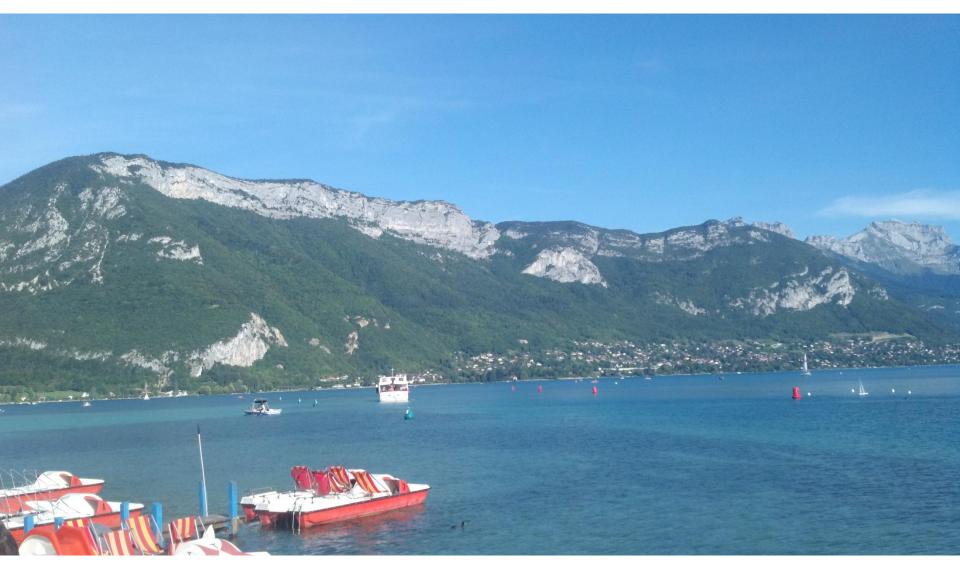
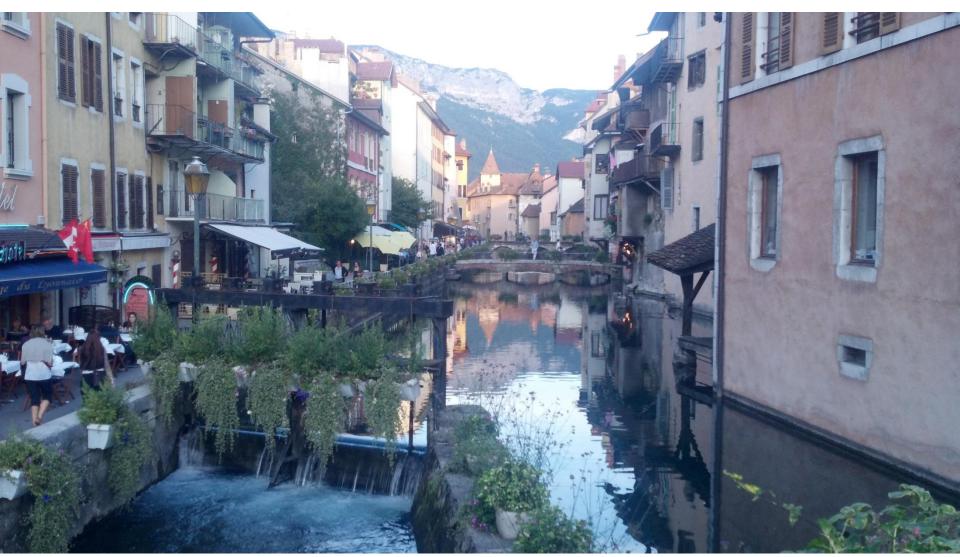

ARTIST Summer School Europe 2011


Mac Mollison


Real-Time Systems *at the University of North Carolina at Chapel Hill*

Mac Mollison – UNC-Chapel Hill

Location

Organization

- Sponsored by ArtistDesign European Network of Excellence on Embedded Systems Design ("Artist")
- Artist is part of the official EU scientific research program

