aboutsummaryrefslogtreecommitdiffstats
path: root/parse/sched.py
blob: 49a945b91f41819e8d7817a0e2dfc5b61a19e488 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import config.config as conf
import os
import re
import struct
import subprocess

import scipy.stats as stats
import numpy as np

from collections import defaultdict,namedtuple
from common import recordtype,log_once
from point import Measurement
from ctypes import *

from heapq import *

class TimeTracker:
    '''Store stats for durations of time demarcated by sched_trace records.'''
    def __init__(self, is_valid_duration = lambda x: True, delay_buffer_size = 1, max_pending = -1):
        self.validator = is_valid_duration
        self.avg = self.max = self.num = 0
        self.all_measurements = []
        self.all_measurements_arr = None

        self.matches = 0

        self.max_pending = max_pending
        self.discarded = 0

        self.delay_buffer_size = delay_buffer_size
        self.start_delay_buffer = []
        self.end_delay_buffer = []
        self.start_records = {}
        self.end_records = {}

    def disjoints(self):
        unmatched = len(self.start_records) + len(self.end_records)
        return self.discarded + unmatched

    def stdev(self):
        if self.all_measurements_arr is None:
            self.all_measurements_arr = np.asarray(self.all_measurements)
            self.all_measurements_arr.sort()
        return np.std(self.all_measurements_arr)

    def percentile(self, which):
        if self.all_measurements_arr is None:
            self.all_measurements_arr = np.asarray(self.all_measurements)
            self.all_measurements_arr.sort()
        return stats.scoreatpercentile(self.all_measurements_arr, which)

    def process_completed(self):
        completed = self.start_records.viewkeys() & self.end_records.viewkeys()
        self.matches += len(completed)
        for c in completed:
            s, stime = self.start_records[c]
            e, etime = self.end_records[c]
            del self.start_records[c]
            del self.end_records[c]

            dur = etime - stime
            if self.validator(dur):
                self.max = max(self.max, dur)
                old_avg = self.avg * self.num
                self.num += 1
                self.avg = (old_avg + dur) / float(self.num)
                self.all_measurements.append(dur)

        # Give up on some jobs if they've been hanging around too long.
        # While not strictly needed, it helps improve performance and
        # it is unlikey to cause too much trouble.
        if(self.max_pending >= 0 and len(self.start_records) > self.max_pending):
            to_discard = len(self.start_records) - self.max_pending
            for i in range(to_discard):
                # pop off the oldest jobs
                del self.start_records[self.start_records.iterkeys().next()]
            self.discarded += to_discard
        if(self.max_pending >= 0 and len(self.end_records) > self.max_pending):
            to_discard = len(self.end_records) - self.max_pending
            for i in range(to_discard):
                # pop off the oldest jobs
                del self.end_records[self.end_records.iterkeys().next()]
            self.discarded += to_discard

    def end_time(self, record, time):
        '''End duration of time.'''
        if len(self.end_delay_buffer) == self.delay_buffer_size:
           to_queue = self.end_delay_buffer.pop(0)
           self.end_records[to_queue[0].job] = to_queue
        self.end_delay_buffer.append((record, time))
        self.process_completed()

    def start_time(self, record, time):
        '''Start duration of time.'''
        if len(self.start_delay_buffer) == self.delay_buffer_size:
            to_queue = self.start_delay_buffer.pop(0)
            self.start_records[to_queue[0].job] = to_queue
        self.start_delay_buffer.append((record, time))
        self.process_completed()

# Data stored for each task
TaskParams  = namedtuple('TaskParams',  ['wcet', 'period', 'cpu'])
PgmTaskParams = namedtuple('PgmTaskParams', ['node_type', 'gid'])
TaskData    = recordtype('TaskData',    ['params', 'pgm_params', 'jobs', 'blocks',
                                         'response', 'lateness', 'misses',
                                         'pgm_response', 'pgm_lateness', 'pgm_misses'])
GraphParams = recordtype('GraphParams', ['gid', 'src', 'sink', 'etoe'])
GraphData   = recordtype('GraphData',   ['params', 'jobs', 'response'])

