diff options
author | Glenn Elliott <gelliott@cs.unc.edu> | 2013-10-15 20:19:57 -0400 |
---|---|---|
committer | Glenn Elliott <gelliott@cs.unc.edu> | 2013-10-15 20:19:57 -0400 |
commit | 311f3384882847edd83d688a1a2dcc12bdc59d23 (patch) | |
tree | f4a75065c57bfc29796c2eef349a02a97c6912d7 | |
parent | e15736509ab36e33bc71a0fe1120f2974e389725 (diff) |
CPMD and producer/consumer overhead scripts.
-rwxr-xr-x | cache_cost.py | 181 | ||||
-rwxr-xr-x | distill_pmo.py | 211 | ||||
-rwxr-xr-x | produce_consume_cost.py | 172 | ||||
-rw-r--r-- | utils/__init__.py | 0 | ||||
-rwxr-xr-x | utils/iqr.py | 32 | ||||
-rw-r--r-- | utils/machines.py | 43 |
6 files changed, 639 insertions, 0 deletions
diff --git a/cache_cost.py b/cache_cost.py new file mode 100755 index 0000000..9f4e54a --- /dev/null +++ b/cache_cost.py | |||
@@ -0,0 +1,181 @@ | |||
1 | #!/usr/bin/python | ||
2 | |||
3 | import os | ||
4 | import copy | ||
5 | import sys | ||
6 | import string | ||
7 | import smtplib | ||
8 | import socket | ||
9 | import time | ||
10 | import itertools | ||
11 | import multiprocessing | ||
12 | |||
13 | from run.executable.executable import Executable | ||
14 | |||
15 | test_mode = False | ||
16 | email_notification = True | ||
17 | |||
18 | def run_exp(nsamples, ncpu, numa_args, wss, wcycle, sleep_range_ms, walk, do_pollute, do_huge_pages, do_uncache_pages): | ||
19 | |||
20 | fstub = 'pmo' | ||
21 | fstub += '_host='+socket.gethostname().split('.')[0] | ||
22 | fstub += '_ncpu='+str(ncpu) | ||
23 | fstub += '_wss='+str(wss) | ||
24 | fstub += '_wcycle='+str(wcycle) | ||
25 | fstub += '_smin='+str(sleep_range_ms[0]*1000) | ||
26 | fstub += '_smax='+str(sleep_range_ms[1]*1000) | ||
27 | fstub += '_polluters='+str(do_pollute) | ||
28 | fstub += '_hpages='+str(do_huge_pages) | ||
29 | fstub += '_upages='+str(do_uncache_pages) | ||
30 | fstub += '_walk='+walk | ||
31 | |||
32 | filename = fstub + '.csv' | ||
33 | |||
34 | if os.path.exists(filename): | ||
35 | return | ||
36 | |||
37 | polluters = [] | ||
38 | if do_pollute: | ||
39 | for i in range(multiprocessing.cpu_count()): | ||
40 | if numa_args: | ||
41 | # number of CPUs in one of two NUMA nodes | ||
42 | if ncpu == 6: | ||
43 | if i < 6: | ||
44 | numa_hack = ['--cpunodebind=0', '--interleave=0'] | ||
45 | else: | ||
46 | numa_hack = ['--cpunodebind=1', '--interleave=1'] | ||
47 | else: | ||
48 | numa_hack = ['--cpunodebind=0,1', '--interleave=0,1'] | ||
49 | args = copy.deepcopy(numa_hack) | ||
50 | args.append('memthrash') | ||
51 | else: | ||
52 | args = [] | ||
53 | args.append('-m') | ||
54 | args.append(str(i)) | ||
55 | if numa_args: | ||
56 | polluters.append(Executable('numactl', args)) | ||
57 | else: | ||
58 | polluters.append(Executable('memthrash', args)) | ||
59 | |||
60 | if numa_args: | ||
61 | args = copy.deepcopy(numa_args) | ||
62 | args.append('cache_cost') | ||
63 | else: | ||
64 | args = [] | ||
65 | args.append('-m') | ||
66 | args.append(str(ncpu)) | ||
67 | args.append('-c') | ||
68 | args.append(str(nsamples)) | ||
69 | args.append('-s') | ||
70 | args.append(str(wss)) | ||
71 | args.append('-w') | ||
72 | args.append(str(wcycle)) | ||
73 | |||
74 | if do_huge_pages: | ||
