diff options
author | Tony Luck <tony.luck@intel.com> | 2016-08-20 19:27:58 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2016-08-21 13:58:34 -0400 |
commit | 4ec656bdf43a13a655a8259b79dd63bc1f0b1e41 (patch) | |
tree | e0c941b9985718eca0313830ed0702ffb216f1a9 | |
parent | 6040e57658eee6eb1315a26119101ca832d1f854 (diff) |
EDAC, skx_edac: Add EDAC driver for Skylake
This is an entirely new driver instead of yet another set of patches
to sb_edac.c because:
1) Mapping from PCI devices to socket/memory controller is significantly
different. Skylake scatters devices on a socket across a number of
PCI buses.
2) There is an extra level of interleaving via the "mcroute" register
that would be a little messy to squeeze into the old driver.
3) Validation is getting too expensive. Changes to sb_edac need to
be checked against Sandy Bridge, Ivy Bridge, Haswell, Broadwell and
Knights Landing.
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r-- | MAINTAINERS | 6 | ||||
-rw-r--r-- | drivers/edac/Kconfig | 8 | ||||
-rw-r--r-- | drivers/edac/Makefile | 1 | ||||
-rw-r--r-- | drivers/edac/skx_edac.c | 1121 |
4 files changed, 1136 insertions, 0 deletions
diff --git a/MAINTAINERS b/MAINTAINERS index a306795a7450..0bbe4b105c34 100644 --- a/MAINTAINERS +++ b/MAINTAINERS | |||
@@ -4525,6 +4525,12 @@ L: linux-edac@vger.kernel.org | |||
4525 | S: Maintained | 4525 | S: Maintained |
4526 | F: drivers/edac/sb_edac.c | 4526 | F: drivers/edac/sb_edac.c |
4527 | 4527 | ||
4528 | EDAC-SKYLAKE | ||
4529 | M: Tony Luck <tony.luck@intel.com> | ||
4530 | L: linux-edac@vger.kernel.org | ||
4531 | S: Maintained | ||
4532 | F: drivers/edac/skx_edac.c | ||
4533 | |||
4528 | EDAC-XGENE | 4534 | EDAC-XGENE |
4529 | APPLIED MICRO (APM) X-GENE SOC EDAC | 4535 | APPLIED MICRO (APM) X-GENE SOC EDAC |
4530 | M: Loc Ho <lho@apm.com> | 4536 | M: Loc Ho <lho@apm.com> |
diff --git a/drivers/edac/Kconfig b/drivers/edac/Kconfig index d0c1dab9b435..dff1a4a6dc1b 100644 --- a/drivers/edac/Kconfig +++ b/drivers/edac/Kconfig | |||
@@ -251,6 +251,14 @@ config EDAC_SBRIDGE | |||
251 | Support for error detection and correction the Intel | 251 | Support for error detection and correction the Intel |
252 | Sandy Bridge, Ivy Bridge and Haswell Integrated Memory Controllers. | 252 | Sandy Bridge, Ivy Bridge and Haswell Integrated Memory Controllers. |
253 | 253 | ||
254 | config EDAC_SKX | ||
255 | tristate "Intel Skylake server Integrated MC" | ||
256 | depends on EDAC_MM_EDAC && PCI && X86_64 && X86_MCE_INTEL | ||
257 | depends on PCI_MMCONFIG | ||
258 | help | ||
259 | Support for error detection and correction the Intel | ||
260 | Skylake server Integrated Memory Controllers. | ||
261 | |||
254 | config EDAC_MPC85XX | 262 | config EDAC_MPC85XX |
255 | tristate "Freescale MPC83xx / MPC85xx" | 263 | tristate "Freescale MPC83xx / MPC85xx" |
256 | depends on EDAC_MM_EDAC && FSL_SOC | 264 | depends on EDAC_MM_EDAC && FSL_SOC |
diff --git a/drivers/edac/Makefile b/drivers/edac/Makefile index f9e4a3e0e6e9..986049925b08 100644 --- a/drivers/edac/Makefile +++ b/drivers/edac/Makefile | |||
@@ -31,6 +31,7 @@ obj-$(CONFIG_EDAC_I5400) += i5400_edac.o | |||
31 | obj-$(CONFIG_EDAC_I7300) += i7300_edac.o | 31 | obj-$(CONFIG_EDAC_I7300) += i7300_edac.o |
32 | obj-$(CONFIG_EDAC_I7CORE) += i7core_edac.o | 32 | obj-$(CONFIG_EDAC_I7CORE) += i7core_edac.o |
33 | obj-$(CONFIG_EDAC_SBRIDGE) += sb_edac.o | 33 | obj-$(CONFIG_EDAC_SBRIDGE) += sb_edac.o |
34 | obj-$(CONFIG_EDAC_SKX) += skx_edac.o | ||
34 | obj-$(CONFIG_EDAC_E7XXX) += e7xxx_edac.o | 35 | obj-$(CONFIG_EDAC_E7XXX) += e7xxx_edac.o |
35 | obj-$(CONFIG_EDAC_E752X) += e752x_edac.o | 36 | obj-$(CONFIG_EDAC_E752X) += e752x_edac.o |
36 | obj-$(CONFIG_EDAC_I82443BXGX) += i82443bxgx_edac.o | 37 | obj-$(CONFIG_EDAC_I82443BXGX) += i82443bxgx_edac.o |
diff --git a/drivers/edac/skx_edac.c b/drivers/edac/skx_edac.c new file mode 100644 index 000000000000..0ff4878c2aa1 --- /dev/null +++ b/drivers/edac/skx_edac.c | |||
@@ -0,0 +1,1121 @@ | |||
1 | /* | ||
2 | * EDAC driver for Intel(R) Xeon(R) Skylake processors | ||
3 | * Copyright (c) 2016, Intel Corporation. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify it | ||
6 | * under the terms and conditions of the GNU General Public License, | ||
7 | * version 2, as published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
12 | * more details. | ||
13 | */ | ||
14 | |||
15 | #include <linux/module.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/pci.h> | ||
18 | #include <linux/pci_ids.h> | ||
19 | #include <linux/slab.h> | ||
20 | #include <linux/delay.h> | ||
21 | #include <linux/edac.h> | ||
22 | #include <linux/mmzone.h> | ||
23 | #include <linux/smp.h> | ||
24 | #include <linux/bitmap.h> | ||
25 | #include <linux/math64.h> | ||
26 | #include <linux/mod_devicetable.h> | ||
27 | #include <asm/cpu_device_id.h> | ||
28 | #include <asm/processor.h> | ||
29 | #include <asm/mce.h> | ||
30 | |||
31 | #include "edac_core.h" | ||
32 | |||
33 | #define SKX_REVISION " Ver: 1.0 " | ||
34 | |||
35 | /* | ||
36 | * Debug macros | ||
37 | */ | ||
38 | #define skx_printk(level, fmt, arg...) \ | ||
39 | edac_printk(level, "skx", fmt, ##arg) | ||
40 | |||
41 | #define skx_mc_printk(mci, level, fmt, arg...) \ | ||
