SUCCESS;
1708 }
1709 prev = tmp;
1710 tmp = (Scsi_Cmnd *) tmp->host_scribble;
1711 }
1712
1713/*
1714 * Case 2 : If the command is connected, we're going to fail the abort
1715 * and let the high level SCSI driver retry at a later time or
1716 * issue a reset.
1717 *
1718 * Timeouts, and therefore aborted commands, will be highly unlikely
1719 * and handling them cleanly in this situation would make the common
1720 * case of noresets less efficient, and would pollute our code. So,
1721 * we fail.
1722 */
1723
1724 if (hostdata->connected == cmd) {
1725
1726 printk(KERN_WARNING "scsi%d: Aborting connected command - ", instance->host_no);
1727
1728 printk("sending wd33c93 ABORT command - ");
1729 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1730 write_3393_cmd(hostdata, WD_CMD_ABORT);
1731
1732/* Now we have to attempt to flush out the FIFO... */
1733
1734 printk("flushing fifo - ");
1735 timeout = 1000000;
1736 do {
1737 asr = READ_AUX_STAT();
1738 if (asr & ASR_DBR)
1739 read_3393(hostdata, WD_DATA);
1740 } while (!(asr & ASR_INT) && timeout-- > 0);
1741 sr = read_3393(hostdata, WD_SCSI_STATUS);
1742 printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_3393_count(hostdata), timeout);
1743
1744 /*
1745 * Abort command processed.
1746 * Still connected.
1747 * We must disconnect.
1748 */
1749
1750 printk("sending wd33c93 DISCONNECT command - ");
1751 write_3393_cmd(hostdata, WD_CMD_DISCONNECT);
1752
1753 timeout = 1000000;
1754 asr = READ_AUX_STAT();
1755 while ((asr & ASR_CIP) && timeout-- > 0)
1756 asr = READ_AUX_STAT();
1757 sr = read_3393(hostdata, WD_SCSI_STATUS);
1758 printk("asr=%02x, sr=%02x.", asr, sr);
1759
1760 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1761 hostdata->connected = NULL;
1762 hostdata->state = S_UNCONNECTED;
1763 cmd->result = DID_ABORT << 16;
1764 cmd->scsi_done(cmd);
1765
1766 in2000_execute(instance);
1767
1768 return SUCCESS;
1769 }
1770
1771/*
1772 * Case 3: If the command is currently disconnected from the bus,
1773 * we're not going to expend much effort here: Let's just return
1774 * an ABORT_SNOOZE and hope for the best...
1775 */
1776
1777 for (tmp = (Scsi_Cmnd *) hostdata->disconnected_Q; tmp; tmp = (Scsi_Cmnd *) tmp->host_scribble)
1778 if (cmd == tmp) {
1779 printk(KERN_DEBUG "scsi%d: unable to abort disconnected command.\n", instance->host_no);
1780 return FAILED;
1781 }
1782
1783/*
1784 * Case 4 : If we reached this point, the command was not found in any of
1785 * the queues.
1786 *
1787 * We probably reached this point because of an unlikely race condition
1788 * between the command completing successfully and the abortion code,
1789 * so we won't panic, but we will notify the user in case something really
1790 * broke.
1791 */
1792
1793 in2000_execute(instance);
1794
1795 printk("scsi%d: warning : SCSI command probably completed successfully" " before abortion. ", instance->host_no);
1796 return SUCCESS;
1797}
1798
1799static int in2000_abort(Scsi_Cmnd * cmd)
1800{
1801 int rc;
1802
1803 spin_lock_irq(cmd->device->host->host_lock);
1804 rc = __in2000_abort(cmd);
1805 spin_unlock_irq(cmd->device->host->host_lock);
1806
1807 return rc;
1808}
1809
1810
1811#define MAX_IN2000_HOSTS 3
1812#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1813#define SETUP_BUFFER_SIZE 200
1814static char setup_buffer[SETUP_BUFFER_SIZE];
1815static char setup_used[MAX_SETUP_ARGS];
1816static int done_setup = 0;
1817
1818static void __init in2000_setup(char *str, int *ints)
1819{
1820 int i;
1821 char *p1, *p2;
1822
1823 strlcpy(setup_buffer, str, SETUP_BUFFER_SIZE);
1824 p1 = setup_buffer;
1825 i = 0;
1826 while (*p1 && (i < MAX_SETUP_ARGS)) {
1827 p2 = strchr(p1, ',');
1828 if (p2) {
1829 *p2 = '\0';
1830 if (p1 != p2)
1831 setup_args[i] = p1;
1832 p1 = p2 + 1;
1833 i++;
1834 } else {
1835 setup_args[i] = p1;
1836 break;
1837 }
1838 }
1839 for (i = 0; i < MAX_SETUP_ARGS; i++)
1840 setup_used[i] = 0;
1841 done_setup = 1;
1842}
1843
1844
1845/* check_setup_args() returns index if key found, 0 if not
1846 */
1847
1848static int __init check_setup_args(char *key, int *val, char *buf)
1849{
1850 int x;
1851 char *cp;
1852
1853 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1854 if (setup_used[x])
1855 continue;
1856 if (!strncmp(setup_args[x], key, strlen(key)))
1857 break;
1858 }
1859 if (x == MAX_SETUP_ARGS)
1860 return 0;
1861 setup_used[x] = 1;
1862 cp = setup_args[x] + strlen(key);
1863 *val = -1;
1864 if (*cp != ':')
1865 return ++x;
1866 cp++;
1867 if ((*cp >= '0') && (*cp <= '9')) {
1868 *val = simple_strtoul(cp, NULL, 0);
1869 }
1870 return ++x;
1871}
1872
1873
1874
1875/* The "correct" (ie portable) way to access memory-mapped hardware
1876 * such as the IN2000 EPROM and dip switch is through the use of
1877 * special macros declared in 'asm/io.h'. We use readb() and readl()
1878 * when reading from the card's BIOS area in in2000_detect().