75 | args.append('-h') | ||
76 | |||
77 | if do_uncache_pages: | ||
78 | args.append('-u') | ||
79 | |||
80 | # cache_cost wants time in microseconds | ||
81 | args.append('-x') | ||
82 | args.append(str(sleep_range_ms[0]*1000)) | ||
83 | args.append('-y') | ||
84 | args.append(str(sleep_range_ms[1]*1000)) | ||
85 | |||
86 | if walk == 'rand': | ||
87 | args.append('-r') | ||
88 | |||
89 | args.append('-o') | ||
90 | args.append(filename) | ||
91 | |||
92 | if numa_args: | ||
93 | probe = Executable('numactl', args) | ||
94 | else: | ||
95 | probe = Executable('cache_cost', args) | ||
96 | |||
97 | if not test_mode: | ||
98 | if do_pollute: | ||
99 | for p in polluters: | ||
100 | p.execute() | ||
101 | time.sleep(10) | ||
102 | |||
103 | probe.execute() | ||
104 | probe.wait() | ||
105 | |||
106 | for p in polluters: | ||
107 | p.kill() | ||
108 | for p in polluters: | ||
109 | p.wait(False) | ||
110 | else: | ||
111 | print 'Process commands and arguments: ' | ||
112 | if do_pollute: | ||
113 | for p in polluters: | ||
114 | print str(p) | ||
115 | print str(probe) | ||
116 | |||
117 | def main(argv): | ||
118 | nsamples = 5000 | ||
119 | |||
120 | # We may need to test different NUMA node configurations | ||
121 | # according to memory interleaving across the NUMA topology. | ||
122 | # | ||
123 | # For non-numa systems, do "<#cpu>: []" | ||
124 | # Ex., for a 4-CPU non-numa system: "4: []" | ||
125 | # | ||
126 | # NOTE: Must update NUMA hack in run_exp() for memthrash | ||
127 | # for your configuration. | ||
128 | # | ||
129 | # todo: configure numa args for system automatically | ||
130 | ncpu_and_numa_args = { | ||
131 | 6: ['--cpunodebind=0', '--interleave=0'] | ||
132 | # 12: ['--cpunodebind=0,1', '--interleave=0,1'] | ||
133 | } | ||
134 | |||
135 | wss_kb = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096, 8192, 12288, 16384] | ||
136 | write_cycle = [0, 64, 16, 4, 2, 1] | ||
137 | |||
138 | sleep_range_ms = [0,50] | ||
139 | |||
140 | # uncache = [False, True] | ||
141 | uncache = [False] | ||
142 | huge_pages = [False] | ||
143 | |||
144 | pollute = [False, True] | ||
145 | walk = ['seq', 'rand'] | ||
146 | # walk = ['seq'] | ||
147 | |||
148 | for ncpu, numa_args in ncpu_and_numa_args.iteritems(): | ||
149 | for u in uncache: | ||
150 | for h in huge_pages: | ||
151 | if u == True and h == True: | ||
152 | # skip invalid combo | ||
153 | continue | ||
154 | for wcycle in write_cycle: | ||
155 | for w in walk: | ||
156 | for p in pollute: | ||
157 | for wss in wss_kb: | ||
158 | run_exp(nsamples, ncpu, numa_args, wss, wcycle, sleep_range_ms, w, p, h, u) | ||
159 | |||
160 | if email_notification: | ||
161 | _subject = "Cache Ovh Collection Complete!" | ||
162 | _to = "gelliott@cs.unc.edu" | ||
163 | _from = "gelliott@bonham.cs.unc.edu" | ||
164 | _text = "Cache Ovh Collection Complete!" | ||
165 | _body = string.join(("From: %s" % _from, "To: %s" % _to, "Subject: %s" % _subject, "", _text), "\r\n") | ||
166 | s = smtplib.SMTP("localhost") | ||
167 | s.sendmail(_from, [_to], _body) | ||
168 | s.quit() | ||
169 | |||
170 | |||
171 | |||
172 | if __name__ == "__main__": | ||
173 | |||
174 | os.environ['PATH'] += ':../liblitmus' | ||