42 | edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) | ||
43 | |||
44 | /* | ||
45 | * Get a bit field at register value <v>, from bit <lo> to bit <hi> | ||
46 | */ | ||
47 | #define GET_BITFIELD(v, lo, hi) \ | ||
48 | (((v) & GENMASK_ULL((hi), (lo))) >> (lo)) | ||
49 | |||
50 | static LIST_HEAD(skx_edac_list); | ||
51 | |||
52 | static u64 skx_tolm, skx_tohm; | ||
53 | |||
54 | #define NUM_IMC 2 /* memory controllers per socket */ | ||
55 | #define NUM_CHANNELS 3 /* channels per memory controller */ | ||
56 | #define NUM_DIMMS 2 /* Max DIMMS per channel */ | ||
57 | |||
58 | #define MASK26 0x3FFFFFF /* Mask for 2^26 */ | ||
59 | #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ | ||
60 | |||
61 | /* | ||
62 | * Each cpu socket contains some pci devices that provide global | ||
63 | * information, and also some that are local to each of the two | ||
64 | * memory controllers on the die. | ||
65 | */ | ||
66 | struct skx_dev { | ||
67 | struct list_head list; | ||
68 | u8 bus[4]; | ||
69 | struct pci_dev *sad_all; | ||
70 | struct pci_dev *util_all; | ||
71 | u32 mcroute; | ||
72 | struct skx_imc { | ||
73 | struct mem_ctl_info *mci; | ||
74 | u8 mc; /* system wide mc# */ | ||
75 | u8 lmc; /* socket relative mc# */ | ||
76 | u8 src_id, node_id; | ||
77 | struct skx_channel { | ||
78 | struct pci_dev *cdev; | ||
79 | struct skx_dimm { | ||
80 | u8 close_pg; | ||
81 | u8 bank_xor_enable; | ||
82 | u8 fine_grain_bank; | ||
83 | u8 rowbits; | ||
84 | u8 colbits; | ||
85 | } dimms[NUM_DIMMS]; | ||
86 | } chan[NUM_CHANNELS]; | ||
87 | } imc[NUM_IMC]; | ||
88 | }; | ||
89 | static int skx_num_sockets; | ||
90 | |||
91 | struct skx_pvt { | ||
92 | struct skx_imc *imc; | ||
93 | }; | ||
94 | |||
95 | struct decoded_addr { | ||
96 | struct skx_dev *dev; | ||
97 | u64 addr; | ||
98 | int socket; | ||
99 | int imc; | ||
100 | int channel; | ||
101 | u64 chan_addr; | ||
102 | int sktways; | ||
103 | int chanways; | ||
104 | int dimm; | ||
105 | int rank; | ||
106 | int channel_rank; | ||
107 | u64 rank_address; | ||
108 | int row; | ||
109 | int column; | ||
110 | int bank_address; | ||
111 | int bank_group; | ||
112 | }; | ||
113 | |||
114 | static struct skx_dev *get_skx_dev(u8 bus, u8 idx) | ||
115 | { | ||
116 | struct skx_dev *d; | ||
117 | |||
118 | list_for_each_entry(d, &skx_edac_list, list) { | ||
119 | if (d->bus[idx] == bus) | ||
120 | return d; | ||
121 | } | ||
122 | |||
123 | return NULL; | ||
124 | } | ||
125 | |||
126 | enum munittype { | ||
127 | CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD | ||
128 | }; | ||
129 | |||
130 | struct munit { | ||
131 | u16 did; | ||
132 | u16 devfn[NUM_IMC]; | ||
133 | u8 busidx; | ||
134 | u8 per_socket; | ||
135 | enum munittype mtype; | ||
136 | }; | ||
137 | |||
138 | /* | ||
139 | * List of PCI device ids that we need together with some device | ||
140 | * number and function numbers to tell which memory controller the | ||
141 | * device belongs to. | ||
142 | */ | ||
143 | static const struct munit skx_all_munits[] = { | ||
144 | { 0x2054, { }, 1, 1, SAD_ALL }, | ||
145 | { 0x2055, { }, 1, 1, UTIL_ALL }, | ||
146 | { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, | ||
147 | { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, | ||
148 | { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, | ||
149 | { 0x208e, { }, 1, 0, SAD }, | ||
150 | { } | ||
151 | }; | ||
152 | |||
153 | /* | ||
154 | * We use the per-socket device 0x2016 to count how many sockets are present, | ||
155 | * and to detemine which PCI buses are associated with each socket. Allocate | ||
156 | * and build the full list of all the skx_dev structures that we need here. | ||
157 | */ | ||
158 | static int get_all_bus_mappings(void) | ||
159 | { | ||
160 | struct pci_dev *pdev, *prev; | ||
161 | struct skx_dev *d; | ||
162 | u32 reg; | ||
163 | int ndev = 0; | ||
164 | |||
165 | prev = NULL; | ||
166 | for (;;) { | ||
167 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev); | ||
168 | if (!pdev) | ||
169 | break; | ||
170 | ndev++; | ||
171 | d = kzalloc(sizeof(*d), GFP_KERNEL); | ||
172 | if (!d) { | ||
173 | pci_dev_put(pdev); | ||
174 | return -ENOMEM; | ||
175 | } | ||
176 | pci_read_config_dword(pdev, 0xCC, ®); | ||
177 | d->bus[0] = GET_BITFIELD(reg, 0, 7); | ||
178 | d->bus[1] = GET_BITFIELD(reg, 8, 15); | ||
179 | d->bus[2] = GET_BITFIELD(reg, 16, 23); | ||
180 | d->bus[3] = GET_BITFIELD(reg, 24, 31); | ||
181 | edac_dbg(2, "busses: %x, %x, %x, %x\n", | ||
182 | d->bus[0], d->bus[1], d->bus[2], d->bus[3]); | ||
183 | list_add_tail(&d->list, &skx_edac_list); | ||
184 | skx_num_sockets++; | ||
185 | prev = pdev; | ||
186 | } | ||
187 | |||
188 | return ndev; | ||
189 | } | ||
190 | |||
191 | static int get_all_munits(const struct munit *m) | ||
192 | { | ||
193 | struct pci_dev *pdev, *prev; | ||
194 | struct skx_dev *d; | ||
195 | u32 reg; | ||
196 | int i = 0, ndev = 0; | ||
197 | |||
198 | prev = NULL; | ||
199 | for (;;) { | ||
200 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); | ||
201 | if (!pdev) | ||
202 | break; | ||
203 | ndev++; | ||
204 | if (m->per_socket == NUM_IMC) { | ||
205 | for (i = 0; i < NUM_IMC; i++) | ||
206 | if (m->devfn[i] == pdev->devfn) | ||
207 | break; | ||