1879 */
1880static u32 bios_tab[] in2000__INITDATA = {
1881 0xc8000,
1882 0xd0000,
1883 0xd8000,
1884 0
1885};
1886
1887static unsigned short base_tab[] in2000__INITDATA = {
1888 0x220,
1889 0x200,
1890 0x110,
1891 0x100,
1892};
1893
1894static int int_tab[] in2000__INITDATA = {
1895 15,
1896 14,
1897 11,
1898 10
1899};
1900
1901static int probe_bios(u32 addr, u32 *s1, uchar *switches)
1902{
1903 void __iomem *p = ioremap(addr, 0x34);
1904 if (!p)
1905 return 0;
1906 *s1 = readl(p + 0x10);
1907 if (*s1 == 0x41564f4e || readl(p + 0x30) == 0x61776c41) {
1908 /* Read the switch image that's mapped into EPROM space */
1909 *switches = ~readb(p + 0x20);
1910 iounmap(p);
1911 return 1;
1912 }
1913 iounmap(p);
1914 return 0;
1915}
1916
1917static int __init in2000_detect(struct scsi_host_template * tpnt)
1918{
1919 struct Scsi_Host *instance;
1920 struct IN2000_hostdata *hostdata;
1921 int detect_count;
1922 int bios;
1923 int x;
1924 unsigned short base;
1925 uchar switches;
1926 uchar hrev;
1927 unsigned long flags;
1928 int val;
1929 char buf[32];
1930
1931/* Thanks to help from Bill Earnest, probing for IN2000 cards is a
1932 * pretty straightforward and fool-proof operation. There are 3
1933 * possible locations for the IN2000 EPROM in memory space - if we
1934 * find a BIOS signature, we can read the dip switch settings from
1935 * the byte at BIOS+32 (shadowed in by logic on the card). From 2
1936 * of the switch bits we get the card's address in IO space. There's
1937 * an image of the dip switch there, also, so we have a way to back-
1938 * check that this really is an IN2000 card. Very nifty. Use the
1939 * 'ioport:xx' command-line parameter if your BIOS EPROM is absent
1940 * or disabled.
1941 */
1942
1943 if (!done_setup && setup_strings)
1944 in2000_setup(setup_strings, NULL);
1945
1946 detect_count = 0;
1947 for (bios = 0; bios_tab[bios]; bios++) {
1948 u32 s1 = 0;
1949 if (check_setup_args("ioport", &val, buf)) {
1950 base = val;
1951 switches = ~inb(base + IO_SWITCHES) & 0xff;
1952 printk("Forcing IN2000 detection at IOport 0x%x ", base);
1953 bios = 2;
1954 }
1955/*
1956 * There have been a couple of BIOS versions with different layouts
1957 * for the obvious ID strings. We look for the 2 most common ones and
1958 * hope that they cover all the cases...
1959 */
1960 else if (probe_bios(bios_tab[bios], &s1, &switches)) {
1961 printk("Found IN2000 BIOS at 0x%x ", (unsigned int) bios_tab[bios]);
1962
1963/* Find out where the IO space is */
1964
1965 x = switches & (SW_ADDR0 | SW_ADDR1);
1966 base = base_tab[x];
1967
1968/* Check for the IN2000 signature in IO space. */
1969
1970 x = ~inb(base + IO_SWITCHES) & 0xff;
1971 if (x != switches) {
1972 printk("Bad IO signature: %02x vs %02x.\n", x, switches);
1973 continue;
1974 }
1975 } else
1976 continue;
1977
1978/* OK. We have a base address for the IO ports - run a few safety checks */
1979
1980 if (!(switches & SW_BIT7)) { /* I _think_ all cards do this */
1981 printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n", base);
1982 continue;
1983 }
1984
1985/* Let's assume any hardware version will work, although the driver
1986 * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
1987 * print out the rev number for reference later, but accept them all.
