aboutsummaryrefslogtreecommitdiffstats
path: root/parse/sched.py
blob: 524f1edfa984ebf253493eb084140ba41cb8b217 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import config.config as conf
import os
import re
import struct
import subprocess

from collections import defaultdict,namedtuple
from common import recordtype,log_once
from point import Measurement
from ctypes import *

LOSS_MSG = """Found task missing more than %d%% of its scheduling records.
These won't be included in scheduling statistics!"""%(100*conf.MAX_RECORD_LOSS)
SKIP_MSG = """Measurement '%s' has no non-zero values.
Measurements like these are not included in scheduling statistics.
If a measurement is missing, this is why."""
SCALE_MSG = """Task in {} with config {} has < 1.0 scale!
These scales are skipped in measurements."""

# Data stored for each task
TaskParams = namedtuple('TaskParams',  ['wcet', 'period', 'cpu', 'level'])
TaskData   = recordtype('TaskData',    ['params', 'jobs', 'loads',
                                        'blocks', 'misses', 'execs'])

ScaleData = namedtuple('ScaleData', ['reg_tasks', 'base_tasks'])

class TimeTracker:
    '''Store stats for durations of time demarcated by sched_trace records.'''
    def __init__(self, join_job = False):
        self.begin = self.avg = self.max = self.num = self.next_job = 0

        self.join_job = join_job

        # Count of times the job in start_time matched that in store_time
        self.matches = 0
        # And the times it didn't
        self.disjoints = 0

        # Measurements are recorded in store_ time using the previous matching
        # record which was passed to store_time. This way, the last record for
        # any task is always skipped
        self.last_record = None

    def store_time(self, next_record):
        '''End duration of time.'''
        dur  = (self.last_record.when - self.begin) if self.last_record else -1

        if self.next_job == next_record.job:
            if self.last_record:
                self.matches += 1

            self.last_record = next_record

            if dur > 0:
                self.max  = max(self.max, dur)
                self.avg *= float(self.num / (self.num + 1))
                self.num += 1
                self.avg += dur / float(self.num)

                self.begin = 0
                self.next_job   = 0
        else:
            self.disjoints += 1

    def start_time(self, record, time = None):
        '''Start duration of time.'''
        if self.last_record:
            if not time:
                self.begin = self.last_record.when
            else:
                self.begin = time

        self.next_job = record.job

class LeveledArray(object):
    """Groups statistics by the level of the task to which they apply"""
    def __init__(self):
        self.vals = defaultdict(lambda: defaultdict(lambda:[]))

    def add(self, name, level, value):
        if type(value) != type([]):
            value = [value]
        self.vals[name][level] += value

    def write_measurements(self, result):
        for stat_name, stat_data in self.vals.iteritems():
            for level, values in stat_data.iteritems():
                # if not values or not sum(values):
                #     log_once(SKIP_MSG, SKIP_MSG % stat_name)
                #     continue

                name = "%s%s" % ("%s-" % level.capitalize() if level else "", stat_name)
                result[name] = Measurement(name).from_array(values)

# Map of event ids to corresponding class and format
record_map = {}

RECORD_SIZE   = 24
NSEC_PER_MSEC = 1000000

def bits_to_bytes(bits):
    '''Includes padding'''
    return bits / 8 + (1 if bits%8 else 0)

def field_bytes(fields):
    fbytes = 0
    fbits  = 0
    for f in fields:
        flist = list(f)

        if len(flist) > 2:
            # Specified a bitfield
            fbits += flist[2]
        else:
            # Only specified a type, use types size
            fbytes += sizeof(list(f)[1])

            # Bitfields followed by a byte will cause any incomplete
            # bytes to be turned into full bytes
            fbytes += bits_to_bytes(fbits)
            fbits   = 0

    fbytes += bits_to_bytes(fbits)
    return fbytes + fbits

def register_record(id, clazz):
    fields = clazz.FIELDS
    diff = RECORD_SIZE - field_bytes(SchedRecord.FIELDS) - field_bytes(fields)

    # Create extra padding fields to make record the proper size
    # Creating one big field of c_uint64 and giving it a size of 8*diff
    # _should_ work, but doesn't. This is an uglier way of accomplishing
    # the same goal
    for d in range(diff):
        fields += [("extra%d" % d, c_char)]