208 | if (i == NUM_IMC) | ||
209 | goto fail; | ||
210 | } | ||
211 | d = get_skx_dev(pdev->bus->number, m->busidx); | ||
212 | if (!d) | ||
213 | goto fail; | ||
214 | |||
215 | /* Be sure that the device is enabled */ | ||
216 | if (unlikely(pci_enable_device(pdev) < 0)) { | ||
217 | skx_printk(KERN_ERR, | ||
218 | "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did); | ||
219 | goto fail; | ||
220 | } | ||
221 | |||
222 | switch (m->mtype) { | ||
223 | case CHAN0: case CHAN1: case CHAN2: | ||
224 | pci_dev_get(pdev); | ||
225 | d->imc[i].chan[m->mtype].cdev = pdev; | ||
226 | break; | ||
227 | case SAD_ALL: | ||
228 | pci_dev_get(pdev); | ||
229 | d->sad_all = pdev; | ||
230 | break; | ||
231 | case UTIL_ALL: | ||
232 | pci_dev_get(pdev); | ||
233 | d->util_all = pdev; | ||
234 | break; | ||
235 | case SAD: | ||
236 | /* | ||
237 | * one of these devices per core, including cores | ||
238 | * that don't exist on this SKU. Ignore any that | ||
239 | * read a route table of zero, make sure all the | ||
240 | * non-zero values match. | ||
241 | */ | ||
242 | pci_read_config_dword(pdev, 0xB4, ®); | ||
243 | if (reg != 0) { | ||
244 | if (d->mcroute == 0) | ||
245 | d->mcroute = reg; | ||
246 | else if (d->mcroute != reg) { | ||
247 | skx_printk(KERN_ERR, | ||
248 | "mcroute mismatch\n"); | ||
249 | goto fail; | ||
250 | } | ||
251 | } | ||
252 | ndev--; | ||
253 | break; | ||
254 | } | ||
255 | |||
256 | prev = pdev; | ||
257 | } | ||
258 | |||
259 | return ndev; | ||
260 | fail: | ||
261 | pci_dev_put(pdev); | ||
262 | return -ENODEV; | ||
263 | } | ||
264 | |||
265 | const struct x86_cpu_id skx_cpuids[] = { | ||
266 | { X86_VENDOR_INTEL, 6, 0x55, 0, 0 }, /* Skylake */ | ||
267 | { } | ||
268 | }; | ||
269 | MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); | ||
270 | |||
271 | static u8 get_src_id(struct skx_dev *d) | ||
272 | { | ||
273 | u32 reg; | ||
274 | |||
275 | pci_read_config_dword(d->util_all, 0xF0, ®); | ||
276 | |||
277 | return GET_BITFIELD(reg, 12, 14); | ||
278 | } | ||
279 | |||
280 | static u8 skx_get_node_id(struct skx_dev *d) | ||
281 | { | ||
282 | u32 reg; | ||
283 | |||
284 | pci_read_config_dword(d->util_all, 0xF4, ®); | ||
285 | |||
286 | return GET_BITFIELD(reg, 0, 2); | ||
287 | } | ||
288 | |||
289 | static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval, | ||
290 | int maxval, char *name) | ||
291 | { | ||
292 | u32 val = GET_BITFIELD(reg, lobit, hibit); | ||
293 | |||
294 | if (val < minval || val > maxval) { | ||
295 | edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg); | ||
296 | return -EINVAL; | ||
297 | } | ||
298 | return val + add; | ||
299 | } | ||
300 | |||
301 | #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15) | ||
302 | |||
303 | #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 1, 2, "ranks") | ||
304 | #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows") | ||
305 | #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols") | ||
306 | |||
307 | static int get_width(u32 mtr) | ||
308 | { | ||
309 | switch (GET_BITFIELD(mtr, 8, 9)) { | ||
310 | case 0: | ||
311 | return DEV_X4; | ||
312 | case 1: | ||
313 | return DEV_X8; | ||
314 | case 2: | ||
315 | return DEV_X16; | ||
316 | } | ||
317 | return DEV_UNKNOWN; | ||
318 | } | ||
319 | |||
320 | static int skx_get_hi_lo(void) | ||
321 | { | ||
322 | struct pci_dev *pdev; | ||
323 | u32 reg; | ||
324 | |||
325 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL); | ||
326 | if (!pdev) { | ||
327 | edac_dbg(0, "Can't get tolm/tohm\n"); | ||
328 | return -ENODEV; | ||
329 | } | ||
330 | |||
331 | pci_read_config_dword(pdev, 0xD0, ®); | ||
332 | skx_tolm = reg; | ||
333 | pci_read_config_dword(pdev, 0xD4, ®); | ||
334 | skx_tohm = reg; | ||
335 | pci_read_config_dword(pdev, 0xD8, ®); | ||
336 | skx_tohm |= (u64)reg << 32; | ||
337 | |||
338 | pci_dev_put(pdev); | ||
339 | edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm); | ||
340 | |||
341 | return 0; | ||
342 | } | ||
343 | |||
344 | static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm, | ||
345 | struct skx_imc *imc, int chan, int dimmno) | ||
346 | { | ||
347 | int banks = 16, ranks, rows, cols, npages; | ||
348 | u64 size; | ||
349 | |||
350 | if (!IS_DIMM_PRESENT(mtr)) | ||
351 | return 0; | ||
352 | ranks = numrank(mtr); | ||
353 | rows = numrow(mtr); | ||
354 | cols = numcol(mtr); | ||
355 | |||
356 | /* | ||
357 | * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) | ||
358 | */ | ||
359 | size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); | ||
360 | npages = MiB_TO_PAGES(size); | ||
361 | |||
362 | edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", | ||
363 | imc->mc, chan, dimmno, size, npages, | ||
364 | banks, ranks, rows, cols); | ||
365 | |||
366 | imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0); | ||
367 | imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9); | ||
368 | imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); | ||
369 | imc->chan[chan].dimms[dimmno].rowbits = rows; | ||
370 | imc->chan[chan].dimms[dimmno].colbits = cols; | ||
371 | |||
372 | dimm->nr_pages = npages; | ||
373 | dimm->grain = 32; | ||
374 | dimm->dtype = get_width(mtr); | ||
375 | dimm->mtype = MEM_DDR4; | ||