PGM_NOT_A_NODE = 0
PGM_SRC = 1
PGM_SINK = 2
PGM_SRC_SINK = 3
PGM_INTERNAL = 4

# Map of event ids to corresponding class and format
record_map = {}

RECORD_SIZE   = 24
NSEC_PER_MSEC = 1000000

def bits_to_bytes(bits):
    '''Includes padding'''
    return bits / 8 + (1 if bits%8 else 0)

def field_bytes(fields):
    fbytes = 0
    fbits  = 0
    for f in fields:
        flist = list(f)

        if len(flist) > 2:
            # Specified a bitfield
            fbits += flist[2]
        else:
            # Only specified a type, use types size
            fbytes += sizeof(list(f)[1])

            # Bitfields followed by a byte will cause any incomplete
            # bytes to be turned into full bytes
            fbytes += bits_to_bytes(fbits)
            fbits   = 0

    fbytes += bits_to_bytes(fbits)
    return fbytes + fbits

def register_record(id, clazz):
    fields = clazz.FIELDS
    diff = RECORD_SIZE - field_bytes(SchedRecord.FIELDS) - field_bytes(fields)

    # Create extra padding fields to make record the proper size
    # Creating one big field of c_uint64 and giving it a size of 8*diff
    # _should_ work, but doesn't. This is an uglier way of accomplishing
    # the same goal
    for d in range(diff):
        fields += [("extra%d" % d, c_char)]

    # Create structure with fields and methods of clazz
    clazz2 = type("Dummy%d" % id, (LittleEndianStructure,clazz),
                  {'_fields_': SchedRecord.FIELDS + fields,
                   '_pack_'  : 1})
    record_map[id] = clazz2

def make_iterator(fname):
    '''Iterate over (parsed record, processing method) in a
    sched-trace file.'''
    if not os.path.getsize(fname):
        # Likely a release master CPU
        return

    f = open(fname, 'rb')

    while True:
        data = f.read(RECORD_SIZE)

        try:
            type_num = struct.unpack_from('b',data)[0]
        except struct.error:
            break

        if type_num not in record_map:
            continue

        clazz = record_map[type_num]
        obj = clazz()
        obj.fill(data)

        if obj.job != 1:
            yield obj
        else:
            # Results from the first job are nonsense
            pass

def read_data(task_dict, graph_dict, fnames):
    '''Read records from @fnames and store per-pid stats in @task_dict.'''
    q = []

    # Number of trace records to buffer from each stream/file.
    # A sorted window is maintained in order to deal with
    # events that were recorded out-of-order.
    window_size = 500

    def get_time(record):
        return record.when if hasattr(record, 'when') else 0

    def add_record(itera):
        # Ordered insertion into buff
        try:
            arecord = itera.next()
        except StopIteration:
            return

        sort_key = (get_time(arecord), arecord.job, arecord.pid)
        heappush(q, (sort_key, arecord, itera))

    for fname in fnames:
        itera = make_iterator(fname)
        for w in range(window_size):
            add_record(itera)

    sys_released = False
    while q:
        sort_key, record, itera = heappop(q)
        # fetch another record
        add_record(itera)
        record.process(task_dict)
        record.process_pgm(task_dict, graph_dict)

class SchedRecord(object):
    # Subclasses will have their FIELDs merged into this one
    FIELDS = [('type', c_uint8),  ('cpu', c_uint8),
              ('pid',  c_uint16), ('job', c_uint32)]

    def fill(self, data):
        memmove(addressof(self), data, RECORD_SIZE)

    def process(self, task_dict):
        raise NotImplementedError()

    def process_pgm(self, task_dict, graph_dict):
        pass

class ParamRecord(SchedRecord):
    FIELDS = [('wcet', c_uint32),  ('period', c_uint32),
              ('phase', c_uint32), ('partition', c_uint8),
              ('class', c_uint8)]

    def process(self, task_dict):
        params = TaskParams(self.wcet, self.period, self.partition)
        task_dict[self.pid].params = params

class ReleaseRecord(SchedRecord):
    # renames the 'release' field to 'when' to enable sorting
    FIELDS = [('when', c_uint64), ('deadline', c_uint64)]