175 | os.environ['PATH'] += ':../cache-ovh' | ||
176 | |||
177 | if 'LD_LIBRARY_PATH' not in os.environ: | ||
178 | os.environ['LD_LIBRARY_PATH'] = '' | ||
179 | os.environ['LD_LIBRARY_PATH'] += ':../liblitmus' | ||
180 | |||
181 | main(sys.argv[1:]) | ||
diff --git a/distill_pmo.py b/distill_pmo.py new file mode 100755 index 0000000..9821dd5 --- /dev/null +++ b/distill_pmo.py | |||
@@ -0,0 +1,211 @@ | |||
1 | #!/usr/bin/env python | ||
2 | |||
3 | import os | ||
4 | import re | ||
5 | import fnmatch | ||
6 | import shutil as sh | ||
7 | import sys | ||
8 | import csv | ||
9 | import numpy as np | ||
10 | from scipy.stats import scoreatpercentile | ||
11 | import bisect | ||
12 | from optparse import OptionParser | ||
13 | |||
14 | from utils.machines import machines | ||
15 | |||
16 | import utils.iqr | ||
17 | |||
18 | class Topology: | ||
19 | ncpus, root, leaves, dist_mat = 0, None, None, None | ||
20 | levels = ['L1', 'L2', 'L3', 'Mem', 'System'] | ||
21 | |||
22 | class Node: | ||
23 | idx, name, parent, children = 0, 'Unk', None, None | ||
24 | def __init__(self, idx, name, parent = None): | ||
25 | self.idx = idx | ||
26 | self.name = name | ||
27 | self.parent = parent | ||
28 | self.children = [] | ||
29 | def __repr__(self): | ||
30 | return self.name + '_' + str(self.idx) | ||
31 | |||
32 | def __build_level_above(self, machine, l, child_nodes): | ||
33 | key = 'n' + l | ||
34 | if key in machine: | ||
35 | cluster_sz = machine[key] | ||
36 | else: | ||
37 | cluster_sz = 1 | ||
38 | nchildren = len(child_nodes) | ||
39 | nodes = [self.Node(idx, l) for idx in range(nchildren/cluster_sz)] | ||
40 | for i in range(len(child_nodes)): | ||
41 | child_nodes[i].parent = nodes[i/cluster_sz] | ||
42 | nodes[i/cluster_sz].children.append(child_nodes[i]) | ||
43 | return nodes | ||
44 | |||
45 | def __find_dist(self, a, b): | ||
46 | if a != b: | ||
47 | # pass-through (ex. as CPU is to private L1) | ||
48 | if len(a.parent.children) == 1: | ||
49 | return self.__find_dist(a.parent, b.parent) | ||
50 | else: | ||
51 | return 1 + self.__find_dist(a.parent, b.parent) | ||
52 | return 0 | ||
53 | |||
54 | def __build_dist_matrix(self): | ||
55 | dist_mat = np.empty([self.ncpus, self.ncpus], int) | ||
56 | for i in range(self.ncpus): | ||
57 | for j in range(i, self.ncpus): | ||
58 | dist_mat[i,j] = dist_mat[j,i] = self.__find_dist(self.leaves[i], self.leaves[j]) | ||
59 | return dist_mat | ||
60 | |||
61 | def __init__(self, machine): | ||
62 | self.ncpus = machine['sockets']*machine['cores_per_socket'] | ||
63 | |||
64 | # build the Topology bottom up | ||
65 | self.leaves = [self.Node(idx, 'CPU') for idx in range(self.ncpus)] | ||
66 | nodes = self.leaves | ||
67 | for l in self.levels: | ||
68 | nodes = self.__build_level_above(machine, l, nodes) | ||
69 | self.root = nodes | ||
70 | |||
71 | self.dist_mat = self.__build_dist_matrix() | ||
72 | |||
73 | |||
74 | def __repr_level(self, node, stem, buf): | ||
75 | spacing = 3 | ||
76 | buf += stem + node.name + '_' + str(node.idx) + '\n' | ||
77 | for c in node.children: | ||
78 | buf = self.__repr_level(c, stem + ' '*spacing, buf) | ||
79 | return buf | ||
80 | |||
81 | def __repr__(self): | ||