376 | dimm->edac_mode = EDAC_SECDED; /* likely better than this */ | ||
377 | snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", | ||
378 | imc->src_id, imc->lmc, chan, dimmno); | ||
379 | |||
380 | return 1; | ||
381 | } | ||
382 | |||
383 | #define SKX_GET_MTMTR(dev, reg) \ | ||
384 | pci_read_config_dword((dev), 0x87c, ®) | ||
385 | |||
386 | static bool skx_check_ecc(struct pci_dev *pdev) | ||
387 | { | ||
388 | u32 mtmtr; | ||
389 | |||
390 | SKX_GET_MTMTR(pdev, mtmtr); | ||
391 | |||
392 | return !!GET_BITFIELD(mtmtr, 2, 2); | ||
393 | } | ||
394 | |||
395 | static int skx_get_dimm_config(struct mem_ctl_info *mci) | ||
396 | { | ||
397 | struct skx_pvt *pvt = mci->pvt_info; | ||
398 | struct skx_imc *imc = pvt->imc; | ||
399 | struct dimm_info *dimm; | ||
400 | int i, j; | ||
401 | u32 mtr, amap; | ||
402 | int ndimms; | ||
403 | |||
404 | for (i = 0; i < NUM_CHANNELS; i++) { | ||
405 | ndimms = 0; | ||
406 | pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); | ||
407 | for (j = 0; j < NUM_DIMMS; j++) { | ||
408 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, | ||
409 | mci->n_layers, i, j, 0); | ||
410 | pci_read_config_dword(imc->chan[i].cdev, | ||
411 | 0x80 + 4*j, &mtr); | ||
412 | ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j); | ||
413 | } | ||
414 | if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { | ||
415 | skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); | ||
416 | return -ENODEV; | ||
417 | } | ||
418 | } | ||
419 | |||
420 | return 0; | ||
421 | } | ||
422 | |||
423 | static void skx_unregister_mci(struct skx_imc *imc) | ||
424 | { | ||
425 | struct mem_ctl_info *mci = imc->mci; | ||
426 | |||
427 | if (!mci) | ||
428 | return; | ||
429 | |||
430 | edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); | ||
431 | |||
432 | /* Remove MC sysfs nodes */ | ||
433 | edac_mc_del_mc(mci->pdev); | ||
434 | |||
435 | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); | ||
436 | kfree(mci->ctl_name); | ||
437 | edac_mc_free(mci); | ||
438 | } | ||
439 | |||
440 | static int skx_register_mci(struct skx_imc *imc) | ||
441 | { | ||
442 | struct mem_ctl_info *mci; | ||
443 | struct edac_mc_layer layers[2]; | ||
444 | struct pci_dev *pdev = imc->chan[0].cdev; | ||
445 | struct skx_pvt *pvt; | ||
446 | int rc; | ||
447 | |||
448 | /* allocate a new MC control structure */ | ||
449 | layers[0].type = EDAC_MC_LAYER_CHANNEL; | ||
450 | layers[0].size = NUM_CHANNELS; | ||
451 | layers[0].is_virt_csrow = false; | ||
452 | layers[1].type = EDAC_MC_LAYER_SLOT; | ||
453 | layers[1].size = NUM_DIMMS; | ||
454 | layers[1].is_virt_csrow = true; | ||
455 | mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, | ||
456 | sizeof(struct skx_pvt)); | ||
457 | |||
458 | if (unlikely(!mci)) | ||
459 | return -ENOMEM; | ||
460 | |||
461 | edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); | ||
462 | |||
463 | /* Associate skx_dev and mci for future usage */ | ||
464 | imc->mci = mci; | ||
465 | pvt = mci->pvt_info; | ||
466 | pvt->imc = imc; | ||
467 | |||
468 | mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d", | ||
469 | imc->node_id, imc->lmc); | ||
470 | mci->mtype_cap = MEM_FLAG_DDR4; | ||
471 | mci->edac_ctl_cap = EDAC_FLAG_NONE; | ||
472 | mci->edac_cap = EDAC_FLAG_NONE; | ||
473 | mci->mod_name = "skx_edac.c"; | ||
474 | mci->dev_name = pci_name(imc->chan[0].cdev); | ||
475 | mci->mod_ver = SKX_REVISION; | ||
476 | mci->ctl_page_to_phys = NULL; | ||
477 | |||
478 | rc = skx_get_dimm_config(mci); | ||
479 | if (rc < 0) | ||
480 | goto fail; | ||
481 | |||
482 | /* record ptr to the generic device */ | ||
483 | mci->pdev = &pdev->dev; | ||
484 | |||
485 | /* add this new MC control structure to EDAC's list of MCs */ | ||
486 | if (unlikely(edac_mc_add_mc(mci))) { | ||
487 | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | ||
488 | rc = -EINVAL; | ||
489 | goto fail; | ||
490 | } | ||
491 | |||
492 | return 0; | ||
493 | |||
494 | fail: | ||
495 | kfree(mci->ctl_name); | ||
496 | edac_mc_free(mci); | ||
497 | imc->mci = NULL; | ||
498 | return rc; | ||
499 | } | ||
500 | |||
501 | #define SKX_MAX_SAD 24 | ||
502 | |||
503 | #define SKX_GET_SAD(d, i, reg) \ | ||
504 | pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®) | ||
505 | #define SKX_GET_ILV(d, i, reg) \ | ||
506 | pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®) | ||
507 | |||
508 | #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) | ||
509 | #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) | ||
510 | #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) | ||
511 | #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) | ||
512 | #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) | ||
513 | #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) | ||
514 | #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) | ||
515 | |||
516 | #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) | ||
517 | #define SKX_ILV_TARGET(tgt) ((tgt) & 7) | ||
518 | |||
519 | static bool skx_sad_decode(struct decoded_addr *res) | ||
520 | { | ||
521 | struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list); | ||
522 | u64 addr = res->addr; | ||
523 | int i, idx, tgt, lchan, shift; | ||