1988 */
1989
1990 hrev = inb(base + IO_HARDWARE);
1991
1992 /* Bit 2 tells us if interrupts are disabled */
1993 if (switches & SW_DISINT) {
1994 printk("The IN-2000 SCSI card at IOport 0x%03x ", base);
1995 printk("is not configured for interrupt operation!\n");
1996 printk("This driver requires an interrupt: cancelling detection.\n");
1997 continue;
1998 }
1999
2000/* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
2001 * initialize it.
2002 */
2003
2004 tpnt->proc_name = "in2000";
2005 instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata));
2006 if (instance == NULL)
2007 continue;
2008 detect_count++;
2009 hostdata = (struct IN2000_hostdata *) instance->hostdata;
2010 instance->io_port = hostdata->io_base = base;
2011 hostdata->dip_switch = switches;
2012 hostdata->hrev = hrev;
2013
2014 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */
2015 write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */
2016 write1_io(0, IO_INTR_MASK); /* allow all ints */
2017 x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT];
2018 if (request_irq(x, in2000_intr, 0, "in2000", instance)) {
2019 printk("in2000_detect: Unable to allocate IRQ.\n");
2020 detect_count--;
2021 continue;
2022 }
2023 instance->irq = x;
2024 instance->n_io_port = 13;
2025 request_region(base, 13, "in2000"); /* lock in this IO space for our use */
2026
2027 for (x = 0; x < 8; x++) {
2028 hostdata->busy[x] = 0;
2029 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
2030 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
2031#ifdef PROC_STATISTICS
2032 hostdata->cmd_cnt[x] = 0;
2033 hostdata->disc_allowed_cnt[x] = 0;
2034 hostdata->disc_done_cnt[x] = 0;
2035#endif
2036 }
2037 hostdata->input_Q = NULL;
2038 hostdata->selecting = NULL;
2039 hostdata->connected = NULL;
2040 hostdata->disconnected_Q = NULL;
2041 hostdata->state = S_UNCONNECTED;
2042 hostdata->fifo = FI_FIFO_UNUSED;
2043 hostdata->level2 = L2_BASIC;
2044 hostdata->disconnect = DIS_ADAPTIVE;
2045 hostdata->args = DEBUG_DEFAULTS;
2046 hostdata->incoming_ptr = 0;
2047 hostdata->outgoing_len = 0;
2048 hostdata->default_sx_per = DEFAULT_SX_PER;
2049
2050/* Older BIOS's had a 'sync on/off' switch - use its setting */
2051
2052 if (s1 == 0x41564f4e && (switches & SW_SYNC_DOS5))
2053 hostdata->sync_off = 0x00; /* sync defaults to on */
2054 else
2055 hostdata->sync_off = 0xff; /* sync defaults to off */
2056
2057#ifdef PROC_INTERFACE
2058 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
2059#ifdef PROC_STATISTICS
2060 hostdata->int_cnt = 0;
2061#endif
2062#endif
2063
2064 if (check_setup_args("nosync", &val, buf))
2065 hostdata->sync_off = val;
2066
2067 if (check_setup_args("period", &val, buf))
2068 hostdata->default_sx_per = sx_table[round_period((unsigned int) val)].period_ns;
2069
2070 if (check_setup_args("disconnect", &val, buf)) {
2071 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2072 hostdata->disconnect = val;
2073 else
2074 hostdata->disconnect = DIS_ADAPTIVE;
2075 }
2076
2077 if (check_setup_args("noreset", &val, buf))
2078 hostdata->args ^= A_NO_SCSI_RESET;
2079
2080 if (check_setup_args("level2", &val, buf))
2081 hostdata->level2 = val;
2082
2083 if (check_setup_args("debug", &val, buf))
2084 hostdata->args = (val & DB_MASK);
2085
2086#ifdef PROC_INTERFACE
2087 if (check_setup_args("proc", &val, buf))
2088 hostdata->proc = val;
2089#endif
2090
2091
2092 /* FIXME: not strictly needed I think but the called code expects
2093 to be locked */
2094 spin_lock_irqsave(instance->host_lock, flags);
2095 x = reset_hardware(instance, (hostdata->args & A_NO_SCSI_RESET) ? RESET_CARD : RESET_CARD_AND_BUS);
2096 spin_unlock_irqrestore(instance->host_lock, flags);
2097
2098 hostdata->microcode = read_3393(hostdata, WD_CDB_1);
2099 if (x & 0x01) {
2100 if (x & B_FLAG)
2101 hostdata->chip = C_WD33C93B;
2102 else
2103 hostdata->chip = C_WD33C93A;
2104 } else
2105 hostdata->chip = C_WD33C93;
2106
2107 printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", (switches & 0x7f), instance->irq, hostdata->io_base, (switches & SW_FLOPPY) ? "Yes" : "No", (switches & SW_SYNC_DOS5) ? "Yes" : "No");
2108 printk("hardware_ver=%02x chip=%s microcode=%02x\n", hrev, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode);
2109#ifdef DEBUGGING_ON
2110 printk("setup_args = ");
2111 for (x = 0; x < MAX_SETUP_ARGS; x++)
2112 printk("%s,", setup_args[x]);
2113 printk("\n");
2114#endif
2115 if (hostdata->sync_off == 0xff)
2116 printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
2117 printk("IN2000 driver version %s - %s\n", IN2000_VERSION, IN2000_DATE);
2118 }
2119
2120 return detect_count;
2121}
2122
2123static int in2000_release(struct Scsi_Host *shost)
2124{
2125 if (shost->irq)
2126 free_irq(shost->irq, shost);
2127 if (shost->io_port && shost->n_io_port)
2128 release_region(shost->io_port, shost->n_io_port);
2129 return 0;
2130}
2131
2132/* NOTE: I lifted this function straight out of the old driver,
2133 * and have not tested it. Presumably it does what it's
2134 * supposed to do...