    # Create structure with fields and methods of clazz
    clazz2 = type("Dummy%d" % id, (LittleEndianStructure,clazz),
                  {'_fields_': SchedRecord.FIELDS + fields,
                   '_pack_'  : 1})
    record_map[id] = clazz2

def make_iterator(fname):
    '''Iterate over (parsed record, processing method) in a
    sched-trace file.'''
    if not os.path.getsize(fname):
        # Likely a release master CPU
        return

    f = open(fname, 'rb')

    while True:
        data = f.read(RECORD_SIZE)

        try:
            type_num = struct.unpack_from('b',data)[0]
        except struct.error:
            break

        if type_num not in record_map:
            continue

        clazz = record_map[type_num]
        obj = clazz()
        obj.fill(data)

        if obj.job != 1:
            yield obj
        else:
            # Results from the first job are nonsense
            pass

def read_data(task_dict, fnames):
    '''Read records from @fnames and store per-pid stats in @task_dict.'''
    buff = []

    def get_time(record):
        return record.when if hasattr(record, 'when') else 0

    def add_record(itera):
        # Ordered insertion into buff
        try:
            arecord = itera.next()
        except StopIteration:
            return

        i = 0
        for (i, (brecord, _)) in enumerate(buff):
            if get_time(brecord) > get_time(arecord):
                break
        buff.insert(i, (arecord, itera))

    for fname in fnames:
        itera = make_iterator(fname)
        add_record(itera)

    while buff:
        record, itera = buff.pop(0)

        add_record(itera)
        record.process(task_dict)

class SchedRecord(object):
    # Subclasses will have their FIELDs merged into this one
    FIELDS = [('type', c_uint8),  ('cpu', c_uint8),
              ('pid',  c_uint16), ('job', c_uint32)]

    def fill(self, data):
        memmove(addressof(self), data, RECORD_SIZE)

    def process(self, task_dict):
        raise NotImplementedError()

class ParamRecord(SchedRecord):
    FIELDS = [('wcet', c_uint32),  ('period', c_uint32),
              ('phase', c_uint32), ('partition', c_uint8),
              ('class', c_uint8),  ('level', c_uint8)]

    def process(self, task_dict):
        level  = chr(97 + self.level)
        params = TaskParams(self.wcet, self.period,
                            self.partition, level)
        task_dict[self.pid].params = params

class ReleaseRecord(SchedRecord):
    FIELDS = [('when', c_uint64), ('release', c_uint64)]

    def process(self, task_dict):
        data = task_dict[self.pid]
        data.jobs += 1
        if data.params:
            data.misses.start_time(self, self.when + data.params.period)

NSEC_PER_USEC = 1000
class CompletionRecord(SchedRecord):
    FIELDS = [('when', c_uint64), ('load', c_uint64)]

    def process(self, task_dict):
        task_dict[self.pid].misses.store_time(self)
        task_dict[self.pid].loads += [float(self.load) / NSEC_PER_USEC ]

class BlockRecord(SchedRecord):
    FIELDS = [('when', c_uint64)]

    def process(self, task_dict):
        task_dict[self.pid].blocks.start_time(self)

class ResumeRecord(SchedRecord):
    FIELDS = [('when', c_uint64)]

    def process(self, task_dict):
        task_dict[self.pid].blocks.store_time(self)

class SwitchToRecord(SchedRecord):
    FIELDS = [('when', c_uint64)]

    def process(self, task_dict):
        task_dict[self.pid].execs.start_time(self)

class SwitchAwayRecord(SchedRecord):
    FIELDS = [('when', c_uint64)]

    def process(self, task_dict):
        task_dict[self.pid].execs.store_time(self)


# Map records to sched_trace ids (see include/litmus/sched_trace.h
register_record(2, ParamRecord)
register_record(3, ReleaseRecord)
register_record(5, SwitchToRecord)
register_record(6, SwitchAwayRecord)
register_record(7, CompletionRecord)
register_record(8, BlockRecord)
register_record(9, ResumeRecord)