524 | u32 sad, ilv; | ||
525 | u64 limit, prev_limit; | ||
526 | int remote = 0; | ||
527 | |||
528 | /* Simple sanity check for I/O space or out of range */ | ||
529 | if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { | ||
530 | edac_dbg(0, "Address %llx out of range\n", addr); | ||
531 | return false; | ||
532 | } | ||
533 | |||
534 | restart: | ||
535 | prev_limit = 0; | ||
536 | for (i = 0; i < SKX_MAX_SAD; i++) { | ||
537 | SKX_GET_SAD(d, i, sad); | ||
538 | limit = SKX_SAD_LIMIT(sad); | ||
539 | if (SKX_SAD_ENABLE(sad)) { | ||
540 | if (addr >= prev_limit && addr <= limit) | ||
541 | goto sad_found; | ||
542 | } | ||
543 | prev_limit = limit + 1; | ||
544 | } | ||
545 | edac_dbg(0, "No SAD entry for %llx\n", addr); | ||
546 | return false; | ||
547 | |||
548 | sad_found: | ||
549 | SKX_GET_ILV(d, i, ilv); | ||
550 | |||
551 | switch (SKX_SAD_INTERLEAVE(sad)) { | ||
552 | case 0: | ||
553 | idx = GET_BITFIELD(addr, 6, 8); | ||
554 | break; | ||
555 | case 1: | ||
556 | idx = GET_BITFIELD(addr, 8, 10); | ||
557 | break; | ||
558 | case 2: | ||
559 | idx = GET_BITFIELD(addr, 12, 14); | ||
560 | break; | ||
561 | case 3: | ||
562 | idx = GET_BITFIELD(addr, 30, 32); | ||
563 | break; | ||
564 | } | ||
565 | |||
566 | tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); | ||
567 | |||
568 | /* If point to another node, find it and start over */ | ||
569 | if (SKX_ILV_REMOTE(tgt)) { | ||
570 | if (remote) { | ||
571 | edac_dbg(0, "Double remote!\n"); | ||
572 | return false; | ||
573 | } | ||
574 | remote = 1; | ||
575 | list_for_each_entry(d, &skx_edac_list, list) { | ||
576 | if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) | ||
577 | goto restart; | ||
578 | } | ||
579 | edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); | ||
580 | return false; | ||
581 | } | ||
582 | |||
583 | if (SKX_SAD_MOD3(sad) == 0) | ||
584 | lchan = SKX_ILV_TARGET(tgt); | ||
585 | else { | ||
586 | switch (SKX_SAD_MOD3MODE(sad)) { | ||
587 | case 0: | ||
588 | shift = 6; | ||
589 | break; | ||
590 | case 1: | ||
591 | shift = 8; | ||
592 | break; | ||
593 | case 2: | ||
594 | shift = 12; | ||
595 | break; | ||
596 | default: | ||
597 | edac_dbg(0, "illegal mod3mode\n"); | ||
598 | return false; | ||
599 | } | ||
600 | switch (SKX_SAD_MOD3ASMOD2(sad)) { | ||
601 | case 0: | ||
602 | lchan = (addr >> shift) % 3; | ||
603 | break; | ||
604 | case 1: | ||
605 | lchan = (addr >> shift) % 2; | ||
606 | break; | ||
607 | case 2: | ||
608 | lchan = (addr >> shift) % 2; | ||
609 | lchan = (lchan << 1) | ~lchan; | ||
610 | break; | ||
611 | case 3: | ||
612 | lchan = ((addr >> shift) % 2) << 1; | ||
613 | break; | ||
614 | } | ||
615 | lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); | ||
616 | } | ||
617 | |||
618 | res->dev = d; | ||
619 | res->socket = d->imc[0].src_id; | ||
620 | res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); | ||
621 | res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); | ||
622 | |||
623 | edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n", | ||
624 | res->addr, res->socket, res->imc, res->channel); | ||
625 | return true; | ||
626 | } | ||
627 | |||
628 | #define SKX_MAX_TAD 8 | ||
629 | |||
630 | #define SKX_GET_TADBASE(d, mc, i, reg) \ | ||
631 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®) | ||
632 | #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ | ||
633 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®) | ||
634 | #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ | ||
635 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®) | ||
636 | |||
637 | #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) | ||
638 | #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) | ||
639 | #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) | ||
640 | #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) | ||
641 | #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) | ||
642 | #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) | ||
643 | #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) | ||
644 | |||
645 | /* which bit used for both socket and channel interleave */ | ||
646 | static int skx_granularity[] = { 6, 8, 12, 30 }; | ||
647 | |||
648 | static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) | ||
649 | { | ||
650 | addr >>= shift; | ||
651 | addr /= ways; | ||
652 | addr <<= shift; | ||
653 | |||
654 | return addr | (lowbits & ((1ull << shift) - 1)); | ||
655 | } | ||
656 | |||
657 | static bool skx_tad_decode(struct decoded_addr *res) | ||
658 | { | ||
659 | int i; | ||
660 | u32 base, wayness, chnilvoffset; | ||
661 | int skt_interleave_bit, chn_interleave_bit; | ||
662 | u64 channel_addr; | ||
663 | |||
664 | for (i = 0; i < SKX_MAX_TAD; i++) { | ||
665 | SKX_GET_TADBASE(res->dev, res->imc, i, base); | ||
666 | SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); | ||
667 | if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) | ||
668 | goto tad_found; | ||
669 | } | ||
670 | edac_dbg(0, "No TAD entry for %llx\n", res->addr); | ||
671 | return false; | ||
672 | |||
673 | tad_found: | ||
674 | res->sktways = SKX_TAD_SKTWAYS(wayness); | ||
675 | res->chanways = SKX_TAD_CHNWAYS(wayness); | ||
676 | skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; | ||
