aboutsummaryrefslogtreecommitdiffstats
path: root/parse_exps.py
blob: cc4372a958a0510f842b6a5ec6fa61d7fff4090d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python
from __future__ import print_function

import common as com
import multiprocessing
import os
import parse.ft as ft
import parse.sched as st
import pickle
import shutil as sh
import sys
import traceback

from collections import namedtuple
from config.config import DEFAULTS,PARAMS
from optparse import OptionParser
from parse.point import ExpPoint
from parse.tuple_table import TupleTable
from parse.col_map import ColMapBuilder


def parse_args():
    parser = OptionParser("usage: %prog [options] [data_dir]...")

    parser.add_option('-o', '--out', dest='out',
                      help='file or directory for data output',
                      default=DEFAULTS['out-parse'])
    parser.add_option('-i', '--ignore', metavar='[PARAM...]', default="",
                      help='ignore changing parameter values')
    parser.add_option('-f', '--force', action='store_true', default=False,
                      dest='force', help='overwrite existing data')
    parser.add_option('-v', '--verbose', action='store_true', default=False,
                      dest='verbose', help='print out data points')
    parser.add_option('-m', '--write-map', action='store_true', default=False,
                      dest='write_map',
                      help='Output map of values instead of csv tree')
    parser.add_option('-p', '--processors',
                      default=max(multiprocessing.cpu_count() - 1, 1),
                      type='int', dest='processors',
                      help='number of threads for processing')

    return parser.parse_args()


ExpData = namedtuple('ExpData', ['path', 'params', 'work_dir'])


def parse_exp(exp_force):
    # Tupled for multiprocessing
    exp, force = exp_force

    result_file = exp.work_dir + "/exp_point.pkl"
    should_load = not force and os.path.exists(result_file)

    result = None
    if should_load:
        with open(result_file, 'rb') as f:
            try:
                # No need to go through this work twice
                result = pickle.load(f)
            except:
                pass

    if not result:
        try:
            # Create a readable name
            name = os.path.relpath(exp.path)
            name = name if name != "." else os.path.split(os.getcwd())[1]

            result = ExpPoint(name)

            # Write overheads into result
            cycles = exp.params[PARAMS['cycles']]
            ft.extract_ft_data(result, exp.path, exp.work_dir, cycles)

            # Write scheduling statistics into result
            st.extract_sched_data(result, exp.path, exp.work_dir)

            with open(result_file, 'wb') as f:
                pickle.dump(result, f)
        except:
            traceback.print_exc()

    return (exp, result)


def get_exp_params(data_dir, cm_builder):
    param_file = "%s/%s" % (data_dir, DEFAULTS['params_file'])
    if os.path.isfile(param_file):
        params = com.load_params(param_file)

        # Store parameters in cm_builder, which will track which parameters change
        # across experiments
        for key, value in params.iteritems():
            cm_builder.try_add(key, value)
    else:
         params = {}

    # Cycles must be present for feather-trace measurement parsing
    if PARAMS['cycles'] not in params:
        params[PARAMS['cycles']] = DEFAULTS['cycles']

    return params


def load_exps(exp_dirs, cm_builder, force):
    exps = []

    sys.stderr.write("Loading experiments...\n")

    for data_dir in exp_dirs:
        if not os.path.isdir(data_dir):
            raise IOError("Invalid experiment '%s'" % os.path.abspath(data_dir))

        # Used to store error output and debugging info
        work_dir = data_dir + "/tmp"

        if os.path.exists(work_dir) and force:
            sh.rmtree(work_dir)
        if not os.path.exists(work_dir):
            os.mkdir(work_dir)

        params = get_exp_params(data_dir, cm_builder)

        exps += [ ExpData(data_dir, params, work_dir) ]

    return exps


def get_dirs(args):
    if args:
        return args
    elif os.path.exists(DEFAULTS['out-run']):
        sys.stderr.write("Reading data from %s/*\n" % DEFAULTS['out-run'])
        sched_dirs = os.listdir(DEFAULTS['out-run'])
        return ['%s/%s' % (DEFAULTS['out-run'], d) for d in sched_dirs]
    else:
        sys.stderr.write("Reading data from current directory.\n")
        return [os.getcwd()]


def fill_table(table, exps, opts):
    sys.stderr.write("Parsing data...\n")

    procs  = min(len(exps), opts.processors)
    logged = multiprocessing.Manager().list()

    pool = multiprocessing.Pool(processes=procs,
    # Share a list of previously logged messages amongst processes
    # This is for the com.log_once method to use
                initializer=com.set_logged_list, initargs=(logged,))

    pool_args = zip(exps, [opts.force]*len(exps))
    enum = pool.imap_unordered(parse_exp, pool_args, 1)

    try:
        for i, (exp, result) in enumerate(enum):
            if not result:
                continue

            if opts.verbose:
                print(result)
            else:
                sys.stderr.write('\r {0:.2%}'.format(float(i)/len(exps)))
                table[exp.params] += [result]

        pool.close()
    except:
        pool.terminate()
        traceback.print_exc()
        raise Exception("Failed parsing!")
    finally:
        pool.join()

    sys.stderr.write('\n')


def write_output(table, opts):
    reduced_table = table.reduce()

    if opts.write_map:
        sys.stderr.write("Writing python map into %s...\n" % opts.out)
        reduced_table.write_map(opts.out)
    else:
        if opts.force and os.path.exists(opts.out):
            sh.rmtree(opts.out)

        # Write out csv directories for all variable params
        dir_map = reduced_table.to_dir_map()

        # No csvs to write, assume user meant to print out data
        if dir_map.is_empty():
            if not opts.verbose:
                sys.stderr.write("Too little data to make csv files, " +
                                 "printing results.\n")
                for key, exp in table:
                    for e in exp:
                        print(e)
        else:
            sys.stderr.write("Writing csvs into %s...\n" % opts.out)
            dir_map.write(opts.out)


def main():
    opts, args = parse_args()
    exp_dirs = get_dirs(args)

    # Load experiment parameters into a ColMap
    builder = ColMapBuilder()
    exps = load_exps(exp_dirs, builder, opts.force)

    # Don't track changes in ignored parameters
    if opts.ignore:
        for param in opts.ignore.split(","):
            builder.try_remove(param)

    # Always average multiple trials
    builder.try_remove(PARAMS['trial'])
    # Only need this for feather-trace parsing
    builder.try_remove(PARAMS['cycles'])

    col_map = builder.build()
    table = TupleTable(col_map)

    fill_table(table, exps, opts)

    if not table:
        sys.stderr.write("Found no data to parse!")
        sys.exit(1)

    write_output(table, opts)

if __name__ == '__main__':
    main()