    def process(self, task_dict):
        data = task_dict[self.pid]
        data.jobs += 1
        data.response.start_time(self, self.when)
        data.misses.start_time(self, self.deadline)
        data.lateness.start_time(self, self.deadline)

    def process_pgm(self, task_dict, graph_dict):
        data = task_dict[self.pid]
        data.pgm_response.start_time(self, self.when)
        data.pgm_misses.start_time(self, self.deadline)
        data.pgm_lateness.start_time(self, self.deadline)

        if data.pgm_params:
            ntype = data.pgm_params.node_type
            if ntype == PGM_SRC or ntype == PGM_SRC_SINK:
                gid = data.pgm_params.gid
                gdata = graph_dict[gid]
                gdata.jobs += 1
                gdata.response.start_time(self, self.when)

class CompletionRecord(SchedRecord):
    FIELDS = [('when', c_uint64)]

    def process(self, task_dict):
        data = task_dict[self.pid]
        data.response.end_time(self, self.when)
        data.misses.end_time(self, self.when)
        data.lateness.end_time(self, self.when)

    def process_pgm(self, task_dict, graph_dict):
        data = task_dict[self.pid]
        data.pgm_response.end_time(self, self.when)
        data.pgm_misses.end_time(self, self.when)
        data.pgm_lateness.end_time(self, self.when)

        if data.pgm_params:
            ntype = data.pgm_params.node_type
            if ntype == PGM_SINK or ntype == PGM_SRC_SINK:
                gid = data.pgm_params.gid
                gdata = graph_dict[gid]
                gdata.response.end_time(self, self.when)

class BlockRecord(SchedRecord):
    FIELDS = [('when', c_uint64)]

    def process(self, task_dict):
        task_dict[self.pid].blocks.start_time(self, self.when)

class ResumeRecord(SchedRecord):
    FIELDS = [('when', c_uint64)]

    def process(self, task_dict):
        task_dict[self.pid].blocks.end_time(self, self.when)

class SysReleaseRecord(SchedRecord):
    FIELDS = [('when', c_uint64), ('release', c_uint64)]

    def process(self, task_dict):
        pass

class PgmParamRecord(SchedRecord):
    FIELDS = [('node_type', c_uint32), ('graph_pid', c_uint16), ('unused2', c_uint16), ('etoe', c_uint64)]

    def process(self, task_dict):
        pass

    def process_pgm(self, task_dict, graph_dict):
        pgm_params = PgmTaskParams(self.node_type, self.graph_pid)
        task_dict[self.pid].pgm_params = pgm_params

        if self.node_type == PGM_SRC or self.node_type == PGM_SINK or self.node_type == PGM_SRC_SINK:
            graph_data = graph_dict[self.graph_pid]
            if not graph_data.params:
                graph_data.params = GraphParams(self.graph_pid, 0, 0, self.etoe)
            if self.node_type == PGM_SRC:
                assert graph_data.params.src == 0
                graph_data.params.src = self.pid
            elif self.node_type == PGM_SINK:
                assert graph_data.params.sink == 0
                graph_data.params.sink = self.pid
            else:
                assert graph_data.params.src == 0
                assert graph_data.params.sink == 0
                graph_data.params.src = self.pid
                graph_data.params.sink = self.pid

class PgmReleaseRecord(SchedRecord):
    # renames the 'release' field to 'when'
    FIELDS = [('when', c_uint64), ('deadline', c_uint64)]

    def process(self, task_dict):
        pass

    def process_pgm(self, task_dict, graph_dict):
        data = task_dict[self.pid]
        data.pgm_response.start_time(self, self.when)
        data.pgm_misses.start_time(self, self.deadline)
        data.pgm_lateness.start_time(self, self.deadline)

        if data.pgm_params:
            ntype = data.pgm_params.node_type
            if ntype == PGM_SRC or ntype == PGM_SRC_SINK:
                gid = data.pgm_params.graph_pid
                gdata = graph_dict[gid]
                gdata.response.start_time(self, self.when)

