1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
/*
* Constant definitions related to
* scheduling policy.
*/
#ifndef _LINUX_LITMUS_H_
#define _LINUX_LITMUS_H_
#include <litmus/ctrlpage.h>
#ifdef CONFIG_RELEASE_MASTER
extern atomic_t release_master_cpu;
#endif
/* in_list - is a given list_head queued on some list?
*/
static inline int in_list(struct list_head* list)
{
return !( /* case 1: deleted */
(list->next == LIST_POISON1 &&
list->prev == LIST_POISON2)
||
/* case 2: initialized */
(list->next == list &&
list->prev == list)
);
}
struct task_struct* __waitqueue_remove_first(wait_queue_head_t *wq);
#define NO_CPU 0xffffffff
void litmus_fork(struct task_struct *tsk);
void litmus_exec(void);
/* clean up real-time state of a task */
void litmus_clear_state(struct task_struct *dead_tsk);
void exit_litmus(struct task_struct *dead_tsk);
/* Prevent the plugin from being switched-out from underneath a code
* path. Might sleep, so may be called only from non-atomic context. */
void litmus_plugin_switch_disable(void);
void litmus_plugin_switch_enable(void);
long litmus_admit_task(struct task_struct *tsk);
void litmus_exit_task(struct task_struct *tsk);
void litmus_dealloc(struct task_struct *tsk);
void litmus_do_exit(struct task_struct *tsk);
int litmus_be_migrate_to(int cpu);
#define is_realtime(t) ((t)->policy == SCHED_LITMUS)
#define rt_transition_pending(t) \
((t)->rt_param.transition_pending)
#define tsk_rt(t) (&(t)->rt_param)
/* Realtime utility macros */
#ifdef CONFIG_LITMUS_LOCKING
#define is_priority_boosted(t) (tsk_rt(t)->priority_boosted)
#define get_boost_start(t) (tsk_rt(t)->boost_start_time)
#else
#define is_priority_boosted(t) 0
#define get_boost_start(t) 0
#endif
/* task_params macros */
#define get_exec_cost(t) (tsk_rt(t)->task_params.exec_cost)
#define get_rt_period(t) (tsk_rt(t)->task_params.period)
#define get_rt_relative_deadline(t) (tsk_rt(t)->task_params.relative_deadline)
#define get_rt_utilization(t) (tsk_rt(t)->task_params.utilization)
#define get_rt_phase(t) (tsk_rt(t)->task_params.phase)
#define get_partition(t) (tsk_rt(t)->task_params.cpu)
#define get_priority(t) (tsk_rt(t)->task_params.priority)
#define get_class(t) (tsk_rt(t)->task_params.cls)
#define get_release_policy(t) (tsk_rt(t)->task_params.release_policy)
/* job_param macros */
#define get_exec_time(t) (tsk_rt(t)->job_params.exec_time)
#define get_deadline(t) (tsk_rt(t)->job_params.deadline)
#define get_release(t) (tsk_rt(t)->job_params.release)
#define get_lateness(t) (tsk_rt(t)->job_params.lateness)
/* release policy macros */
#define is_periodic(t) (get_release_policy(t) == TASK_PERIODIC)
#define is_sporadic(t) (get_release_policy(t) == TASK_SPORADIC)
#ifdef CONFIG_ALLOW_EARLY_RELEASE
#define is_early_releasing(t) (get_release_policy(t) == TASK_EARLY)
#else
#define is_early_releasing(t) (0)
#endif
#define is_hrt(t) \
(tsk_rt(t)->task_params.cls == RT_CLASS_HARD)
#define is_srt(t) \
(tsk_rt(t)->task_params.cls == RT_CLASS_SOFT)
#define is_be(t) \
(tsk_rt(t)->task_params.cls == RT_CLASS_BEST_EFFORT)
/* Our notion of time within LITMUS: kernel monotonic time. */
static inline lt_t litmus_clock(void)
{
return ktime_to_ns(ktime_get());
}
/* A macro to convert from nanoseconds to ktime_t. */
#define ns_to_ktime(t) ktime_add_ns(ktime_set(0, 0), t)
#define is_released(t, now) \
(lt_before_eq(get_release(t), now))
#define is_tardy(t, now) \
(lt_before_eq(tsk_rt(t)->job_params.deadline, now))
/* real-time comparison macros */
#define earlier_deadline(a, b) (lt_before(\
(a)->rt_param.job_params.deadline,\
(b)->rt_param.job_params.deadline))
#define earlier_release(a, b) (lt_before(\
(a)->rt_param.job_params.release,\
(b)->rt_param.job_params.release))
void preempt_if_preemptable(struct task_struct* t, int on_cpu);
#define bheap2task(hn) ((struct task_struct*) hn->value)
static inline int is_present(struct task_struct* t)
{
return t && tsk_rt(t)->present;
}
static inline int is_completed(struct task_struct* t)
{
return t && tsk_rt(t)->completed;
}
/* Used to convert ns-specified execution costs and periods into
* integral quanta equivalents.
*/
#define LITMUS_QUANTUM_LENGTH_NS (CONFIG_LITMUS_QUANTUM_LENGTH_US * 1000ULL)
/* make the unit explicit */
typedef unsigned long quanta_t;
enum round {
FLOOR,
CEIL
};
static inline quanta_t time2quanta(lt_t time, enum round round)
{
s64 quantum_length = LITMUS_QUANTUM_LENGTH_NS;
if (do_div(time, quantum_length) && round == CEIL)
time++;
return (quanta_t) time;
}
static inline lt_t quanta2time(quanta_t quanta)
{
return quanta * LITMUS_QUANTUM_LENGTH_NS;
}
/* By how much is cpu staggered behind CPU 0? */
u64 cpu_stagger_offset(int cpu);
static inline struct control_page* get_control_page(struct task_struct *t)
{
return tsk_rt(t)->ctrl_page;
}
static inline int has_control_page(struct task_struct* t)
{
return tsk_rt(t)->ctrl_page != NULL;
}
#ifdef CONFIG_SCHED_OVERHEAD_TRACE
#define TS_SYSCALL_IN_START \
if (has_control_page(current)) { \
__TS_SYSCALL_IN_START(&get_control_page(current)->ts_syscall_start); \
}
#define TS_SYSCALL_IN_END \
if (has_control_page(current)) { \
unsigned long flags; \
uint64_t irqs; \
local_irq_save(flags); \
irqs = get_control_page(current)->irq_count - \
get_control_page(current)->irq_syscall_start; \
__TS_SYSCALL_IN_END(&irqs); \
local_irq_restore(flags); \
}
#else
#define TS_SYSCALL_IN_START
#define TS_SYSCALL_IN_END
#endif
#ifdef CONFIG_SMP
/*
* struct hrtimer_start_on_info - timer info on remote cpu
* @timer: timer to be triggered on remote cpu
* @time: time event
* @mode: timer mode
* @csd: smp_call_function parameter to call hrtimer_pull on remote cpu
*/
struct hrtimer_start_on_info {
struct hrtimer *timer;
ktime_t time;
enum hrtimer_mode mode;
struct call_single_data csd;
};
void hrtimer_pull(void *csd_info);
extern void hrtimer_start_on(int cpu, struct hrtimer_start_on_info *info,
struct hrtimer *timer, ktime_t time,
const enum hrtimer_mode mode);
#endif
#endif
|