677 | chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; | ||
678 | |||
679 | SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); | ||
680 | channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); | ||
681 | |||
682 | if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { | ||
683 | /* Must handle channel first, then socket */ | ||
684 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | ||
685 | res->chanways, channel_addr); | ||
686 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | ||
687 | res->sktways, channel_addr); | ||
688 | } else { | ||
689 | /* Handle socket then channel. Preserve low bits from original address */ | ||
690 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | ||
691 | res->sktways, res->addr); | ||
692 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | ||
693 | res->chanways, res->addr); | ||
694 | } | ||
695 | |||
696 | res->chan_addr = channel_addr; | ||
697 | |||
698 | edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n", | ||
699 | res->addr, res->chan_addr, res->sktways, res->chanways); | ||
700 | return true; | ||
701 | } | ||
702 | |||
703 | #define SKX_MAX_RIR 4 | ||
704 | |||
705 | #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ | ||
706 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ | ||
707 | 0x108 + 4 * (i), ®) | ||
708 | #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ | ||
709 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ | ||
710 | 0x120 + 16 * idx + 4 * (i), ®) | ||
711 | |||
712 | #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) | ||
713 | #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) | ||
714 | #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) | ||
715 | #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) | ||
716 | #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) | ||
717 | |||
718 | static bool skx_rir_decode(struct decoded_addr *res) | ||
719 | { | ||
720 | int i, idx, chan_rank; | ||
721 | int shift; | ||
722 | u32 rirway, rirlv; | ||
723 | u64 rank_addr, prev_limit = 0, limit; | ||
724 | |||
725 | if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) | ||
726 | shift = 6; | ||
727 | else | ||
728 | shift = 13; | ||
729 | |||
730 | for (i = 0; i < SKX_MAX_RIR; i++) { | ||
731 | SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); | ||
732 | limit = SKX_RIR_LIMIT(rirway); | ||
733 | if (SKX_RIR_VALID(rirway)) { | ||
734 | if (prev_limit <= res->chan_addr && | ||
735 | res->chan_addr <= limit) | ||
736 | goto rir_found; | ||
737 | } | ||
738 | prev_limit = limit; | ||
739 | } | ||
740 | edac_dbg(0, "No RIR entry for %llx\n", res->addr); | ||
741 | return false; | ||
742 | |||
743 | rir_found: | ||
744 | rank_addr = res->chan_addr >> shift; | ||
745 | rank_addr /= SKX_RIR_WAYS(rirway); | ||
746 | rank_addr <<= shift; | ||
747 | rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); | ||
748 | |||
749 | res->rank_address = rank_addr; | ||
750 | idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); | ||
751 | |||
752 | SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); | ||
753 | res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); | ||
754 | chan_rank = SKX_RIR_CHAN_RANK(rirlv); | ||
755 | res->channel_rank = chan_rank; | ||
756 | res->dimm = chan_rank / 4; | ||
757 | res->rank = chan_rank % 4; | ||
758 | |||
759 | edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n", | ||
760 | res->addr, res->dimm, res->rank, | ||
761 | res->channel_rank, res->rank_address); | ||
762 | return true; | ||
763 | } | ||
764 | |||
765 | static u8 skx_close_row[] = { | ||
766 | 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 | ||
767 | }; | ||
768 | static u8 skx_close_column[] = { | ||
769 | 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 | ||
770 | }; | ||
771 | static u8 skx_open_row[] = { | ||
772 | 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 | ||
773 | }; | ||
774 | static u8 skx_open_column[] = { | ||
775 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ||
776 | }; | ||
777 | static u8 skx_open_fine_column[] = { | ||
778 | 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 | ||
779 | }; | ||
780 | |||
781 | static int skx_bits(u64 addr, int nbits, u8 *bits) | ||
782 | { | ||
783 | int i, res = 0; | ||
784 | |||
785 | for (i = 0; i < nbits; i++) | ||
786 | res |= ((addr >> bits[i]) & 1) << i; | ||
787 | return res; | ||
788 | } | ||
789 | |||
790 | static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) | ||
791 | { | ||
792 | int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); | ||
793 | |||
794 | if (do_xor) | ||
795 | ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); | ||
796 | |||
797 | return ret; | ||
798 | } | ||
799 | |||
800 | static bool skx_mad_decode(struct decoded_addr *r) | ||
801 | { | ||
802 | struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; | ||
803 | int bg0 = dimm->fine_grain_bank ? 6 : 13; | ||
804 | |||
805 | if (dimm->close_pg) { | ||
806 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); | ||
807 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); | ||
808 | r->column |= 0x400; /* C10 is autoprecharge, always set */ | ||
809 | r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); | ||
