1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
#!/usr/bin/env python
from os.path import splitext, basename
from optparse import make_option as o
from tempfile import NamedTemporaryFile as Tmp
from collections import defaultdict
import numpy as np
from util import load_csv_file, select
import stats
import defapp
from plot import decode
from gnuplot import gnuplot, FORMATS
MACHINE_TOPOLOGY = {
'jupiter-cs' : (4, [('preempt', lambda x, y: x == y),
('mem', lambda x, y: x != y)]),
# Socket0 Socket1 Socket2 Socket3
# ------ ------- ------- -------
# | 0, 4| | 1, 5| | 2, 6| | 3, 7|
# | 8,12| | 9,13| |10,14| |11,15|
# |16,20| |17,21| |18,22| |19,23|
# ------- ------- ------- -------
'ludwig.cs.unc.edu' : (24, [('preempt', lambda x, y: x == y),
('l2',
lambda x, y: abs(y - x) == 4),
('l3',
lambda x, y:
abs(y - x) > 4 and \
abs(y - x) % 4 == 0),
('mem', lambda x, y: abs(y - x) % 4 != 0)])
}
PMO_PARAM = {
'wss' : 'WSS',
'host' : 'host',
'wcycle' : 'write-cycle'
}
PMO_MEM = {
'mem' : 'a migration through main memory',
'l3' : 'a migration through a shared L3 cache',
'l2' : 'a migration through a shared L2 cache',
'preempt' : 'a preemption',
'all' : 'either a migration or preemption',
}
PMO_SUBPLOTS = [
# x, y, y-delta, split according to mem-hierarchy?
(0, 6, None, False),
(0, 7, None, False),
(0, 8, None, False),
(0, 9, None, False),
(0, 10, None, True),
(3, 10, None, True),
(0, 10, 9, True),
(3, 10, 9, True),
]
PMO_AGGR_SUBPLOTS = [
# x, y, y-delta, split according to mem-hierarchy?
(0, 6, None, False),
(0, 7, None, False),
(0, 8, None, False),
(0, 9, None, False),
(0, 10, None, True),
(0, 10, 6, True),
(0, 10, 7, True),
(0, 10, 9, True),
(0, 10, 8, True),
]
PMO_COL_LABEL = [('measurement', 'sample', 'index'),
('write cycles', 'wcycle', 'every nth access'),
('WSS', 'wcc', 'kilobytes'),
('suspension length', 'delay', 'microseconds'),
('CPU (preempted on)', 'from', 'processor'),
('CPU (resumed on)', 'to', 'processor'),
('cold access', 'cold', 'cycles'),
('first hot access', 'hot1', 'cycles'),
('second hot access', 'hot2', 'cycles'),
('third hot access', 'hot3', 'cycles'),
('access after resuming', 'after', 'cycles')
]
PMO_FROM_CPU = 4
PMO_TO_CPU = 5
options = [
o('-f', '--format', action='store', dest='format', type='choice',
choices=FORMATS, help='output format'),
o(None, '--paper', action='store_true', dest='paper'),
o(None, '--wide', action='store_true', dest='wide'),
o(None, '--split', action='store_true', dest='split'),
o(None, '--extend', action='store', type='float', dest='extend'),
o(None, '--aggregate', action='store_true', dest='aggregate'),
]
defaults = {
'format' : 'show',
'paper' : False,
'split' : False,
'wide' : False,
'aggregate' : False,
'extend' : 1.5,
}
def extract_cols(data, xcol, ycol1, ycol2, cast=int, cpu_filter=lambda x, y: True):
def matching_cpus(row):
return cpu_filter(row[PMO_FROM_CPU], row[PMO_TO_CPU])
rows = select(matching_cpus, data)
if not (ycol2 is None):
rows[:,ycol1] -= rows[:,ycol2]
return rows[:,(xcol, ycol1)]
class CyclePlotter(defapp.App):
def __init__(self):
defapp.App.__init__(self, options, defaults, no_std_opts=True)
self.aggregate_data = []
def setup_pmo_graphs(self, datafile, conf, subplots=PMO_SUBPLOTS):
host = conf['host']
if host in MACHINE_TOPOLOGY:
(cpus, hier) = MACHINE_TOPOLOGY[host]
plots = []
data = load_csv_file(datafile, dtype=int)
for (xcol, ycol, yminus, by_mem_hierarchy) in subplots:
sub = [('all', lambda x, y: True)]
if by_mem_hierarchy:
sub += hier
for tag, test in sub:
rows = extract_cols(data,
xcol, ycol, yminus,
cpu_filter=test)
plots.append((rows, xcol, ycol, yminus, tag))
return plots
else:
self.err('Unkown host: %s' % host)
return None
def write_aggregate(self, datafiles):
# (wss, avg, wc, #avg, #wc)
# by tag -> by wcycle -> list of data points)
by_tag = defaultdict(lambda: defaultdict(list))
for i, datafile in enumerate(datafiles):
print '[%d/%d] Processing %s...' % (i + 1, len(datafiles), datafile)
bname = basename(datafile)
name, ext = splitext(bname)
if ext != '.csv':
self.err("Warning: '%s' doesn't look like a CSV file."