2135 */
2136
2137static int in2000_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *iinfo)
2138{
2139 int size;
2140
2141 size = capacity;
2142 iinfo[0] = 64;
2143 iinfo[1] = 32;
2144 iinfo[2] = size >> 11;
2145
2146/* This should approximate the large drive handling that the DOS ASPI manager
2147 uses. Drives very near the boundaries may not be handled correctly (i.e.
2148 near 2.0 Gb and 4.0 Gb) */
2149
2150 if (iinfo[2] > 1024) {
2151 iinfo[0] = 64;
2152 iinfo[1] = 63;
2153 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2154 }
2155 if (iinfo[2] > 1024) {
2156 iinfo[0] = 128;
2157 iinfo[1] = 63;
2158 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2159 }
2160 if (iinfo[2] > 1024) {
2161 iinfo[0] = 255;
2162 iinfo[1] = 63;
2163 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2164 }
2165 return 0;
2166}
2167
2168
2169static int in2000_write_info(struct Scsi_Host *instance, char *buf, int len)
2170{
2171
2172#ifdef PROC_INTERFACE
2173
2174 char *bp;
2175 struct IN2000_hostdata *hd;
2176 int x, i;
2177
2178 hd = (struct IN2000_hostdata *) instance->hostdata;
2179
2180 buf[len] = '\0';
2181 bp = buf;
2182 if (!strncmp(bp, "debug:", 6)) {
2183 bp += 6;
2184 hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK;
2185 } else if (!strncmp(bp, "disconnect:", 11)) {
2186 bp += 11;
2187 x = simple_strtoul(bp, NULL, 0);
2188 if (x < DIS_NEVER || x > DIS_ALWAYS)
2189 x = DIS_ADAPTIVE;
2190 hd->disconnect = x;
2191 } else if (!strncmp(bp, "period:", 7)) {
2192 bp += 7;
2193 x = simple_strtoul(bp, NULL, 0);
2194 hd->default_sx_per = sx_table[round_period((unsigned int) x)].period_ns;
2195 } else if (!strncmp(bp, "resync:", 7)) {
2196 bp += 7;
2197 x = simple_strtoul(bp, NULL, 0);
2198 for (i = 0; i < 7; i++)
2199 if (x & (1 << i))
2200 hd->sync_stat[i] = SS_UNSET;
2201 } else if (!strncmp(bp, "proc:", 5)) {
2202 bp += 5;
2203 hd->proc = simple_strtoul(bp, NULL, 0);
2204 } else if (!strncmp(bp, "level2:", 7)) {
2205 bp += 7;
2206 hd->level2 = simple_strtoul(bp, NULL, 0);
2207 }
2208#endif
2209 return len;
2210}
2211
2212static int in2000_show_info(struct seq_file *m, struct Scsi_Host *instance)
2213{
2214
2215#ifdef PROC_INTERFACE
2216 unsigned long flags;
2217 struct IN2000_hostdata *hd;
2218 Scsi_Cmnd *cmd;
2219 int x;
2220
2221 hd = (struct IN2000_hostdata *) instance->hostdata;
2222
2223 spin_lock_irqsave(instance->host_lock, flags);
2224 if (hd->proc & PR_VERSION)
2225 seq_printf(m, "\nVersion %s - %s.", IN2000_VERSION, IN2000_DATE);
2226
2227 if (hd->proc & PR_INFO) {
2228 seq_printf(m, "\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", (hd->dip_switch & 0x7f), instance->irq, hd->io_base, (hd->dip_switch & 0x40) ? "Yes" : "No", (hd->dip_switch & 0x20) ? "Yes" : "No");
2229 seq_puts(m, "\nsync_xfer[] = ");
2230 for (x = 0; x < 7; x++)
2231 seq_printf(m, "\t%02x", hd->sync_xfer[x]);
2232 seq_puts(m, "\nsync_stat[] = ");
2233 for (x = 0; x < 7; x++)
2234 seq_printf(m, "\t%02x", hd->sync_stat[x]);
2235 }
2236#ifdef PROC_STATISTICS
2237 if (hd->proc & PR_STATISTICS) {
2238 seq_puts(m, "\ncommands issued: ");
2239 for (x = 0; x < 7; x++)
2240 seq_printf(m, "\t%ld", hd->cmd_cnt[x]);
2241 seq_puts(m, "\ndisconnects allowed:");
2242 for (x = 0; x < 7; x++)
2243 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]);
2244 seq_puts(m, "\ndisconnects done: ");
2245 for (x = 0; x < 7; x++)
2246 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]);
2247 seq_printf(m, "\ninterrupts: \t%ld", hd->int_cnt);
2248 }
2249#endif
2250 if (hd->proc & PR_CONNECTED) {
2251 seq_puts(m, "\nconnected: ");
