aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDaniel Thompson <daniel.thompson@linaro.org>2015-03-26 15:23:26 -0400
committerIngo Molnar <mingo@kernel.org>2015-03-27 03:34:00 -0400
commit1809bfa44e1019e397fabaa6f2349bb7237e57a4 (patch)
tree3d2eba58ee4389f00e87b752599c9703f34b7150
parent9fee69a8c8070b38b558161a3f18bd5e2b664682 (diff)
timers, sched/clock: Avoid deadlock during read from NMI
Currently it is possible for an NMI (or FIQ on ARM) to come in and read sched_clock() whilst update_sched_clock() has locked the seqcount for writing. This results in the NMI handler locking up when it calls raw_read_seqcount_begin(). This patch fixes the NMI safety issues by providing banked clock data. This is a similar approach to the one used in Thomas Gleixner's 4396e058c52e("timekeeping: Provide fast and NMI safe access to CLOCK_MONOTONIC"). Suggested-by: Stephen Boyd <sboyd@codeaurora.org> Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: John Stultz <john.stultz@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1427397806-20889-6-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
-rw-r--r--kernel/time/sched_clock.c103
1 files changed, 68 insertions, 35 deletions
diff --git a/kernel/time/sched_clock.c b/kernel/time/sched_clock.c
index 8adb9d0c969a..eeea1e950b72 100644
--- a/kernel/time/sched_clock.c
+++ b/kernel/time/sched_clock.c
@@ -47,19 +47,20 @@ struct clock_read_data {
47 * struct clock_data - all data needed for sched_clock (including 47 * struct clock_data - all data needed for sched_clock (including
48 * registration of a new clock source) 48 * registration of a new clock source)
49 * 49 *
50 * @seq: Sequence counter for protecting updates. 50 * @seq: Sequence counter for protecting updates. The lowest
51 * bit is the index for @read_data.
51 * @read_data: Data required to read from sched_clock. 52 * @read_data: Data required to read from sched_clock.
52 * @wrap_kt: Duration for which clock can run before wrapping 53 * @wrap_kt: Duration for which clock can run before wrapping
53 * @rate: Tick rate of the registered clock 54 * @rate: Tick rate of the registered clock
54 * @actual_read_sched_clock: Registered clock read function 55 * @actual_read_sched_clock: Registered clock read function
55 * 56 *
56 * The ordering of this structure has been chosen to optimize cache 57 * The ordering of this structure has been chosen to optimize cache
57 * performance. In particular seq and read_data (combined) should fit 58 * performance. In particular seq and read_data[0] (combined) should fit
58 * into a single 64 byte cache line. 59 * into a single 64 byte cache line.
59 */ 60 */
60struct clock_data { 61struct clock_data {
61 seqcount_t seq; 62 seqcount_t seq;
62 struct clock_read_data read_data; 63 struct clock_read_data read_data[2];
63 ktime_t wrap_kt; 64 ktime_t wrap_kt;
64 unsigned long rate; 65 unsigned long rate;
65 u64 (*actual_read_sched_clock)(void); 66 u64 (*actual_read_sched_clock)(void);
@@ -80,10 +81,9 @@ static u64 notrace jiffy_sched_clock_read(void)
80} 81}
81 82
82static struct clock_data cd ____cacheline_aligned = { 83static struct clock_data cd ____cacheline_aligned = {
83 .read_data = { .mult = NSEC_PER_SEC / HZ, 84 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
84 .read_sched_clock = jiffy_sched_clock_read, }, 85 .read_sched_clock = jiffy_sched_clock_read, },
85 .actual_read_sched_clock = jiffy_sched_clock_read, 86 .actual_read_sched_clock = jiffy_sched_clock_read,
86
87}; 87};
88 88
89static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) 89static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
@@ -95,10 +95,11 @@ unsigned long long notrace sched_clock(void)
95{ 95{
96 u64 cyc, res; 96 u64 cyc, res;
97 unsigned long seq; 97 unsigned long seq;
98 struct clock_read_data *rd = &cd.read_data; 98 struct clock_read_data *rd;
99 99
100 do { 100 do {
101 seq = raw_read_seqcount_begin(&cd.seq); 101 seq = raw_read_seqcount(&cd.seq);
102 rd = cd.read_data + (seq & 1);
102 103
103 cyc = (rd->read_sched_clock() - rd->epoch_cyc) & 104 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
104 rd->sched_clock_mask; 105 rd->sched_clock_mask;
@@ -109,26 +110,50 @@ unsigned long long notrace sched_clock(void)
109} 110}
110 111
111/* 112/*
113 * Updating the data required to read the clock.
114 *
115 * sched_clock will never observe mis-matched data even if called from
116 * an NMI. We do this by maintaining an odd/even copy of the data and
117 * steering sched_clock to one or the other using a sequence counter.
118 * In order to preserve the data cache profile of sched_clock as much
119 * as possible the system reverts back to the even copy when the update
120 * completes; the odd copy is used *only* during an update.
121 */
122static void update_clock_read_data(struct clock_read_data *rd)
123{
124 /* update the backup (odd) copy with the new data */
125 cd.read_data[1] = *rd;
126
127 /* steer readers towards the odd copy */
128 raw_write_seqcount_latch(&cd.seq);
129
130 /* now its safe for us to update the normal (even) copy */
131 cd.read_data[0] = *rd;
132
133 /* switch readers back to the even copy */
134 raw_write_seqcount_latch(&cd.seq);
135}
136
137/*
112 * Atomically update the sched_clock epoch. 138 * Atomically update the sched_clock epoch.