82 | buf = self.__repr_level(self.root[0], '', '') | ||
83 | return buf | ||
84 | |||
85 | def distance(self, a, b): | ||
86 | return self.dist_mat[a,b] | ||
87 | |||
88 | |||
89 | topologies = {} | ||
90 | def get_topo(host): | ||
91 | if host in topologies: | ||
92 | return topologies[host] | ||
93 | else: | ||
94 | topo = Topology(machines[host]) | ||
95 | topologies[host] = topo | ||
96 | return topo | ||
97 | |||
98 | # find the max/avg/std of preemption and migration | ||
99 | def process_cpmd(csv_file, params): | ||
100 | |||
101 | if 'pmo' not in params: | ||
102 | raise Exception(('not cpmd overhead file: %s)') % csv_file) | ||
103 | |||
104 | topo = get_topo(params['host']) | ||
105 | |||
106 | print 'processing ' + csv_file | ||
107 | |||
108 | ifile = open(csv_file, "r") | ||
109 | reader = csv.reader(ifile) | ||
110 | costs = {} | ||
111 | |||
112 | SAMPLE = 0 | ||
113 | WRITE_CYCLE = 1 | ||
114 | WSS = 2 | ||
115 | DELAY = 3 | ||
116 | LAST_CPU = 4 | ||
117 | NEXT_CPU = 5 | ||
118 | DIST = 6 | ||
119 | COLD = 7 | ||
120 | HOT1 = 8 | ||
121 | HOT2 = 9 | ||
122 | HOT3 = 10 | ||
123 | AFTER_RESUME = 11 | ||
124 | |||
125 | for row in reader: | ||
126 | hot = min(int(row[HOT1]), int(row[HOT2]), int(row[HOT3])) | ||
127 | after = int(row[AFTER_RESUME]) | ||
128 | cost = max(after - hot, 0) | ||
129 | distance = topo.distance(int(row[NEXT_CPU]), int(row[LAST_CPU])) | ||
130 | assert distance == int(row[DIST]) | ||
131 | if distance not in costs: | ||
132 | costs[distance] = [] | ||
133 | costs[distance].append(cost) | ||
134 | |||
135 | for d,c in costs.iteritems(): | ||
136 | arr = np.array(c, float) | ||
137 | arr = np.sort(arr) | ||
138 | (arr, mincut, maxcut) = utils.iqr.apply_iqr(arr, 1.5) | ||
139 | for x in np.nditer(arr, op_flags=['readwrite']): | ||
140 | x[...] = utils.machines.cycles_to_us(params['host'], x) | ||
141 | costs[d] = arr | ||
142 | |||
143 | stats = {} | ||
144 | # print costs | ||
145 | for d,arr in costs.iteritems(): | ||
146 | stats[d] = {'max':arr.max(), 'median':np.median(arr), 'mean':arr.mean(), 'std':arr.std()} | ||
147 | |||
148 | return stats | ||
149 | |||
150 | def parse_args(): | ||
151 | parser = OptionParser("usage: %prog [files...]") | ||
152 | return parser.parse_args() | ||
153 | |||
154 | def safe_split(t, delim): | ||
155 | t = t.split(delim) | ||
156 | if len(t) == 1: | ||
157 | t = tuple([t[0], None]) | ||
158 | return t | ||
159 | |||
160 | def get_level(machine, ncpus): | ||
161 | dist = get_topo(machine).distance(0, int(ncpus)-1) | ||
162 | names = ['L1', 'L2', 'L3', 'mem', 'sys'] | ||
163 | if dist <= len(names): | ||
164 | return names[dist] | ||
165 | else: | ||
166 | raise Exception("Unable to determine level.") | ||
167 | return '' | ||
168 | |||
169 | def main(): | ||
170 | opts, args = parse_args() | ||
171 | |||
172 | files = filter(os.path.exists, args) | ||
173 | |||
174 | regex = fnmatch.translate("pmo_*.csv") | ||
175 | csvs = re.compile(regex) | ||
176 | files = filter(csvs.search, files) | ||
177 | |||
178 | results = {} | ||
179 | for f in files: | ||
180 | temp = os.path.basename(f).split(".csv")[0] | ||
181 | tokens = temp.split("_") | ||
182 | |||