2252 if (hd->connected) {
2253 cmd = (Scsi_Cmnd *) hd->connected;
2254 seq_printf(m, " %d:%llu(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2255 }
2256 }
2257 if (hd->proc & PR_INPUTQ) {
2258 seq_puts(m, "\ninput_Q: ");
2259 cmd = (Scsi_Cmnd *) hd->input_Q;
2260 while (cmd) {
2261 seq_printf(m, " %d:%llu(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2262 cmd = (Scsi_Cmnd *) cmd->host_scribble;
2263 }
2264 }
2265 if (hd->proc & PR_DISCQ) {
2266 seq_puts(m, "\ndisconnected_Q:");
2267 cmd = (Scsi_Cmnd *) hd->disconnected_Q;
2268 while (cmd) {
2269 seq_printf(m, " %d:%llu(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2270 cmd = (Scsi_Cmnd *) cmd->host_scribble;
2271 }
2272 }
2273 if (hd->proc & PR_TEST) {
2274 ; /* insert your own custom function here */
2275 }
2276 seq_putc(m, '\n');
2277 spin_unlock_irqrestore(instance->host_lock, flags);
2278#endif /* PROC_INTERFACE */
2279 return 0;
2280}
2281
2282MODULE_LICENSE("GPL");
2283
2284
2285static struct scsi_host_template driver_template = {
2286 .proc_name = "in2000",
2287 .write_info = in2000_write_info,
2288 .show_info = in2000_show_info,
2289 .name = "Always IN2000",
2290 .detect = in2000_detect,
2291 .release = in2000_release,
2292 .queuecommand = in2000_queuecommand,
2293 .eh_abort_handler = in2000_abort,
2294 .eh_bus_reset_handler = in2000_bus_reset,
2295 .bios_param = in2000_biosparam,
2296 .can_queue = IN2000_CAN_Q,
2297 .this_id = IN2000_HOST_ID,
2298 .sg_tablesize = IN2000_SG,
2299 .cmd_per_lun = IN2000_CPL,
2300 .use_clustering = DISABLE_CLUSTERING,
2301};
2302#include "scsi_module.c"
diff --git a/drivers/scsi/in2000.h b/drivers/scsi/in2000.h
deleted file mode 100644
index 5821e1fbce08..000000000000
--- a/drivers/scsi/in2000.h
+++ /dev/null
@@ -1,412 +0,0 @@
1/*
2 * in2000.h - Linux device driver definitions for the
3 * Always IN2000 ISA SCSI card.
4 *
5 * IMPORTANT: This file is for version 1.33 - 26/Aug/1998
6 *
7 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
8 * john@geolog.com
9 * jshiffle@netcom.com
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 */
22
23#ifndef IN2000_H
24#define IN2000_H
25
26#include <asm/io.h>
27
28#define PROC_INTERFACE /* add code for /proc/scsi/in2000/xxx interface */
29#ifdef PROC_INTERFACE
30#define PROC_STATISTICS /* add code for keeping various real time stats */
31#endif
32
33#define SYNC_DEBUG /* extra info on sync negotiation printed */
34#define DEBUGGING_ON /* enable command-line debugging bitmask */
35#define DEBUG_DEFAULTS 0 /* default bitmask - change from command-line */
36
37#ifdef __i386__
38#define FAST_READ_IO /* No problems with these on my machine */
39#define FAST_WRITE_IO
40#endif
41
42#ifdef DEBUGGING_ON
43#define DB(f,a) if (hostdata->args & (f)) a;
44#define CHECK_NULL(p,s) /* if (!(p)) {printk("\n"); while (1) printk("NP:%s\r",(s));} */
45#else
46#define DB(f,a)
47#define CHECK_NULL(p,s)
48#endif
49
50#define uchar unsigned char
51
52#define read1_io(a) (inb(hostdata->io_base+(a)))
53#define read2_io(a) (inw(hostdata->io_base+(a)))
54#define write1_io(b,a) (outb((b),hostdata->io_base+(a)))
55#define write2_io(w,a) (outw((w),hostdata->io_base+(a)))
56
57#ifdef __i386__
58/* These inline assembly defines are derived from a patch
59 * sent to me by Bill Earnest. He's done a lot of very
60 * valuable thinking, testing, and coding during his effort
61 * to squeeze more speed out of this driver. I really think
62 * that we are doing IO at close to the maximum now with
63 * the fifo. (And yes, insw uses 'edi' while outsw uses
64 * 'esi'. Thanks Bill!)