# Map records to sched_trace ids (see include/litmus/sched_trace.h
register_record(2, ParamRecord)
register_record(3, ReleaseRecord)
register_record(7, CompletionRecord)
register_record(8, BlockRecord)
register_record(9, ResumeRecord)
register_record(11, SysReleaseRecord)
register_record(12, PgmParamRecord)
register_record(13, PgmReleaseRecord)

def create_trace_dict(data_dir, work_dir = None):
    '''Parse sched trace files'''
    bin_files   = conf.FILES['sched_data'].format(".*")
    output_file = "%s/out-st" % work_dir

    task_dict = defaultdict(lambda :
                            TaskData(None, None, 1, TimeTracker(is_valid_duration = lambda x: x > 0),
                                     TimeTracker(), TimeTracker(), TimeTracker(is_valid_duration = lambda x: x > 0),
                                     TimeTracker(), TimeTracker(), TimeTracker(is_valid_duration = lambda x: x > 0)))
    graph_dict = defaultdict(lambda:
                            GraphData(None, 1, TimeTracker(is_valid_duration = lambda x: x > 0)))

    bin_names = [f for f in os.listdir(data_dir) if re.match(bin_files, f)]
    if not len(bin_names):
        return task_dict

    # Save an in-english version of the data for debugging
    # This is optional and will only be done if 'st_show' is in PATH
    if conf.BINS['st_show']:
        cmd_arr = [conf.BINS['st_show']]
        cmd_arr.extend(bin_names)
        with open(output_file, "w") as f:
            subprocess.call(cmd_arr, cwd=data_dir, stdout=f)

    # Gather per-task values
    bin_paths = ["%s/%s" % (data_dir,f) for f in bin_names]
    read_data(task_dict, graph_dict, bin_paths)

    return task_dict, graph_dict

LOSS_MSG = """Found task missing more than %d%% of its scheduling records.
These won't be included in scheduling statistics!"""%(100*conf.MAX_RECORD_LOSS)
SKIP_MSG = """Measurement '%s' has no non-zero values.
Measurements like these are not included in scheduling statistics.
If a measurement is missing, this is why."""

def extract_sched_data(result, data_dir, work_dir):
    task_dict, graph_dict = create_trace_dict(data_dir, work_dir)
    stat_data = defaultdict(list)
    gstat_data = defaultdict(list)

    # Group per-task values
    for task, tdata in task_dict.iteritems():
        if not tdata.params:
            # Currently unknown where these invalid tasks come from...
            continue

        lateness = tdata.lateness
        response = tdata.response
        miss = tdata.misses
        pgm_response = tdata.pgm_response
        pgm_lateness = tdata.pgm_lateness
        pgm_miss = tdata.pgm_misses

        record_loss = float(miss.disjoints())/(miss.matches + miss.disjoints())
        stat_data["record-loss"].append(record_loss)

        if record_loss > conf.MAX_RECORD_LOSS:
            log_once(LOSS_MSG)
            continue

        miss_ratio = float(miss.num) / miss.matches
        pgm_miss_ratio = float(pgm_miss.num) / pgm_miss.matches

        # average job tardy by:
        avg_tard = miss.avg * miss_ratio
        pgm_avg_tard = pgm_miss.avg * pgm_miss_ratio

        # start with basic task information
        stat_data["miss-ratio" ].append(miss_ratio)

#        WE DON'T REALLY CARE ABOUT THESE VALUES IN PGM
#        stat_data["response-max"].append(float(response.max)/NSEC_PER_MSEC)
#        stat_data["response-avg"].append(response.avg/NSEC_PER_MSEC)
#        stat_data["response-prop-max"].append(float(response.max) / tdata.params.period)
#        stat_data["response-prop-avg"].append(response.avg / tdata.params.period)
#
#        stat_data["tard-max"].append(float(miss.max)/NSEC_PER_MSEC)
#        stat_data["tard-avg"].append(avg_tard/NSEC_PER_MSEC)
#        stat_data["tard-prop-max"].append(float(miss.max) / tdata.params.period)
#        stat_data["tard-prop-avg"].append(avg_tard / tdata.params.period)
#
#        stat_data["lateness-max"].append(float(lateness.max)/NSEC_PER_MSEC)
#        stat_data["lateness-avg"].append(lateness.avg/NSEC_PER_MSEC)
#        stat_data["lateness-prop-max"].append(float(lateness.max) / tdata.params.period)
#        stat_data["lateness-prop-avg"].append(lateness.avg / tdata.params.period)