Format

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday
9:00	Janos Sztipanovits Domain Specific Modeling Languages for Cyber Physical Systems: Where are Semantics Coming From?	Fabien Clermidy Designing Network-on- Chip based multi-core heterogeneous System-on-Chip: the MAGALI experience	Luca Benini Managing MPSoCs beyond their Thermal Design Power	Alberto Sangiovanni Mapping abstract models to architectures: automatic synthesis across layers of abstraction	Lothar Thiele Temperature-aware Scheduling	10:00 Yunhao Liu GreenOrbs: Lessons Learned from
	break	break	break	break	break	Extremely Large Scale
11:30 12:30	Rastislav Bodik Automatic Programming	Sanjoy Baruah Certification-cognizant scheduling	Round Table	Babak Falsafi Towards Dark Silicon	Tarek Abdelzaher Challenges	Sensor Network Deployment 12:00
100.000	buffet lunch	buffet lunch	buffet lunch	BBQ lunch	buffet lunch	buffet lunch
14:00	Revisited	in integrated computing environments	Informal discussions	and its Implication on Server Design	in Human-centric Sensor Networks	<u>Chartered buses</u> will leave for Geneva and Lyon airports just
	break	break	, i i i i i i i i i i i i i i i i i i i	break	break	after lunch.
15:30 17:30	Kim Larsen Timing and Performance Analysis of Embedded Systems	Peter Druschel Trust and Accountability in Social Systems	/ Afernoon in Annecy (optional) / On-site activities (optional)	Rolf Ernst Mixed safety critical system design and analysis	Martti Forsell Paralielism, programmability and architectural support for them on multi-core machines	
	Dinner on-site	Dinner on-site	Gala Dinner: Dinner on the lake of Annecy touring on a boat	Dinner on-site	Farewell Buffet Dinner with live jazz on-site	

Domain-Specific Modelling Languages for CPS

- Janos Sztipanovits, Vander<u>bilt</u>
- Interesting historical explanation of CPS
 - Engineers used to just build complex systems using physical/mechanical components. Now, they *also* use computers and networks.

Continues on next slide

Domain-Specific Modelling Languages for CPS

- Uses domain-specific languages to model *structure* and *behavior* in a system
 - Domain examples: Electrical, thermal, mechanical, computational
- Uses meta-languages to compose the domainspecific languages and prove properties of the system

Automatic Programming Revisited

- Rastislav Bodik, UC Berkeley
- The "dream" of writing programs that write programs for us hasn't played out
- Let's do something less ambitious: programmer gives a specification with "holes" in it, and the computer fills them in

Automatic Programming Revisited

• SKETCH is a tool to do this

SKETCH: just two constructs

spec:	<pre>int foo (int x) { return x + x; }</pre>
sketch:	<pre>int bar (int x) implements foo { return x << ??; }</pre>
result:	<pre>int bar (int x) implements foo { return x << 1; }</pre>

Timing and Performance Analysis of Embedded Systems

- Kim Larsen, University of Aalborg (Denmark)
- UPPAAL timed automata modelling tool
 - Check schedulability for task systems
 - (Up to a certain level of complexity)
 - Can also be used to compute WCET given a hardware model
 - Can also be used to model other properties of complex systems
- I was quite impressed by the capabilities of this tool!

Heterogeneous Network-on-Chips

- Fabien Clermidy, French Center for Atomic Energy
- This was my first in-depth exposure to the network on chip concept
 - Many cores (e.g. 64+) connected by a network
 (e.g. with routers) on a single chip

Heterogeneous Network-on-Chips

- Interesting claims
 - NoC will soon be common in the embedded market; Intel is already going this way, plus many others
 - NoCs will be highly heterogeneous
- His job is actually to design chips, so I'd take his claims very seriously.

Certification-cognizant scheduling

- Sanjoy Baruah, UNC
- OCBP for one-shot and recurring jobs
- New uniprocessor mixed criticality scheduling algorithm, EDF-MD
 - Improvement over OCBP, but for a more limited task model (the Liu & Layland sporadic model)
- Still many open problems (e.g. shared resources)

Trust and Accountability in Social Systems

- Peter Druschel, founder of MPI-SS
- This was a distributed/networked systems talk
- Replace *fault tolerance* with *accountability*
 - Especially makes sense for systems with humans in the loop
 - Library exists: "PeerReview"
 - Used in an accountable email system, and other things

Trust and Accountability in Social Systems

- Sybil (forged identity) detection/tolerance schemes
 - Using "credit network" formalism

Managing MPSoCs beyond their Thermal Design Power

- Luca Benini, University of Bologna
- "1,000-core NoC chips will be here in 3-4 years"
 - He designs these chips for industry

Continues on next slide

Managing MPSoCs beyond their Thermal Design Power

- Current/future chips will melt if allowed to run full throttle for more than a few seconds
- Two approaches: Thermal-aware scheduling and hardware control
 - He discusses only the latter
 - Idea: adjust volatage, frequency, and other "knobs" at runtime based on control theory and sophisticated models

Round Table

- Included Joseph Sifakis
 - shares a 2007 Turing Award for work in model checking
- Mainly just rehashed points brought up in the lectures.

Mapping models to architectures using automatic synthesis

- Alberto Sangiovanni-Vincentelli, UC Berkeley
- Interesting discussion of auto market
 - Growth is in electronics
 - Approaching 100 ECUs per car
 - Now moving from federated to integrated architecture (e.g. AUTOSAR)
 - "I predict that in 5 years you can buy a car that will drive autonomously (because I have seen one)."