65 */
66
67#define FAST_READ2_IO() \
68({ \
69int __dummy_1,__dummy_2; \
70 __asm__ __volatile__ ("\n \
71 cld \n \
72 orl %%ecx, %%ecx \n \
73 jz 1f \n \
74 rep \n \
75 insw (%%dx),%%es:(%%edi) \n \
761: " \
77 : "=D" (sp) ,"=c" (__dummy_1) ,"=d" (__dummy_2) /* output */ \
78 : "2" (f), "0" (sp), "1" (i) /* input */ \
79 ); /* trashed */ \
80})
81
82#define FAST_WRITE2_IO() \
83({ \
84int __dummy_1,__dummy_2; \
85 __asm__ __volatile__ ("\n \
86 cld \n \
87 orl %%ecx, %%ecx \n \
88 jz 1f \n \
89 rep \n \
90 outsw %%ds:(%%esi),(%%dx) \n \
911: " \
92 : "=S" (sp) ,"=c" (__dummy_1) ,"=d" (__dummy_2)/* output */ \
93 : "2" (f), "0" (sp), "1" (i) /* input */ \
94 ); /* trashed */ \
95})
96#endif
97
98/* IN2000 io_port offsets */
99#define IO_WD_ASR 0x00 /* R - 3393 auxstat reg */
100#define ASR_INT 0x80
101#define ASR_LCI 0x40
102#define ASR_BSY 0x20
103#define ASR_CIP 0x10
104#define ASR_PE 0x02
105#define ASR_DBR 0x01
106#define IO_WD_ADDR 0x00 /* W - 3393 address reg */
107#define IO_WD_DATA 0x01 /* R/W - rest of 3393 regs */
108#define IO_FIFO 0x02 /* R/W - in2000 dual-port fifo (16 bits) */
109#define IN2000_FIFO_SIZE 2048 /* fifo capacity in bytes */
110#define IO_CARD_RESET 0x03 /* W - in2000 start master reset */
111#define IO_FIFO_COUNT 0x04 /* R - in2000 fifo counter */
112#define IO_FIFO_WRITE 0x05 /* W - clear fifo counter, start write */
113#define IO_FIFO_READ 0x07 /* W - start fifo read */
114#define IO_LED_OFF 0x08 /* W - turn off in2000 activity LED */
115#define IO_SWITCHES 0x08 /* R - read in2000 dip switch */
116#define SW_ADDR0 0x01 /* bit 0 = bit 0 of index to io addr */
117#define SW_ADDR1 0x02 /* bit 1 = bit 1 of index io addr */
118#define SW_DISINT 0x04 /* bit 2 true if ints disabled */
119#define SW_INT0 0x08 /* bit 3 = bit 0 of index to interrupt */
120#define SW_INT1 0x10 /* bit 4 = bit 1 of index to interrupt */
121#define SW_INT_SHIFT 3 /* shift right this amount to right justify int bits */
122#define SW_SYNC_DOS5 0x20 /* bit 5 used by Always BIOS */
123#define SW_FLOPPY 0x40 /* bit 6 true if floppy enabled */
124#define SW_BIT7 0x80 /* bit 7 hardwired true (ground) */
125#define IO_LED_ON 0x09 /* W - turn on in2000 activity LED */
126#define IO_HARDWARE 0x0a /* R - read in2000 hardware rev, stop reset */
127#define IO_INTR_MASK 0x0c /* W - in2000 interrupt mask reg */
128#define IMASK_WD 0x01 /* WD33c93 interrupt mask */
129#define IMASK_FIFO 0x02 /* FIFO interrupt mask */
130
131/* wd register names */
132#define WD_OWN_ID 0x00
133#define WD_CONTROL 0x01
134#define WD_TIMEOUT_PERIOD 0x02
135#define WD_CDB_1 0x03
136#define WD_CDB_2 0x04
137#define WD_CDB_3 0x05
138#define WD_CDB_4 0x06
139#define WD_CDB_5 0x07
140#define WD_CDB_6 0x08
141#define WD_CDB_7 0x09
142#define WD_CDB_8 0x0a
143#define WD_CDB_9 0x0b
144#define WD_CDB_10 0x0c
145#define WD_CDB_11 0x0d
146#define WD_CDB_12 0x0e
147#define WD_TARGET_LUN 0x0f
148#define WD_COMMAND_PHASE 0x10
149#define WD_SYNCHRONOUS_TRANSFER 0x11
150#define WD_TRANSFER_COUNT_MSB 0x12
151#define WD_TRANSFER_COUNT 0x13
152#define WD_TRANSFER_COUNT_LSB 0x14
153#define WD_DESTINATION_ID 0x15
154#define WD_SOURCE_ID 0x16
155#define WD_SCSI_STATUS 0x17
156#define WD_COMMAND 0x18
157#define WD_DATA 0x19
158#define WD_QUEUE_TAG 0x1a
159#define WD_AUXILIARY_STATUS 0x1f
160
161/* WD commands */
162#define WD_CMD_RESET 0x00
163#define WD_CMD_ABORT 0x01
164#define WD_CMD_ASSERT_ATN 0x02
165#define WD_CMD_NEGATE_ACK 0x03
166#define WD_CMD_DISCONNECT 0x04
167#define WD_CMD_RESELECT 0x05
168#define WD_CMD_SEL_ATN 0x06
169#define WD_CMD_SEL 0x07
170#define WD_CMD_SEL_ATN_XFER 0x08
171#define WD_CMD_SEL_XFER 0x09
172#define WD_CMD_RESEL_RECEIVE 0x0a