% bname)
conf = decode(name)
if 'pmo' in conf:
plots = self.setup_pmo_graphs(datafile, conf, PMO_AGGR_SUBPLOTS)
if plots is None:
print "Skipping %s..." % datafile
return
wss = int(conf['wss'])
wcycle = int(conf['wcycle'])
host = conf['host']
for (rows, xcol, ycol, yminus, tag) in plots:
clean = stats.iqr_remove_outliers(rows, extend=self.options.extend)
vals = clean[:,1]
avg = np.mean(vals)
std = np.std(vals, ddof=1)
wc = np.max(vals)
n = len(vals)
xtag = PMO_COL_LABEL[xcol][1]
ytag = PMO_COL_LABEL[ycol][1]
dtag = "-delta-%s" % PMO_COL_LABEL[yminus][1] if not yminus is None else ""
code = "code=%s-%s-%s-%s" % \
(xcol, ycol, yminus, tag)
figname = "host=%s_%s%s-vs-%s_%s_%s" % \
(host, ytag, dtag, xtag, tag, code)
by_tag[figname][wcycle].append((wss, avg, std, wc, n, len(rows) - n))
del plots
else:
self.err("Warning: '%s' is not a PMO experiment; skipping." % bname)
for figname in by_tag:
for wcycle in by_tag[figname]:
data = by_tag[figname][wcycle]
# sort by increasing WSS
data.sort(key=lambda row: row[0])
f = open('pmo-aggr_wcycle=%d_%s.csv' % (wcycle, figname), 'w')
for row in data:
f.write(", ".join([str(x) for x in row]))
f.write('\n')
f.close()
def plot_preempt_migrate(self, datafile, name, conf):
plots = self.setup_pmo_graphs(datafile, conf)
if plots is None:
print "Skipping %s..." % datafile
return
else:
print 'Plotting %s...' % datafile
for (rows, xcol, ycol, yminus, tag) in plots:
# Write it to a temp file.
tmp = Tmp()
for row in rows:
tmp.write("%s, %s\n" % (row[0], row[1]))
tmp.flush()
xtag = PMO_COL_LABEL[xcol][1]
ytag = PMO_COL_LABEL[ycol][1]
dtag = "-delta-%s" % PMO_COL_LABEL[yminus][1] if not yminus is None else ""
figname = "%s_%s%s-vs-%s_%s" % (name, ytag, dtag, xtag, tag)
xunit = PMO_COL_LABEL[xcol][2]
yunit = PMO_COL_LABEL[ycol][2]
ylabel = PMO_COL_LABEL[ycol][0]
xlabel = PMO_COL_LABEL[xcol][0]
title = "%s" % ylabel
if ycol == 10:
title += " from %s" % PMO_MEM[tag]
for key in conf:
if key in PMO_PARAM:
title += " %s=%s" % (PMO_PARAM[key], conf[key])
graphs = [(tmp.name, 1, 2, ylabel)]
# plot cutoff
(s, lo, hi) = stats.iqr(rows[:,1])
lo -= s * self.options.extend
hi += s * self.options.extend
m99 = stats.cutoff_max(rows[:, 1])
graphs += [(lo, 'IQR cutoff (%d)' % lo, 'line'),
(hi, 'IQR cutoff (%d)' % hi, 'line'),
(m99,'99%% cutoff (%d)' % m99, 'line lw 2')]
gnuplot(graphs,
xlabel="%s (%s)" % (xlabel, xunit),
ylabel="%s (%s)" % ("access cost" if yminus is None
else "delta to %s" % PMO_COL_LABEL[yminus][0],
yunit),
title=title,
style='points',
format=self.options.format,
fname=figname)
del tmp # delete temporary file
def plot_pmo_aggr(self, datafile, name, conf):
fname = datafile
code = conf['code']
(xcol, ycol, yminus, tag) = code.split('-')
xcol = int(xcol)
ycol = int(ycol)
if yminus != "None":
yminus = int(ycol)
else:
yminus = None
xtag = PMO_COL_LABEL[xcol][1]
ytag = PMO_COL_LABEL[ycol][1]
dtag = "-delta-%s" % PMO_COL_LABEL[yminus][1] if not yminus is None else ""
figname = "%s_%s%s-vs-%s_%s" % (name, ytag, dtag, xtag, tag)
xunit = PMO_COL_LABEL[xcol][2]
yunit = PMO_COL_LABEL[ycol][2]
ylabel = PMO_COL_LABEL[ycol][0]
xlabel = PMO_COL_LABEL[xcol][0]
title = "%s" % ylabel
ylabel="%s (%s)" % ("access cost" if yminus is None
else "delta to %s" % PMO_COL_LABEL[yminus][0],
yunit),
if ycol == 10:
title += " from %s" % PMO_MEM[tag]
for key in conf:
if key in PMO_PARAM:
title += " %s=%s" % (PMO_PARAM[key], conf[key])
graphs = [
#(fname, 1, 2, "average"),
"'%s' using 1:2:3 title 'average' with errorbars" % (fname),
(fname, 1, 4, "maximum"),
]
xlabel = "working set size (kilobytes)"
gnuplot(graphs, xlabel=xlabel, ylabel=ylabel, title=title, fname=figname,
logscale="xy 2" if yminus is None else "x 2",
format=self.options.format)
def plot_file(self, datafile):
bname = basename(datafile)
name, ext = splitext(bname)
if ext != '.csv':
self.err("Warning: '%s' doesn't look like a CSV file."
% bname)
conf = decode(name)
if 'pmo' in conf:
self.plot_preempt_migrate(datafile, name, conf)
elif 'pmo-aggr' in conf:
self.plot_pmo_aggr(datafile, name, conf)
else:
self.err("Skipped '%s'; unkown experiment type."
% bname)
def default(self, _):
for datafile in self.args:
self.plot_file(datafile)
def do_aggregate(self, _):
self.write_aggregate(self.args[1:])
if __name__ == "__main__":
CyclePlotter().launch()
|