
Improved Schedulability Tests for Global
Fixed-Priority Scheduling

Risat Mahmud Pathan and Jan Jonsson

Chalmers University of Technology, Sweden

Outline

1 Introduction

2 System Model
Task Model
Scheduler

3 Problems

4 Our Contributions
Utilization Bound Test
Iterative Schedulability Test

5 Experimental Results

6 Conclusion

Introduction

Multiprocessors, specifically CMPs, are considered for many
embedded real-time systems (e.g., automotive)

The application of real-time systems are often modeled as a
collection of recurrent tasks (e.g., control applications)

Hard real-time systems must meet all the deadlines of its
application tasks during runtime

Problem: How can we guarantee that all the tasks deadlines
are met on m identical processors?

Task Model

We consider a set of sporadic real-time task set

Γ = {τ1, τ2, . . . τn}

Each task τi has three parameters (Ci , Di , Ti)

I Implicit-deadline if Di = Ti

I Constrained-deadline if Di ≤ Ti

I Total utilization U =
∑

ui =
∑ Ci

Ti

I Total dendity δ =
∑
λi =

∑ Ci
Di

Tasks are given fixed priorities

Tasks are scheduled on m identical processors

Partitioned and Global Scheduling

Partitioned Scheduling: task can execute in exactly one
processor to which it is assigned

Global Scheduling: task can execute on any processor even
when resumed after preemption

Global Fixed-Priority Preemptive Scheduling
The highest priority ready task is always dispatched by
preempting, if any, the execution of a low priority task

Two problems

Priority Assignment
How to assign the fixed priorities for a given task set?

Schedulability Test
How to guarantee the schedulability of a given task set?

Our Contributions

Priority Assignment and Utilization Bound Test
Proposed new fixed-priority assignment policy, called
ISM-US, and derived the schedulability utilization bound

Priority Assignment and Iterative Test
Proposed improved fixed-priority assignment policy for two
state-of-the-art iterative schedulability tests

Utilization Bound Test

Priority Assignment Policy ISM-US

Implicit-deadline sporadic task systems
I is also applicable for constrained-deadline

Hybrid (Slack-Monotonic) Priority Assignment (HPA)
A subset of the tasks are given slack-monotonic priority
and the other tasks are given the highest fixed-priority

Slack-Monotonic (SM)
Task τi has higher SM priority than task τk if and only if
(Ti − Ci < Tk − Ck)

Priority Assignment Policy ISM-US

Policy ISM-US
If ui > uts, then task τi is given the highest fixed-priority,
otherwise, task τi is given slack-monotonic priority

Threshold Utilization

uts =
3m − 2−

√
5m2 − 8m + 4

2m − 2

Theorem (Utilization Bound)
If U ≤ m ·min{0.5,uts}, then all the deadlines of task set Γ
are met using global FP scheduling

Priority Assignment Policy ISM-US

Policy ISM-US
If ui > uts, then task τi is given the highest fixed-priority,
otherwise, task τi is given slack-monotonic priority

Threshold Utilization

uts =
3m − 2−

√
5m2 − 8m + 4

2m − 2

Theorem (Utilization Bound)
If U ≤ m ·min{0.5,uts}, then all the deadlines of task set Γ
are met using global FP scheduling