183 | params = {k:v for (k,v) in map(lambda x: safe_split(x, "="), tokens)} | ||
184 | common = tuple([params['host'], params['ncpu'], params['wcycle'], params['polluters'], params['walk'], params['hpages'], params['upages']]) | ||
185 | if common not in results: | ||
186 | results[common] = {} | ||
187 | results[common][int(params['wss'])] = process_cpmd(f, params) | ||
188 | |||
189 | # print results | ||
190 | for common in results: | ||
191 | trends = results[common] | ||
192 | name = 'dpmo_host=%s_lvl=%s_wcycle=%s_polluters=%s_walk=%s_hpages=%s_upages=%s.csv' % | ||
193 | (common[0], get_level(common[0], common[1]), common[2], common[3], common[4], common[5], common[6]) | ||
194 | f = open(name, 'w') | ||
195 | for w,stats in iter(sorted(trends.iteritems())): | ||
196 | f.write('%d' % w) | ||
197 | _mean = 0 | ||
198 | _max = 0 | ||
199 | for i,data in iter(sorted(stats.iteritems())): | ||
200 | dist_mean = data['mean'] | ||
201 | _mean = max(_mean, dist_mean) | ||
202 | f.write(', %.6f' % dist_mean) | ||
203 | f.write(', %.6f' % _mean) | ||
204 | for i,data in iter(sorted(stats.iteritems())): | ||
205 | dist_max = data['max'] | ||
206 | _max = max(_max, dist_max) | ||
207 | f.write(', %.6f' % dist_max) | ||
208 | f.write(', %.6f\n' % _max) | ||
209 | |||
210 | if __name__ == '__main__': | ||
211 | main() | ||
diff --git a/produce_consume_cost.py b/produce_consume_cost.py new file mode 100755 index 0000000..fd08a8d --- /dev/null +++ b/produce_consume_cost.py | |||
@@ -0,0 +1,172 @@ | |||
1 | #!/usr/bin/python | ||
2 | |||
3 | import os | ||
4 | import copy | ||
5 | import sys | ||
6 | import string | ||
7 | import smtplib | ||
8 | import socket | ||
9 | import time | ||
10 | import itertools | ||
11 | import multiprocessing | ||
12 | |||
13 | from run.executable.executable import Executable | ||
14 | |||
15 | test_mode = False | ||
16 | email_notification = True | ||
17 | |||
18 | def run_exp(nsamples, ncpu, numa_args, wss, sleep_range_ms, walk, do_pollute, do_huge_pages, do_uncache_pages): | ||
19 | |||
20 | fstub = 'pco' | ||
21 | fstub += '_host='+socket.gethostname().split('.')[0] | ||
22 | fstub += '_ncpu='+str(ncpu) | ||
23 | fstub += '_wss='+str(wss) | ||
24 | fstub += '_smin='+str(sleep_range_ms[0]*1000) | ||
25 | fstub += '_smax='+str(sleep_range_ms[1]*1000) | ||
26 | fstub += '_polluters='+str(do_pollute) | ||
27 | fstub += '_hpages='+str(do_huge_pages) | ||
28 | fstub += '_upages='+str(do_uncache_pages) | ||
29 | fstub += '_walk='+walk | ||
30 | |||
31 | filename = fstub + '.csv' | ||
32 | |||
33 | if os.path.exists(filename): | ||
34 | return | ||
35 | |||
36 | polluters = [] | ||
37 | if do_pollute: | ||
38 | for i in range(multiprocessing.cpu_count()): | ||
39 | if numa_args: | ||
40 | # number of CPUs in one of two NUMA nodes | ||
41 | if ncpu == 6: | ||
42 | if i < 6: | ||
43 | numa_hack = ['--cpunodebind=0', '--interleave=0'] | ||
44 | else: | ||
45 | numa_hack = ['--cpunodebind=1', '--interleave=1'] | ||
46 | else: | ||
47 | numa_hack = ['--cpunodebind=0,1', '--interleave=0,1'] | ||
48 | args = copy.deepcopy(numa_hack) | ||
49 | args.append('memthrash') | ||
50 | else: | ||
51 | args = [] | ||
52 | args.append('-m') | ||
53 | args.append(str(i)) | ||