Mapping models to architectures using automatic synthesis

- Automatic synthesis
 - Synthesis is kind of like compilation, but takes a more abstract domain model and produces code optimized for that domain
 - Example: "Electronic design automation" industry (integrated circuit design)
 - This speaker co-founded Cadence AND Synopsys!

Mapping models to architectures using automatic synthesis

- "There are 100 million LOC in a car today"
 - Most in entertainment system
 - "80% of code in an automobile is auto-generated"
- Wants to apply integrated circuit logic synthesis techniques to other areas (e.g. automobile software)
- Mapping synthesized software onto multicore platforms is going to be a big challenge.

Towards Dark Silicon for Servers

- Babak Falsafi, EPFL (Switzerland)
- "Dark silicon" = most of the platform is intended to be kept powered down most of the time, for energy/thermal reasons
- For server workloads, optimal caching policy is specific to the exact part of the workload under consideration

Towards Dark Silicon for Servers

- NoC caches should use separate infrastructure (for example, on-chip routers) for cache *requests* and cache *responses*
 - Because requests are small, responses are large

Mixed safety critical design and analysis

- Rolf Ernst, TU Braunschweig (Germany)
- Solving the same problems Sanjoy does, but by creating special (very predictable) hardware instead of special scheduling algorithms.

– To start with, the hardware is done in FPGA

• Basic idea: Use a different core for each criticality, and use very specialized NoC to make sure they can't interfere

Temperature-aware Scheduling

- Lothar Thiele, ETH Zurich (Switzerland)
- The goal is to prevent system from going over some maximum temperature
- He presented two techniques
 - Both take a partitioned scheduling approach
 - I will gloss over them for time's sake

Temperature-aware Scheduling

- First approach
 - Add idle time to the beginning of each task
 - This allows the CPU to cool off
 - Uses real-time calculus to compute the amount of idle time needed for each task.

Continues on next slide

Temperature-aware Scheduling

- Second approach
 - Uses on online "shaper" to insert tiny bits of idle time into tasks dynamically (online)

Human-centric Sensor Networks

- Tarek Abdelzaher, UIUC (USA)
- Discusses GreenGPS system
 - Finds "shortest path" for *fuel consumption* of automobiles
 - Based on sensor data collected from people's engines and GPS

Continues on next slide

Human-centric Sensor Networks

- In traditional control applications, the goal is to control the "plant" (e.g., speed of the car for cruise control)
- Speaker views *people* and *society* as the plant for many future applications

- GreenGPS is a good example

• Because this requires collecting lots of data from people, he uses innovative statistical techniques to ensure data remains anonymous.

Architectural support for parallel programming

- Martti Forsell, VTT (Finland)
- Most of this talk was just graduate parallel programming
 - e.g. explaining the PRAM (parallel RAM) abstraction for parallel programs

Continues on next slide

Architectural support for parallel programming

- His overall thesis
 - PRAM and similar abstractions are the right way to make parallel programming "easy"
 - However, there is a huge gap between this kind of model and the way computers *actually* work (architecturally)
 - He believes the solution is not to change our models or to abandon them, but to *design architectures to match the models*
 - That's what he's working on

Extremely Large Scale Sensor Network Deployment

- Yunhao Liu, Tsinghua University (China)
- Coal Mine Monitoring
 - Detect dangerous conditions (e.g., low oxygen, flooding) in a coal mine
- OceanSense
 - Sensors deployed on buoys (i.e., floats) to detect depth of sea
 - Helps authorities determine where to dredge (dig out) sea floor to make it passable for large ships

Extremely Large Scale Sensor Network Deployment

- GreenOrbs
 - Heterogeneous nodes (for long-range comm., or for sensing)
 - Largest number of hops is 28
 - Sensors detect fire, canopy coverage, and measure carbon dioxide emission of trees
 - Designed for long-term deployment (ideally 3-10 years)

Extremely Large Scale Sensor Network Deployment

- CitySee
 - WSN to monitor conditions in a city
 - 1,100 nodes measuring temperature, humidity, light, etc.
 - Future work: Deploy 4,000 sensors covering 100 square kilometers
- WSN security using techniques from topology (a branch of mathematics)

Overarching Themes

- 1,000-core embedded systems really are coming soon
- Thermal-aware techniques are mandatory to deal with the thermal wall
- Formalisms for dealing with complex and safe software are needed
 - Mixed criticality
 - Model-based design

The End

For slides (and, eventually, videos) of the lectures:

http://www.artist-embedded.org/artist/Overview,2278.html