1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
import generator as gen
import random
import schedcat.generator.tasks as tasks
class EdfGenerator(gen.Generator):
'''Creates sporadic task sets with the most common Litmus options.'''
def __init__(self, name, templates, options, params):
super(EdfGenerator, self).__init__(name, templates,
self.__make_options(params) + options,
params)
def __make_options(self, params):
'''Return generic EDF options.'''
return [gen.Generator._dist_option('utils', ['uni-medium'],
gen.NAMED_UTILIZATIONS,
'Task utilization distributions.'),
gen.Generator._dist_option('periods', ['harmonic'],
gen.NAMED_PERIODS,
'Task period distributions.')]
def _create_exp(self, exp_params):
'''Create a single experiment with @exp_params in @out_dir.'''
pdist = self._create_dist('period',
exp_params['periods'],
gen.NAMED_PERIODS)
udist = self._create_dist('utilization',
exp_params['utils'],
gen.NAMED_UTILIZATIONS)
tg = tasks.TaskGenerator(period=pdist, util=udist)
ts = []
tries = 0
while len(ts) != exp_params['num_tasks'] and tries < 5:
ts = tg.make_task_set(max_tasks = exp_params['num_tasks'])
tries += 1
if len(ts) != exp_params['num_tasks']:
print("Failed to create task set with parameters: %s" % exp_params)
self._customize(ts, exp_params)
exp_params['task_set'] = ts
self._write_schedule(exp_params)
del exp_params['task_set']
del exp_params['num_tasks']
self._write_params(exp_params)
def _customize(self, taskset, exp_params):
'''Configure a generated taskset with extra parameters.'''
pass
class PartitionedGenerator(EdfGenerator):
def __init__(self, name, templates, options, params):
super(PartitionedGenerator, self).__init__(name,
templates + [gen.TP_PART_TASK], options, params)
def _customize(self, taskset, exp_params):
start = 1 if exp_params['release_master'] else 0
# Random partition for now: could do a smart partitioning
for t in taskset:
t.cpu = random.randint(start, exp_params['cpus'] - 1)
class PedfGenerator(PartitionedGenerator):
def __init__(self, params={}):
super(PedfGenerator, self).__init__("PSN-EDF", [], [], params)
class CedfGenerator(PartitionedGenerator):
TP_CLUSTER = "plugins/C-EDF/cluster{$level}"
CLUSTER_OPTION = gen.GenOption('level', ['L2', 'L3', 'All'], ['L2'],
'Cache clustering level.',)
def __init__(self, params={}):
super(CedfGenerator, self).__init__("C-EDF",
[CedfGenerator.TP_CLUSTER],
[CedfGenerator.CLUSTER_OPTION],
params)
class GedfGenerator(EdfGenerator):
def __init__(self, params={}):
super(GedfGenerator, self).__init__("GSN-EDF", [gen.TP_GLOB_TASK],
[], params)
|