54 | if numa_args: | ||
55 | polluters.append(Executable('numactl', args)) | ||
56 | else: | ||
57 | polluters.append(Executable('memthrash', args)) | ||
58 | |||
59 | if numa_args: | ||
60 | args = copy.deepcopy(numa_args) | ||
61 | args.append('produce_consume_cost') | ||
62 | else: | ||
63 | args = [] | ||
64 | args.append('-m') | ||
65 | args.append(str(ncpu)) | ||
66 | args.append('-c') | ||
67 | args.append(str(nsamples)) | ||
68 | args.append('-s') | ||
69 | args.append(str(wss)) | ||
70 | |||
71 | if do_huge_pages: | ||
72 | args.append('-h') | ||
73 | |||
74 | if do_uncache_pages: | ||
75 | args.append('-u') | ||
76 | |||
77 | # cache_cost wants time in microseconds | ||
78 | args.append('-x') | ||
79 | args.append(str(sleep_range_ms[0]*1000)) | ||
80 | args.append('-y') | ||
81 | args.append(str(sleep_range_ms[1]*1000)) | ||
82 | |||
83 | if walk == 'rand': | ||
84 | args.append('-r') | ||
85 | |||
86 | args.append('-o') | ||
87 | args.append(filename) | ||
88 | |||
89 | if numa_args: | ||
90 | probe = Executable('numactl', args) | ||
91 | else: | ||
92 | probe = Executable('produce_consume_cost', args) | ||
93 | |||
94 | if not test_mode: | ||
95 | if do_pollute: | ||
96 | for p in polluters: | ||
97 | p.execute() | ||
98 | time.sleep(10) | ||
99 | |||
100 | probe.execute() | ||
101 | probe.wait() | ||
102 | |||
103 | for p in polluters: | ||
104 | p.kill() | ||
105 | for p in polluters: | ||
106 | p.wait(False) | ||
107 | else: | ||
108 | print 'Process commands and arguments: ' | ||
109 | if do_pollute: | ||
110 | for p in polluters: | ||
111 | print str(p) | ||
112 | print str(probe) | ||
113 | |||
114 | def main(argv): | ||
115 | nsamples = 5000 | ||
116 | |||
117 | # We may need to test different NUMA node configurations | ||
118 | # according to memory interleaving across the NUMA topology. | ||
119 | # | ||
120 | # For non-numa systems, do "<#cpu>: []" | ||
121 | # Ex., for a 4-CPU non-numa system: "4: []" | ||
122 | # | ||
123 | # NOTE: Must update NUMA hack in run_exp() for memthrash | ||
124 | # for your configuration. | ||
125 | # | ||
126 | # todo: configure numa args for system automatically | ||
127 | ncpu_and_numa_args = { | ||
128 | 6: ['--cpunodebind=0', '--interleave=0'] | ||
129 | # 12: ['--cpunodebind=0,1', '--interleave=0,1'] | ||
130 | } | ||
131 | |||
132 | wss_kb = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096, 8192, 12288, 16384] | ||
133 | sleep_range_ms = [0,50] | ||
134 | |||
135 | # uncache = [False, True] | ||
136 | uncache = [False] | ||
137 | huge_pages = [False] | ||
138 | |||
139 | pollute = [False, True] | ||
140 | # walk = ['seq', 'rand'] | ||
141 | walk = ['seq'] | ||
142 | |||
143 | for ncpu, numa_args in ncpu_and_numa_args.iteritems(): | ||
144 | for u in uncache: | ||
145 | for h in huge_pages: | ||
146 | for w in walk: | ||
147 | for p in pollute: | ||
148 | for wss in wss_kb: | ||
149 | run_exp(nsamples, ncpu, numa_args, wss, sleep_range_ms, w, p, h, u) | ||
150 | |||
151 | if email_notification: | ||
152 | _subject = "Producer/Consumer Ovh Collection Complete!" | ||
153 | _to = "gelliott@cs.unc.edu" | ||
154 | _from = "gelliott@bonham.cs.unc.edu" | ||
