1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
import config.config as conf
import os
import re
import struct
import subprocess
from collections import defaultdict,namedtuple
from common import recordtype
from point import Measurement
class TimeTracker:
'''Store stats for durations of time demarcated by sched_trace records.'''
def __init__(self):
self.begin = self.avg = self.max = self.num = self.job = 0
def store_time(self, record):
'''End duration of time.'''
dur = record.when - self.begin
if self.job == record.job and dur > 0:
self.max = max(self.max, dur)
self.avg *= float(self.num / (self.num + 1))
self.num += 1
self.avg += dur / float(self.num)
self.begin = 0
self.job = 0
def start_time(self, record):
'''Start duration of time.'''
self.begin = record.when
self.job = record.job
# Data stored for each task
TaskParams = namedtuple('TaskParams', ['wcet', 'period', 'cpu'])
TaskData = recordtype('TaskData', ['params', 'jobs', 'blocks', 'misses'])
# Map of event ids to corresponding class, binary format, and processing methods
RecordInfo = namedtuple('RecordInfo', ['clazz', 'fmt', 'method'])
record_map = [0]*10
# Common to all records
HEADER_FORMAT = '<bbhi'
HEADER_FIELDS = ['type', 'cpu', 'pid', 'job']
RECORD_SIZE = 24
NSEC_PER_MSEC = 1000000
def register_record(name, id, method, fmt, fields):
'''Create record description from @fmt and @fields and map to @id, using
@method to process parsed record.'''
# Format of binary data (see python struct documentation)
rec_fmt = HEADER_FORMAT + fmt
# Corresponding field data
rec_fields = HEADER_FIELDS + fields
if "when" not in rec_fields: # Force a "when" field for everything
rec_fields += ["when"]
# Create mutable class with the given fields
field_class = recordtype(name, list(rec_fields))
clazz = type(name, (field_class, object), {})
record_map[id] = RecordInfo(clazz, rec_fmt, method)
def make_iterator(fname):
'''Iterate over (parsed record, processing method) in a
sched-trace file.'''
if not os.path.getsize(fname):
# Likely a release master CPU
return
f = open(fname, 'rb')
max_type = len(record_map)
while True:
data = f.read(RECORD_SIZE)
try:
type_num = struct.unpack_from('b',data)[0]
except struct.error:
break
rdata = record_map[type_num] if type_num <= max_type else 0
if not rdata:
continue
try:
values = struct.unpack_from(rdata.fmt, data)
except struct.error:
continue
obj = rdata.clazz(*values)
if obj.job != 1:
yield (obj, rdata.method)
else:
# Results from the first job are nonsense
pass
def read_data(task_dict, fnames):
'''Read records from @fnames and store per-pid stats in @task_dict.'''
buff = []
def add_record(itera):
# Ordered insertion into buff
try:
next_ret = itera.next()
except StopIteration:
return
arecord, method = next_ret
i = 0
for (i, (brecord, m, t)) in enumerate(buff):
if brecord.when > arecord.when:
break
buff.insert(i, (arecord, method, itera))
for fname in fnames:
itera = make_iterator(fname)
add_record(itera)
while buff:
(record, method, itera) = buff.pop(0)
add_record(itera)
method(task_dict, record)
def process_completion(task_dict, record):
task_dict[record.pid].misses.store_time(record)
def process_release(task_dict, record):
data = task_dict[record.pid]
data.jobs += 1
data.misses.start_time(record)
def process_param(task_dict, record):
params = TaskParams(record.wcet, record.period, record.partition)
task_dict[record.pid].params = params
def process_block(task_dict, record):
task_dict[record.pid].blocks.start_time(record)
def process_resume(task_dict, record):
task_dict[record.pid].blocks.store_time(record)
register_record('ResumeRecord', 9, process_resume, 'Q8x', ['when'])
register_record('BlockRecord', 8, process_block, 'Q8x', ['when'])
register_record('CompletionRecord', 7, process_completion, 'Q8x', ['when'])
register_record('ReleaseRecord', 3, process_release, 'QQ', ['release', 'when'])
register_record('ParamRecord', 2, process_param, 'IIIcc2x',
['wcet','period','phase','partition', 'task_class'])
def create_task_dict(data_dir, work_dir = None):
'''Parse sched trace files'''
bin_files = conf.FILES['sched_data'].format(".*")
output_file = "%s/out-st" % work_dir
task_dict = defaultdict(lambda :
TaskData(None, 1, TimeTracker(), TimeTracker()))
bin_names = [f for f in os.listdir(data_dir) if re.match(bin_files, f)]
if not len(bin_names):
return task_dict
# Save an in-english version of the data for debugging
# This is optional and will only be done if 'st_show' is in PATH
if conf.BINS['st_show']:
cmd_arr = [conf.BINS['st_show']]
cmd_arr.extend(bin_names)
with open(output_file, "w") as f:
subprocess.call(cmd_arr, cwd=data_dir, stdout=f)
# Gather per-task values
bin_paths = ["%s/%s" % (data_dir,f) for f in bin_names]
read_data(task_dict, bin_paths)
return task_dict
def extract_sched_data(result, data_dir, work_dir):
task_dict = create_task_dict(data_dir, work_dir)
stat_data = defaultdict(list)
# Group per-task values
for tdata in task_dict.itervalues():
if not tdata.params:
# Currently unknown where these invalid tasks come from...
continue
miss_ratio = float(tdata.misses.num) / tdata.jobs
stat_data["miss-ratio"].append(float(tdata.misses.num) / tdata.jobs)
stat_data["max-tard" ].append(tdata.misses.max / tdata.params.wcet)
# Scale average down to account for jobs with 0 tardiness
avg_tard = tdata.misses.avg * miss_ratio
stat_data["avg-tard" ].append(avg_tard / tdata.params.wcet)
stat_data["avg-block" ].append(tdata.blocks.avg / NSEC_PER_MSEC)
stat_data["max-block" ].append(tdata.blocks.max / NSEC_PER_MSEC)
# Summarize value groups
for name, data in stat_data.iteritems():
if not data or not sum(data):
continue
result[name] = Measurement(str(name)).from_array(data)
|