1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
from collections import defaultdict
from point import SummaryPoint,Type
from dir_map import DirMap
from pprint import pprint
class TupleTable(object):
def __init__(self, col_map):
self.col_map = col_map
self.table = defaultdict(lambda: [])
self.reduced = False
# TODO: rename, make exp agnostic, extend for exps
def add_exp(self, kv, point):
key = self.col_map.get_key(kv)
self.table[key] += [point]
def col_map(self):
return self.col_map
def get_exps(self, kv):
key = self.col_map.get_key(kv)
return self.table[key]
def __contains__(self, kv):
key = self.col_map.get_key(kv)
return key in self.table
def reduce(self):
if self.reduced:
raise Exception("cannot reduce twice!")
self.reduced = True
for key, values in self.table.iteritems():
self.table[key] = SummaryPoint(values[0].id, values)
def write_map(self, out_map):
if not self.reduced:
raise Exception("must reduce table to write map!")
rows = {}
for key, point in self.table.iteritems():
row = {}
for name,measurement in point:
name = name.lower().replace('_','-')
row[name]={}
for base_type in Type:
type_key = str(base_type).lower()
if base_type in measurement[Type.Avg]:
value = measurement[Type.Avg][base_type]
row[name][type_key] = value
rows[key] = row
result = {'columns': self.col_map.columns(), 'rows':rows}
with open(out_map, 'wc') as map_file:
pprint(result,stream=map_file, width=20)
def __add_to_dirmap(self, dir_map, variable, kv, point):
value = kv.pop(variable)
for stat in point.get_stats():
summary = point[stat]
for summary_type in Type:
measurement = summary[summary_type]
for base_type in Type:
if not base_type in measurement:
continue
# Ex: release/num_tasks/measured-max/avg/x=5.csv
leaf = self.col_map.encode(kv) + ".csv"
path = [ stat, variable, "taskset-" + base_type,
summary_type, leaf ]
result = measurement[base_type]
dir_map.add_values(path, [(value, result)])
kv[variable] = value
def to_dir_map(self):
dir_map = DirMap()
for key, point in self.table.iteritems():
kv = self.col_map.get_kv(key)
for col in self.col_map.columns():
val = kv[col]
try:
float(val)
except:
# Only vary numbers. Otherwise, just have seperate files
continue
self.__add_to_dirmap(dir_map, col, kv, point)
dir_map.reduce()
return dir_map
|