173#define WD_CMD_RESEL_SEND 0x0b
174#define WD_CMD_WAIT_SEL_RECEIVE 0x0c
175#define WD_CMD_TRANS_ADDR 0x18
176#define WD_CMD_TRANS_INFO 0x20
177#define WD_CMD_TRANSFER_PAD 0x21
178#define WD_CMD_SBT_MODE 0x80
179
180/* SCSI Bus Phases */
181#define PHS_DATA_OUT 0x00
182#define PHS_DATA_IN 0x01
183#define PHS_COMMAND 0x02
184#define PHS_STATUS 0x03
185#define PHS_MESS_OUT 0x06
186#define PHS_MESS_IN 0x07
187
188/* Command Status Register definitions */
189
190 /* reset state interrupts */
191#define CSR_RESET 0x00
192#define CSR_RESET_AF 0x01
193
194 /* successful completion interrupts */
195#define CSR_RESELECT 0x10
196#define CSR_SELECT 0x11
197#define CSR_SEL_XFER_DONE 0x16
198#define CSR_XFER_DONE 0x18
199
200 /* paused or aborted interrupts */
201#define CSR_MSGIN 0x20
202#define CSR_SDP 0x21
203#define CSR_SEL_ABORT 0x22
204#define CSR_RESEL_ABORT 0x25
205#define CSR_RESEL_ABORT_AM 0x27
206#define CSR_ABORT 0x28
207
208 /* terminated interrupts */
209#define CSR_INVALID 0x40
210#define CSR_UNEXP_DISC 0x41
211#define CSR_TIMEOUT 0x42
212#define CSR_PARITY 0x43
213#define CSR_PARITY_ATN 0x44
214#define CSR_BAD_STATUS 0x45
215#define CSR_UNEXP 0x48
216
217 /* service required interrupts */
218#define CSR_RESEL 0x80
219#define CSR_RESEL_AM 0x81
220#define CSR_DISC 0x85
221#define CSR_SRV_REQ 0x88
222
223 /* Own ID/CDB Size register */
224#define OWNID_EAF 0x08
225#define OWNID_EHP 0x10
226#define OWNID_RAF 0x20
227#define OWNID_FS_8 0x00
228#define OWNID_FS_12 0x40
229#define OWNID_FS_16 0x80
230
231 /* Control register */
232#define CTRL_HSP 0x01
233#define CTRL_HA 0x02
234#define CTRL_IDI 0x04
235#define CTRL_EDI 0x08
236#define CTRL_HHP 0x10
237#define CTRL_POLLED 0x00
238#define CTRL_BURST 0x20
239#define CTRL_BUS 0x40
240#define CTRL_DMA 0x80
241
242 /* Timeout Period register */
243#define TIMEOUT_PERIOD_VALUE 20 /* results in 200 ms. */
244
245 /* Synchronous Transfer Register */
246#define STR_FSS 0x80
247
248 /* Destination ID register */
249#define DSTID_DPD 0x40
250#define DATA_OUT_DIR 0
251#define DATA_IN_DIR 1
252#define DSTID_SCC 0x80
253
254 /* Source ID register */
255#define SRCID_MASK 0x07
256#define SRCID_SIV 0x08
257#define SRCID_DSP 0x20
258#define SRCID_ES 0x40
259#define SRCID_ER 0x80
260
261
262
263#define ILLEGAL_STATUS_BYTE 0xff
264
265
266#define DEFAULT_SX_PER 500 /* (ns) fairly safe */
267#define DEFAULT_SX_OFF 0 /* aka async */
268
269#define OPTIMUM_SX_PER 252 /* (ns) best we can do (mult-of-4) */
270#define OPTIMUM_SX_OFF 12 /* size of in2000 fifo */
271
272struct sx_period {
273 unsigned int period_ns;
274 uchar reg_value;
275 };
276
277
278struct IN2000_hostdata {
279 struct Scsi_Host *next;
280 uchar chip; /* what kind of wd33c93 chip? */
281 uchar microcode; /* microcode rev if 'B' */
282 unsigned short io_base; /* IO port base */
283 unsigned int dip_switch; /* dip switch settings */
284 unsigned int hrev; /* hardware revision of card */
285 volatile uchar busy[8]; /* index = target, bit = lun */
286 volatile Scsi_Cmnd *input_Q; /* commands waiting to be started */
287 volatile Scsi_Cmnd *selecting; /* trying to select this command */
288 volatile Scsi_Cmnd *connected; /* currently connected command */
289 volatile Scsi_Cmnd *disconnected_Q;/* commands waiting for reconnect */
290 uchar state; /* what we are currently doing */
291 uchar fifo; /* what the FIFO is up to */
292 uchar level2; /* extent to which Level-2 commands are used */
293 uchar disconnect; /* disconnect/reselect policy */
294 unsigned int args; /* set from command-line argument */
295 uchar incoming_msg[8]; /* filled during message_in phase */
296 int incoming_ptr; /* mainly used with EXTENDED messages */
