import numpy from util import load_binary_file from stats import iqr_remove_outliers, iqr_cutoff def get_data(fname, scale, extent, cutoff=None, maxval=1000.0): data = load_binary_file(fname) if cutoff and len(data) > cutoff: data = data[:cutoff] if not scale is None: data *= scale data.sort() if extent: iqr_min, iqr_max = iqr_cutoff(data, extent) else: iqr_min = 0 iqr_max = maxval min_idx, max_idx = numpy.searchsorted(data, [iqr_min, iqr_max]) return [data, max_idx, min_idx, iqr_max, iqr_min] def compact_file(*args, **kargs): data, max_idx, min_idx, iqr_max, iqr_min = get_data(*args, **kargs) samples = data[min_idx:max_idx] filtered = len(data) - len(samples) max = samples[-1] min = samples[0] med = numpy.median(samples) avg = numpy.mean(samples) std = numpy.std(samples, ddof=1) var = numpy.var(samples) return [len(data), filtered, max, avg, min, med, std, var, iqr_max, iqr_min]