810 | r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); | ||
811 | } else { | ||
812 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); | ||
813 | if (dimm->fine_grain_bank) | ||
814 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); | ||
815 | else | ||
816 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); | ||
817 | r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); | ||
818 | r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); | ||
819 | } | ||
820 | r->row &= (1u << dimm->rowbits) - 1; | ||
821 | |||
822 | edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n", | ||
823 | r->addr, r->row, r->column, r->bank_address, | ||
824 | r->bank_group); | ||
825 | return true; | ||
826 | } | ||
827 | |||
828 | static bool skx_decode(struct decoded_addr *res) | ||
829 | { | ||
830 | |||
831 | return skx_sad_decode(res) && skx_tad_decode(res) && | ||
832 | skx_rir_decode(res) && skx_mad_decode(res); | ||
833 | } | ||
834 | |||
835 | #ifdef CONFIG_EDAC_DEBUG | ||
836 | /* | ||
837 | * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr. | ||
838 | * Write an address to this file to exercise the address decode | ||
839 | * logic in this driver. | ||
840 | */ | ||
841 | static struct dentry *skx_test; | ||
842 | static u64 skx_fake_addr; | ||
843 | |||
844 | static int debugfs_u64_set(void *data, u64 val) | ||
845 | { | ||
846 | struct decoded_addr res; | ||
847 | |||
848 | res.addr = val; | ||
849 | skx_decode(&res); | ||
850 | |||
851 | return 0; | ||
852 | } | ||
853 | |||
854 | DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); | ||
855 | |||
856 | static struct dentry *mydebugfs_create(const char *name, umode_t mode, | ||
857 | struct dentry *parent, u64 *value) | ||
858 | { | ||
859 | return debugfs_create_file(name, mode, parent, value, &fops_u64_wo); | ||
860 | } | ||
861 | |||
862 | static void setup_skx_debug(void) | ||
863 | { | ||
864 | skx_test = debugfs_create_dir("skx_edac_test", NULL); | ||
865 | mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr); | ||
866 | } | ||
867 | |||
868 | static void teardown_skx_debug(void) | ||
869 | { | ||
870 | debugfs_remove_recursive(skx_test); | ||
871 | } | ||
872 | #else | ||
873 | static void setup_skx_debug(void) | ||
874 | { | ||
875 | } | ||
876 | |||
877 | static void teardown_skx_debug(void) | ||
878 | { | ||
879 | } | ||
880 | #endif /*CONFIG_EDAC_DEBUG*/ | ||
881 | |||
882 | static void skx_mce_output_error(struct mem_ctl_info *mci, | ||
883 | const struct mce *m, | ||
884 | struct decoded_addr *res) | ||
885 | { | ||
886 | enum hw_event_mc_err_type tp_event; | ||
887 | char *type, *optype, msg[256]; | ||
888 | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); | ||
889 | bool overflow = GET_BITFIELD(m->status, 62, 62); | ||
890 | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | ||
891 | bool recoverable; | ||
892 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | ||
893 | u32 mscod = GET_BITFIELD(m->status, 16, 31); | ||
894 | u32 errcode = GET_BITFIELD(m->status, 0, 15); | ||
895 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | ||
896 | |||
897 | recoverable = GET_BITFIELD(m->status, 56, 56); | ||
898 | |||
899 | if (uncorrected_error) { | ||
900 | if (ripv) { | ||
901 | type = "FATAL"; | ||
902 | tp_event = HW_EVENT_ERR_FATAL; | ||
903 | } else { | ||
904 | type = "NON_FATAL"; | ||
905 | tp_event = HW_EVENT_ERR_UNCORRECTED; | ||
906 | } | ||
907 | } else { | ||
908 | type = "CORRECTED"; | ||
909 | tp_event = HW_EVENT_ERR_CORRECTED; | ||
910 | } | ||
911 | |||
912 | /* | ||
913 | * According with Table 15-9 of the Intel Architecture spec vol 3A, | ||
914 | * memory errors should fit in this mask: | ||
915 | * 000f 0000 1mmm cccc (binary) | ||
916 | * where: | ||
917 | * f = Correction Report Filtering Bit. If 1, subsequent errors | ||
918 | * won't be shown | ||
919 | * mmm = error type | ||
920 | * cccc = channel | ||
921 | * If the mask doesn't match, report an error to the parsing logic | ||
922 | */ | ||
923 | if (!((errcode & 0xef80) == 0x80)) { | ||
924 | optype = "Can't parse: it is not a mem"; | ||
925 | } else { | ||
926 | switch (optypenum) { | ||
927 | case 0: | ||
928 | optype = "generic undef request error"; | ||
929 | break; | ||
930 | case 1: | ||
931 | optype = "memory read error"; | ||
932 | break; | ||
933 | case 2: | ||
934 | optype = "memory write error"; | ||
935 | break; | ||
936 | case 3: | ||
937 | optype = "addr/cmd error"; | ||
938 | break; | ||
939 | case 4: | ||
940 | optype = "memory scrubbing error"; | ||
941 | break; | ||
942 | default: | ||
943 | optype = "reserved"; | ||
944 | break; | ||
945 | } | ||
946 | } | ||
947 | |||
948 | snprintf(msg, sizeof(msg), | ||
949 | "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x", | ||
950 | overflow ? " OVERFLOW" : "", | ||
951 | (uncorrected_error && recoverable) ? " recoverable" : "", | ||
952 | mscod, errcode, | ||
953 | res->socket, res->imc, res->rank, | ||
954 | res->bank_group, res->bank_address, res->row, res->column); | ||
955 | |||
956 | edac_dbg(0, "%s\n", msg); | ||
957 | |||
958 | /* Call the helper to output message */ | ||
959 | edac_mc_handle_error(tp_event, mci, core_err_cnt, | ||