113 */ 139 */
114static void update_sched_clock(void) 140static void update_sched_clock(void)
115{ 141{
116 unsigned long flags;
117 u64 cyc; 142 u64 cyc;
118 u64 ns; 143 u64 ns;
119 struct clock_read_data *rd = &cd.read_data; 144 struct clock_read_data rd;
145
146 rd = cd.read_data[0];
120 147
121 cyc = cd.actual_read_sched_clock(); 148 cyc = cd.actual_read_sched_clock();
122 ns = rd->epoch_ns + 149 ns = rd.epoch_ns +
123 cyc_to_ns((cyc - rd->epoch_cyc) & rd->sched_clock_mask, 150 cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask,
124 rd->mult, rd->shift); 151 rd.mult, rd.shift);
125 152
126 raw_local_irq_save(flags); 153 rd.epoch_ns = ns;
127 raw_write_seqcount_begin(&cd.seq); 154 rd.epoch_cyc = cyc;
128 rd->epoch_ns = ns; 155
129 rd->epoch_cyc = cyc; 156 update_clock_read_data(&rd);
130 raw_write_seqcount_end(&cd.seq);
131 raw_local_irq_restore(flags);
132} 157}
133 158
134static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) 159static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
@@ -145,7 +170,7 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
145 u32 new_mult, new_shift; 170 u32 new_mult, new_shift;
146 unsigned long r; 171 unsigned long r;
147 char r_unit; 172 char r_unit;
148 struct clock_read_data *rd = &cd.read_data; 173 struct clock_read_data rd;
149 174
150 if (cd.rate > rate) 175 if (cd.rate > rate)
151 return; 176 return;
@@ -162,22 +187,23 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
162 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); 187 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
163 cd.wrap_kt = ns_to_ktime(wrap); 188 cd.wrap_kt = ns_to_ktime(wrap);
164 189
190 rd = cd.read_data[0];
191
165 /* update epoch for new counter and update epoch_ns from old counter*/ 192 /* update epoch for new counter and update epoch_ns from old counter*/
166 new_epoch = read(); 193 new_epoch = read();
167 cyc = cd.actual_read_sched_clock(); 194 cyc = cd.actual_read_sched_clock();
168 ns = rd->epoch_ns + 195 ns = rd.epoch_ns +
169 cyc_to_ns((cyc - rd->epoch_cyc) & rd->sched_clock_mask, 196 cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask,
170 rd->mult, rd->shift); 197 rd.mult, rd.shift);
171 cd.actual_read_sched_clock = read; 198 cd.actual_read_sched_clock = read;
172 199
173 raw_write_seqcount_begin(&cd.seq); 200 rd.read_sched_clock = read;
174 rd->read_sched_clock = read; 201 rd.sched_clock_mask = new_mask;
175 rd->sched_clock_mask = new_mask; 202 rd.mult = new_mult;
176 rd->mult = new_mult; 203 rd.shift = new_shift;
177 rd->shift = new_shift; 204 rd.epoch_cyc = new_epoch;
178 rd->epoch_cyc = new_epoch; 205 rd.epoch_ns = ns;
179 rd->epoch_ns = ns; 206 update_clock_read_data(&rd);
180 raw_write_seqcount_end(&cd.seq);
181 207
182 r = rate; 208 r = rate;
183 if (r >= 4000000) { 209 if (r >= 4000000) {
@@ -227,15 +253,22 @@ void __init sched_clock_postinit(void)
227 * 253 *
228 * This function makes it appear to sched_clock() as if the clock 254 * This function makes it appear to sched_clock() as if the clock
229 * stopped counting at its last update. 255 * stopped counting at its last update.
256 *
257 * This function must only be called from the critical
258 * section in sched_clock(). It relies on the read_seqcount_retry()
259 * at the end of the critical section to be sure we observe the
260 * correct copy of epoch_cyc.
230 */ 261 */
231static u64 notrace suspended_sched_clock_read(void) 262static u64 notrace suspended_sched_clock_read(void)
232{ 263{
233 return cd.read_data.epoch_cyc; 264 unsigned long seq = raw_read_seqcount(&cd.seq);
265
266 return cd.read_data[seq & 1].epoch_cyc;
234} 267}
235 268
236static int sched_clock_suspend(void) 269static int sched_clock_suspend(void)
237{ 270{
238 struct clock_read_data *rd = &cd.read_data; 271 struct clock_read_data *rd = &cd.read_data[0];
239 272
240 update_sched_clock(); 273 update_sched_clock();
241 hrtimer_cancel(&sched_clock_timer); 274 hrtimer_cancel(&sched_clock_timer);
@@ -245,7 +278,7 @@ static int sched_clock_suspend(void)
245 278
246static void sched_clock_resume(void) 279static void sched_clock_resume(void)
247{ 280{
248 struct clock_read_data *rd = &cd.read_data; 281 struct clock_read_data *rd = &cd.read_data[0];
249 282
250 rd->epoch_cyc = cd.actual_read_sched_clock(); 283 rd->epoch_cyc = cd.actual_read_sched_clock();
251 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); 284 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);