297 uchar outgoing_msg[8]; /* send this during next message_out */
298 int outgoing_len; /* length of outgoing message */
299 unsigned int default_sx_per; /* default transfer period for SCSI bus */
300 uchar sync_xfer[8]; /* sync_xfer reg settings per target */
301 uchar sync_stat[8]; /* status of sync negotiation per target */
302 uchar sync_off; /* bit mask: don't use sync with these targets */
303#ifdef PROC_INTERFACE
304 uchar proc; /* bit mask: what's in proc output */
305#ifdef PROC_STATISTICS
306 unsigned long cmd_cnt[8]; /* # of commands issued per target */
307 unsigned long int_cnt; /* # of interrupts serviced */
308 unsigned long disc_allowed_cnt[8]; /* # of disconnects allowed per target */
309 unsigned long disc_done_cnt[8]; /* # of disconnects done per target*/
310#endif
311#endif
312 };
313
314
315/* defines for hostdata->chip */
316
317#define C_WD33C93 0
318#define C_WD33C93A 1
319#define C_WD33C93B 2
320#define C_UNKNOWN_CHIP 100
321
322/* defines for hostdata->state */
323
324#define S_UNCONNECTED 0
325#define S_SELECTING 1
326#define S_RUNNING_LEVEL2 2
327#define S_CONNECTED 3
328#define S_PRE_TMP_DISC 4
329#define S_PRE_CMP_DISC 5
330
331/* defines for hostdata->fifo */
332
333#define FI_FIFO_UNUSED 0
334#define FI_FIFO_READING 1
335#define FI_FIFO_WRITING 2
336
337/* defines for hostdata->level2 */
338/* NOTE: only the first 3 are trustworthy at this point -
339 * having trouble when more than 1 device is reading/writing
340 * at the same time...
341 */
342
343#define L2_NONE 0 /* no combination commands - we get lots of ints */
344#define L2_SELECT 1 /* start with SEL_ATN_XFER, but never resume it */
345#define L2_BASIC 2 /* resume after STATUS ints & RDP messages */
346#define L2_DATA 3 /* resume after DATA_IN/OUT ints */
347#define L2_MOST 4 /* resume after anything except a RESELECT int */
348#define L2_RESELECT 5 /* resume after everything, including RESELECT ints */
349#define L2_ALL 6 /* always resume */
350
351/* defines for hostdata->disconnect */
352
353#define DIS_NEVER 0
354#define DIS_ADAPTIVE 1
355#define DIS_ALWAYS 2
356
357/* defines for hostdata->args */
358
359#define DB_TEST 1<<0
360#define DB_FIFO 1<<1
361#define DB_QUEUE_COMMAND 1<<2
362#define DB_EXECUTE 1<<3
363#define DB_INTR 1<<4
364#define DB_TRANSFER 1<<5
365#define DB_MASK 0x3f
366
367#define A_NO_SCSI_RESET 1<<15
368
369
370/* defines for hostdata->sync_xfer[] */
371
372#define SS_UNSET 0
373#define SS_FIRST 1
374#define SS_WAITING 2
375#define SS_SET 3
376
377/* defines for hostdata->proc */
378
379#define PR_VERSION 1<<0
380#define PR_INFO 1<<1
381#define PR_STATISTICS 1<<2
382#define PR_CONNECTED 1<<3
383#define PR_INPUTQ 1<<4
384#define PR_DISCQ 1<<5
385#define PR_TEST 1<<6
386#define PR_STOP 1<<7
387
388
389# include <linux/init.h>
390# include <linux/spinlock.h>
391# define in2000__INITFUNC(function) __initfunc(function)
392# define in2000__INIT __init
393# define in2000__INITDATA __initdata
394# define CLISPIN_LOCK(host,flags) spin_lock_irqsave(host->host_lock, flags)
395# define CLISPIN_UNLOCK(host,flags) spin_unlock_irqrestore(host->host_lock, \
396 flags)
397
398static int in2000_detect(struct scsi_host_template *) in2000__INIT;
399static int in2000_queuecommand(struct Scsi_Host *, struct scsi_cmnd *);
400static int in2000_abort(Scsi_Cmnd *);
401static void in2000_setup(char *, int *) in2000__INIT;
402static int in2000_biosparam(struct scsi_device *, struct block_device *,
403 sector_t, int *);
404static int in2000_bus_reset(Scsi_Cmnd *);
405
406
407#define IN2000_CAN_Q 16
408#define IN2000_SG SG_ALL
409#define IN2000_CPL 2
410#define IN2000_HOST_ID 7
411
412#endif /* IN2000_H */