960 | m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, | ||
961 | res->channel, res->dimm, -1, | ||
962 | optype, msg); | ||
963 | } | ||
964 | |||
965 | static int skx_mce_check_error(struct notifier_block *nb, unsigned long val, | ||
966 | void *data) | ||
967 | { | ||
968 | struct mce *mce = (struct mce *)data; | ||
969 | struct decoded_addr res; | ||
970 | struct mem_ctl_info *mci; | ||
971 | char *type; | ||
972 | |||
973 | if (get_edac_report_status() == EDAC_REPORTING_DISABLED) | ||
974 | return NOTIFY_DONE; | ||
975 | |||
976 | /* ignore unless this is memory related with an address */ | ||
977 | if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) | ||
978 | return NOTIFY_DONE; | ||
979 | |||
980 | res.addr = mce->addr; | ||
981 | if (!skx_decode(&res)) | ||
982 | return NOTIFY_DONE; | ||
983 | mci = res.dev->imc[res.imc].mci; | ||
984 | |||
985 | if (mce->mcgstatus & MCG_STATUS_MCIP) | ||
986 | type = "Exception"; | ||
987 | else | ||
988 | type = "Event"; | ||
989 | |||
990 | skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); | ||
991 | |||
992 | skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " | ||
993 | "Bank %d: %016Lx\n", mce->extcpu, type, | ||
994 | mce->mcgstatus, mce->bank, mce->status); | ||
995 | skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); | ||
996 | skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); | ||
997 | skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); | ||
998 | |||
999 | skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " | ||
1000 | "%u APIC %x\n", mce->cpuvendor, mce->cpuid, | ||
1001 | mce->time, mce->socketid, mce->apicid); | ||
1002 | |||
1003 | skx_mce_output_error(mci, mce, &res); | ||
1004 | |||
1005 | return NOTIFY_DONE; | ||
1006 | } | ||
1007 | |||
1008 | static struct notifier_block skx_mce_dec = { | ||
1009 | .notifier_call = skx_mce_check_error, | ||
1010 | }; | ||
1011 | |||
1012 | static void skx_remove(void) | ||
1013 | { | ||
1014 | int i, j; | ||
1015 | struct skx_dev *d, *tmp; | ||
1016 | |||
1017 | edac_dbg(0, "\n"); | ||
1018 | |||
1019 | list_for_each_entry_safe(d, tmp, &skx_edac_list, list) { | ||
1020 | list_del(&d->list); | ||
1021 | for (i = 0; i < NUM_IMC; i++) { | ||
1022 | skx_unregister_mci(&d->imc[i]); | ||
1023 | for (j = 0; j < NUM_CHANNELS; j++) | ||
1024 | pci_dev_put(d->imc[i].chan[j].cdev); | ||
1025 | } | ||
1026 | pci_dev_put(d->util_all); | ||
1027 | pci_dev_put(d->sad_all); | ||
1028 | |||
1029 | kfree(d); | ||
1030 | } | ||
1031 | } | ||
1032 | |||
1033 | /* | ||
1034 | * skx_init: | ||
1035 | * make sure we are running on the correct cpu model | ||
1036 | * search for all the devices we need | ||
1037 | * check which DIMMs are present. | ||
1038 | */ | ||
1039 | int __init skx_init(void) | ||
1040 | { | ||
1041 | const struct x86_cpu_id *id; | ||
1042 | const struct munit *m; | ||
1043 | int rc = 0, i; | ||
1044 | u8 mc = 0, src_id, node_id; | ||
1045 | struct skx_dev *d; | ||
1046 | |||
1047 | edac_dbg(2, "\n"); | ||
1048 | |||
1049 | id = x86_match_cpu(skx_cpuids); | ||
1050 | if (!id) | ||
1051 | return -ENODEV; | ||
1052 | |||
1053 | rc = skx_get_hi_lo(); | ||
1054 | if (rc) | ||
1055 | return rc; | ||
1056 | |||
1057 | rc = get_all_bus_mappings(); | ||
1058 | if (rc < 0) | ||
1059 | goto fail; | ||
1060 | if (rc == 0) { | ||
1061 | edac_dbg(2, "No memory controllers found\n"); | ||
1062 | return -ENODEV; | ||
1063 | } | ||
1064 | |||
1065 | for (m = skx_all_munits; m->did; m++) { | ||
1066 | rc = get_all_munits(m); | ||
1067 | if (rc < 0) | ||
1068 | goto fail; | ||
1069 | if (rc != m->per_socket * skx_num_sockets) { | ||
1070 | edac_dbg(2, "Expected %d, got %d of %x\n", | ||
1071 | m->per_socket * skx_num_sockets, rc, m->did); | ||
1072 | rc = -ENODEV; | ||
1073 | goto fail; | ||
1074 | } | ||
1075 | } | ||
1076 | |||
1077 | list_for_each_entry(d, &skx_edac_list, list) { | ||
1078 | src_id = get_src_id(d); | ||
1079 | node_id = skx_get_node_id(d); | ||
1080 | edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); | ||
1081 | for (i = 0; i < NUM_IMC; i++) { | ||
1082 | d->imc[i].mc = mc++; | ||
1083 | d->imc[i].lmc = i; | ||
1084 | d->imc[i].src_id = src_id; | ||
1085 | d->imc[i].node_id = node_id; | ||
1086 | rc = skx_register_mci(&d->imc[i]); | ||
1087 | if (rc < 0) | ||
1088 | goto fail; | ||
1089 | } | ||
1090 | } | ||
1091 | |||
1092 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | ||
1093 | opstate_init(); | ||
1094 | |||
1095 | setup_skx_debug(); | ||
1096 | |||
1097 | mce_register_decode_chain(&skx_mce_dec); | ||
1098 | |||
1099 | return 0; | ||
1100 | fail: | ||
1101 | skx_remove(); | ||
1102 | return rc; | ||
1103 | } | ||
1104 | |||
1105 | static void __exit skx_exit(void) | ||
1106 | { | ||
1107 | edac_dbg(2, "\n"); | ||
1108 | mce_unregister_decode_chain(&skx_mce_dec); | ||
1109 | skx_remove(); | ||
1110 | teardown_skx_debug(); | ||
1111 | } | ||
1112 | |||
1113 | module_init(skx_init); | ||
1114 | module_exit(skx_exit); | ||
1115 | |||
1116 | module_param(edac_op_state, int, 0444); | ||
1117 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | ||
1118 | |||
1119 | MODULE_LICENSE("GPL v2"); | ||
1120 | MODULE_AUTHOR("Tony Luck"); | ||
1121 | MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); | ||