        # same data, but with PGM-adjusted release times (shifted deadlines)
        stat_data["pgm-miss-ratio" ].append(pgm_miss_ratio)

        stat_data["pgm-response-max"].append(float(pgm_response.max)/NSEC_PER_MSEC)
        stat_data["pgm-response-avg"].append(pgm_response.avg/NSEC_PER_MSEC)
        stat_data["pgm-response-std"].append(pgm_response.stdev()/NSEC_PER_MSEC)
        stat_data["pgm-response-prop-max"].append(float(pgm_response.max) / tdata.params.period)
        stat_data["pgm-response-prop-avg"].append(pgm_response.avg / tdata.params.period)
        stat_data["pgm-response-prop-std"].append(pgm_response.stdev()/ tdata.params.period)

#        stat_data["pgm-tard-max"].append(float(pgm_miss.max)/NSEC_PER_MSEC)
#        stat_data["pgm-tard-avg"].append(pgm_avg_tard/NSEC_PER_MSEC)
#        stat_data["pgm-tard-prop-max"].append(float(pgm_miss.max) / tdata.params.period)
#        stat_data["pgm-tard-prop-avg"].append(pgm_avg_tard / tdata.params.period)

#        stat_data["pgm-lateness-max"].append(float(pgm_lateness.max)/NSEC_PER_MSEC)
#        stat_data["pgm-lateness-avg"].append(pgm_lateness.avg/NSEC_PER_MSEC)
#        stat_data["pgm-lateness-prop-max"].append(float(pgm_lateness.max) / tdata.params.period)
#        stat_data["pgm-lateness-prop-avg"].append(pgm_lateness.avg / tdata.params.period)

    for gid, gdata in graph_dict.iteritems():
        if not gdata.params:
            continue
        response = gdata.response
        if response.matches + response.disjoints() == 0:
            record_loss = 0
        else:
            record_loss = float(response.disjoints())/(response.matches + response.disjoints())
        gstat_data["graph-record-loss"].append(record_loss)

        if record_loss > conf.MAX_RECORD_LOSS:
            log_once(LOSS_MSG)
            continue

        gstat_data["graph-response-max"].append(float(response.max)/NSEC_PER_MSEC)
        gstat_data["graph-response-99p9tile"].append(float(response.percentile(99.9))/NSEC_PER_MSEC)
        gstat_data["graph-response-99tile"].append(float(response.percentile(99))/NSEC_PER_MSEC)
        gstat_data["graph-response-95tile"].append(float(response.percentile(95))/NSEC_PER_MSEC)
        gstat_data["graph-response-avg"].append(response.avg/NSEC_PER_MSEC)
        gstat_data["graph-response-std"].append(response.stdev()/NSEC_PER_MSEC)

        gstat_data["graph-response-prop-max"].append(float(response.max) / gdata.params.etoe)
        gstat_data["graph-response-prop-99p9tile"].append(float(response.percentile(99.9))/ gdata.params.etoe)
        gstat_data["graph-response-prop-99tile"].append(float(response.percentile(99))/ gdata.params.etoe)
        gstat_data["graph-response-prop-95tile"].append(float(response.percentile(95))/ gdata.params.etoe)
        gstat_data["graph-response-prop-avg"].append(response.avg / gdata.params.etoe)
        gstat_data["graph-response-prop-std"].append(response.stdev()/ gdata.params.etoe)

    # Summarize value groups
    for name, data in stat_data.iteritems():
        if not data:
            log_once(SKIP_MSG, SKIP_MSG % name)
            continue
        result[name] = Measurement(str(name)).from_array(data)

    for name, data in gstat_data.iteritems():
        result[name] = Measurement(str(name)).from_array(data)