155 | _text = "Producer/Consumer Ovh Collection Complete!" | ||
156 | _body = string.join(("From: %s" % _from, "To: %s" % _to, "Subject: %s" % _subject, "", _text), "\r\n") | ||
157 | s = smtplib.SMTP("localhost") | ||
158 | s.sendmail(_from, [_to], _body) | ||
159 | s.quit() | ||
160 | |||
161 | |||
162 | |||
163 | if __name__ == "__main__": | ||
164 | |||
165 | os.environ['PATH'] += ':../liblitmus' | ||
166 | os.environ['PATH'] += ':../cache-ovh' | ||
167 | |||
168 | if 'LD_LIBRARY_PATH' not in os.environ: | ||
169 | os.environ['LD_LIBRARY_PATH'] = '' | ||
170 | os.environ['LD_LIBRARY_PATH'] += ':../liblitmus' | ||
171 | |||
172 | main(sys.argv[1:]) | ||
diff --git a/utils/__init__.py b/utils/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/utils/__init__.py | |||
diff --git a/utils/iqr.py b/utils/iqr.py new file mode 100755 index 0000000..bbecdfa --- /dev/null +++ b/utils/iqr.py | |||
@@ -0,0 +1,32 @@ | |||
1 | import numpy as np | ||
2 | from scipy.stats import scoreatpercentile | ||
3 | import bisect | ||
4 | |||
5 | def find_lt(a, x): | ||
6 | i = bisect.bisect_left(a,x) | ||
7 | if i: | ||
8 | return i - 1 | ||
9 | else: | ||
10 | return None | ||
11 | |||
12 | def find_gt(a, x): | ||
13 | i = bisect.bisect_right(a, x) | ||
14 | if i != len(a): | ||
15 | return i | ||
16 | else: | ||
17 | return None | ||
18 | |||
19 | def apply_iqr(seq, extent = 1.5): | ||
20 | q1 = scoreatpercentile(seq, 25) | ||
21 | q3 = scoreatpercentile(seq, 75) | ||
22 | iqr = q3 - q1 | ||
23 | start = 0 | ||
24 | end = len(seq) - 1 | ||
25 | l = find_lt(seq, q1 - extent*iqr) | ||
26 | if l is not None: | ||
27 | start = l + 1 | ||
28 | r = find_gt(seq, q3 + extent*iqr) | ||
29 | if r is not None: | ||
30 | end = r - 1 | ||
31 | seq = seq[start:end+1] | ||
32 | return (seq, q1 - extent*iqr, q3 + extent*iqr) | ||
diff --git a/utils/machines.py b/utils/machines.py new file mode 100644 index 0000000..37a3c2f --- /dev/null +++ b/utils/machines.py | |||
@@ -0,0 +1,43 @@ | |||
1 | machines = { | ||
2 | 'ludwig': { | ||
3 | 'cpu': 2133.0, # mhz | ||
4 | 'sockets': 4, | ||
5 | 'cores_per_socket': 6, | ||
6 | 'L1': 256, # kb | ||
7 | 'nL1': 1, # private | ||
8 | 'L2': 3*1024, | ||
9 | 'nL2': 2, # shared by two L1 modules | ||
10 | 'L3': 12*1024, | ||
11 | 'nL3': 3, # shared by three L2 modules | ||
12 | 'nMem': 4 # shared by four L3 modules | ||
13 | }, | ||
14 | 'bonham': { | ||
15 | 'cpu': 2666.0, # mhz | ||
16 | 'sockets': 2, | ||
17 | 'cores_per_socket': 6, | ||
18 | 'L1': 32, # kb | ||
19 | 'nL1': 1, # private | ||
20 | 'L2': 2*1024, | ||
21 | 'nL2': 1, # private | ||
22 | 'L3': 12*1024, | ||
23 | 'nL3': 6, # shared by six L2 modules | ||
24 | 'nMem': 1 # shared by one L3 module (per mem) | ||
25 | }, | ||
26 | 'ringo': { | ||
27 | 'cpu': 1400.0, # mhz | ||
28 | 'sockets': 1, | ||
29 | 'cores_per_socket': 4, | ||
30 | 'L1': 32, # kb (just d-cache) | ||
31 | 'nL1': 1, # private | ||
32 | 'L2': 1024, | ||
33 | 'nL2': 4, # shared by four cpus | ||
34 | 'L3': 0, # n/a | ||
35 | 'nL3': 0, # n/a | ||
36 | 'nMem': 1 | ||
37 | } | ||
38 | } | ||
39 | |||
40 | def cycles_to_us(machine_name, ncycles): | ||
41 | mhz = machines[machine_name]['cpu'] | ||
42 | us = ncycles / mhz | ||
43 | return us | ||