__all_dicts = {}

def create_task_dict(data_dir, work_dir = None):
    '''Parse sched trace files'''
    if data_dir in __all_dicts:
        return __all_dicts[data_dir]

    bin_files   = conf.FILES['sched_data'].format(".*")
    output_file = "%s/out-st" % work_dir

    task_dict = defaultdict(lambda :
                            TaskData(None, 1, [], TimeTracker(),
                                     TimeTracker(), TimeTracker(True)))

    bin_names = [f for f in os.listdir(data_dir) if re.match(bin_files, f)]
    if not len(bin_names):
        return task_dict

    # Save an in-english version of the data for debugging
    # This is optional and will only be done if 'st_show' is in PATH
    if work_dir and conf.BINS['st_show']:
        cmd_arr = [conf.BINS['st_show']]
        cmd_arr.extend(bin_names)
        with open(output_file, "w") as f:
            subprocess.call(cmd_arr, cwd=data_dir, stdout=f)

    # Gather per-task values
    bin_paths = ["%s/%s" % (data_dir,f) for f in bin_names]
    read_data(task_dict, bin_paths)

    __all_dicts[data_dir] = task_dict

    return task_dict

def extract_sched_data(result, data_dir, work_dir):
    task_dict = create_task_dict(data_dir, work_dir)
    stat_data = LeveledArray()

    for tdata in task_dict.itervalues():
        if not tdata.params:
            # Currently unknown where these invalid tasks come from...
            continue

        level = tdata.params.level
        miss  = tdata.misses

        record_loss = float(miss.disjoints)/(miss.matches + miss.disjoints)
        stat_data.add("record-loss", level, record_loss)

        if record_loss > conf.MAX_RECORD_LOSS:
            log_once(LOSS_MSG)
            continue

        miss_ratio = float(miss.num) / miss.matches
        avg_tard = miss.avg * miss_ratio

        stat_data.add("miss-ratio", level, miss_ratio)

        stat_data.add("max-tard",   level, miss.max / tdata.params.period)
        stat_data.add("avg-tard",   level, avg_tard / tdata.params.period)

        stat_data.add("avg-block",  level, tdata.blocks.avg / NSEC_PER_MSEC)
        stat_data.add("max-block",  level, tdata.blocks.max / NSEC_PER_MSEC)

        if tdata.params.level == 'b':
            stat_data.add('LOAD', tdata.params.level, tdata.loads)

    stat_data.write_measurements(result)

def extract_scaling_data(result, data_dir, base_dir):
    log_once("Scaling factor extraction currently broken, disabled.")
    return

    task_dict = create_task_dict(data_dir)
    base_dict = create_task_dict(base_dir)

    stat_data = LeveledArray()
    tasks_by_config = defaultdict(lambda: ScaleData([], []))

    # Add task execution times in order of pid to tasks_by_config
    for tasks, field in ((task_dict, 'reg_tasks'), (base_dict, 'base_tasks')):
        # Sorted for tie breaking: if 3 regular tasks have the same config
        # (so 3 base tasks also have the same config), match first pid regular
        # with first pid base, etc. This matches tie breaking in kernel
        for pid in sorted(tasks.keys()):
            tdata = tasks[pid]

            tlist  = getattr(tasks_by_config[tdata.params], field)
            tlist += [tdata.execs]

    # Write scaling factors
    for config, scale_data in tasks_by_config.iteritems():
        if len(scale_data.reg_tasks) != len(scale_data.base_tasks):
            # Can't make comparison if different numbers of tasks!
            continue

        # Tuples of (regular task execution times, base task execution times)
        # where each has the same configuration
        all_pairs = zip(scale_data.reg_tasks, scale_data.base_tasks)

        for reg_execs, base_execs in all_pairs:
            if not reg_execs.max  or not reg_execs.avg or\
               not base_execs.max or not base_execs.avg:
                # This was an issue at some point, not sure if it still is
                continue

            max_scale = float(base_execs.max) / reg_execs.max
            avg_scale = float(base_execs.avg) / reg_execs.avg

            if (avg_scale < 1 or max_scale < 1) and config.level == "b":
                log_once(SCALE_MSG, SCALE_MSG.format(data_dir, config))
                continue

            stat_data.add('max-scale', config.level, max_scale)
            stat_data.add('avg-scale', config.level, avg_scale)

    stat_data.write_measurements(result)