State-of-the-art utilization bound
RM-US[1

3] M. Bertogna et. al., OPODIS 2005

If ui >
1
3 , then task τi is given the highest fixed-priority, otherwise,

task τi is given rate-monotonic priority

Utilization Bound: m+1
3

SM-US[2
3+
√

5
] B. Andersson, OPODIS 2008

If ui >
2

3+
√

5
, then task τi is given the highest fixed-priority,

otherwise, task τi is given slack-monotonic priority

Utilization Bound: 2m
3+
√

5

State-of-the-art Utilization Bound
If m ≤ 6, then RM-US[1

3] is the best

If m > 6, then SM-US[2
3+
√

5
] is the best

State-of-the-art utilization bound
RM-US[1

3] M. Bertogna et. al., OPODIS 2005

If ui >
1
3 , then task τi is given the highest fixed-priority, otherwise,

task τi is given rate-monotonic priority

Utilization Bound: m+1
3

SM-US[2
3+
√

5
] B. Andersson, OPODIS 2008

If ui >
2

3+
√

5
, then task τi is given the highest fixed-priority,

otherwise, task τi is given slack-monotonic priority

Utilization Bound: 2m
3+
√

5

State-of-the-art Utilization Bound
If m ≤ 6, then RM-US[1

3] is the best

If m > 6, then SM-US[2
3+
√

5
] is the best

State-of-the-art utilization bound
RM-US[1

3] M. Bertogna et. al., OPODIS 2005

If ui >
1
3 , then task τi is given the highest fixed-priority, otherwise,

task τi is given rate-monotonic priority

Utilization Bound: m+1
3

SM-US[2
3+
√

5
] B. Andersson, OPODIS 2008

If ui >
2

3+
√

5
, then task τi is given the highest fixed-priority,

otherwise, task τi is given slack-monotonic priority

Utilization Bound: 2m
3+
√

5

State-of-the-art Utilization Bound
If m ≤ 6, then RM-US[1

3] is the best

If m > 6, then SM-US[2
3+
√

5
] is the best

Comparison with our bound

Figure: Utilization bounds of RM-US[1
3], SM-US[2

3+
√

5
] and proposed ISM-US

HPA policy and Global Scheduling

Predictability [Ha and Liu, ICDCS 1994]: If task τi is
schedulable with WCET Ti , then τi is also schedulable
with WCET Ci .

Separation of Concern

During schedulability analysis, each highest priority task τi ’s
WCET is set to Ti and one processor is (virtually) dedicated
to τi without any concern.

The problem now reduces to the schedulability of the other
(lower) priority tasks on (m −m′) processors (m′ is the
number of heavy tasks)

HPA policy and Global Scheduling

Predictability [Ha and Liu, ICDCS 1994]: If task τi is
schedulable with WCET Ti , then τi is also schedulable
with WCET Ci .

Separation of Concern

During schedulability analysis, each highest priority task τi ’s
WCET is set to Ti and one processor is (virtually) dedicated
to τi without any concern.

The problem now reduces to the schedulability of the other
(lower) priority tasks on (m −m′) processors (m′ is the
number of heavy tasks)

Iterative Schedulability Test

Iterative Schedulability test

We consider constrained-deadline sporadic task
systems

We propose an improved fixed-priority assignment
policy for two state-of-the-art iterative tests:

I the DA-LC test proposed by Davis et al. (RTSJ, 2011)

I the RTA-LC test proposed by Guan et al. (RTSS, 2009).

Iterative Test: one schedulability condition is
tested for each of the lower priority tasks

Interference and Workload

When considering the schedulability of a lower
priority task τk within the problem window, both
RTA-LC and DA-LC tests consider

the interference of each higher priority task
τi ∈ hp(k)

based on the workload of each higher priority
task τi in set hp(k)

where each higher priority task τi is considered
either a carry-in or a non carry-in task

Carry-in and Non Carry-in Interference

IC
i (L,Ck) = carry-in interference of task τi on τk

INC
i (L,Ck) = non carry-in interference of task τi on τk

Carry-in and Non Carry-in Interference

IC
i (L,Ck) = carry-in interference of task τi on τk

INC
i (L,Ck) = non carry-in interference of task τi on τk

DA-LC and RTA-LC test

The DA-LC test (Davis et al. RTSJ 2011) for task τk is given
as follows:

Dk ≥ Ck +

⌊
Ik (Dk)

m

⌋

The RTA-LC test (Guan et al. RTSS 2009) for task τk is
given as follows:

Rt+1
k ← Ck +

⌊
Ik (Rt

k)

m

⌋
The function Ik (L) is calculated as follows:

Ik (L) =
∑

i∈hp(k)

INC
i (L,Ck) +

∑
i∈Max(k,m−1)

IDIFF
i (L,Ck)

where
I Max(k ,m − 1) is the set of (m − 1) higher priority tasks in hp(k)

that have the largest value of IDIFF
i (L,Ck), and

I IDIFF
i (L,Ck) = IC

i (L,Ck)− INC
i (L,Ck)

DA-LC and RTA-LC test

The DA-LC test (Davis et al. RTSJ 2011) for task τk is given
as follows:

Dk ≥ Ck +

⌊
Ik (Dk)

m

⌋
The RTA-LC test (Guan et al. RTSS 2009) for task τk is
given as follows:

Rt+1
k ← Ck +

⌊
Ik (Rt

k)

m

⌋

The function Ik (L) is calculated as follows:

Ik (L) =
∑

i∈hp(k)

INC
i (L,Ck) +

∑
i∈Max(k,m−1)

IDIFF
i (L,Ck)

where
I Max(k ,m − 1) is the set of (m − 1) higher priority tasks in hp(k)

that have the largest value of IDIFF
i (L,Ck), and

I IDIFF
i (L,Ck) = IC

i (L,Ck)− INC
i (L,Ck)

DA-LC and RTA-LC test

The DA-LC test (Davis et al. RTSJ 2011) for task τk is given
as follows:

Dk ≥ Ck +

⌊
Ik (Dk)

m

⌋
The RTA-LC test (Guan et al. RTSS 2009) for task τk is
given as follows:

Rt+1
k ← Ck +

⌊
Ik (Rt

k)

m

⌋
The function Ik (L) is calculated as follows:

Ik (L) =
∑

i∈hp(k)

INC
i (L,Ck) +

∑
i∈Max(k,m−1)

IDIFF
i (L,Ck)

where
I Max(k ,m − 1) is the set of (m − 1) higher priority tasks in hp(k)

that have the largest value of IDIFF
i (L,Ck), and

I IDIFF
i (L,Ck) = IC

i (L,Ck)− INC
i (L,Ck)

DA-LC and RTA-LC test

The DA-LC test (Davis et al. RTSJ 2011) for task τk is given
as follows:

Dk ≥ Ck +

⌊
Ik (Dk)

m

⌋
The RTA-LC test (Guan et al. RTSS 2009) for task τk is
given as follows:

Rt+1
k ← Ck +

⌊
Ik (Rt

k)

m

⌋
The function Ik (L) is calculated as follows:

Ik (L) =
∑

i∈hp(k)

INC
i (L,Ck) +

∑
i∈Max(k,m−1)

IDIFF
i (L,Ck)

where
I Max(k ,m − 1) is the set of (m − 1) higher priority tasks in hp(k)

that have the largest value of IDIFF
i (L,Ck), and

I IDIFF
i (L,Ck) = IC

i (L,Ck)− INC
i (L,Ck)

DA-LC and RTA-LC test

The DA-LC test (Davis et al. RTSJ 2011) for task τk is given
as follows:

Dk ≥ Ck +

⌊
Ik (Dk)

m

⌋
The RTA-LC test (Guan et al. RTSS 2009) for task τk is
given as follows:

Rt+1
k ← Ck +

⌊
Ik (Rt

k)

m

⌋
The function Ik (L) is calculated as follows:

Ik (L) =
∑

i∈hp(k)

INC
i (L,Ck) +

∑
i∈Max(k,m−1)

IDIFF
i (L,Ck)

where
I Max(k ,m − 1) is the set of (m − 1) higher priority tasks in hp(k)

that have the largest value of IDIFF
i (L,Ck), and

I IDIFF
i (L,Ck) = IC

i (L,Ck)− INC
i (L,Ck)

RTA-LC and DA-LC test

R. Davis and A. Burns (RTSJ, 2011) have showed that

For a given fixed-priority ordering, the RTA-LC test
dominates the DA-LC test

Audsley’s Optimal Priority Assignment(OPA) algorithm is
applicable to the DA-LC test but not to the RTA-LC test

Empirically shown that DA-LC+OPA outperforms
RTA-LC test

OPA+DA-LC is the state-of-the-art iterative schedulability
test

Audsley’s OPA for multiprocessors (RTSS, 2009)

Algorithm OPA (Taskset A, number of processors m̂, Test S)
1. for each priority level k , lowest first
2. for each unassigned task τ ∈ A
3. If τ is schedulable using S on m̂ processors at priority k
4. assign τ to priority k
5. break (continue outer loop)
6. return “unschedulable”
7. return “schedulable”

OPA+DA-LC (RTSJ, 2011)

Call OPA (Γ, m, DA-LC)

Interesting Observation

OPA +DA-LC is proved optimal (RTSJ, 2011).

This combination is optimal only under the
assumption that it is applied to the entire
task set and to all processors

I i.e.,Call OPA(Γ,m,DA-LC)

Scope for Improvement?

Is it possible to obtain a more effective priority
assignment if

I OPA+DA-LC is applied to a subset of the entire
task set and on a lower number of processors

I while other tasks are assigned the highest
priorities based on HPA and predictability?

Interesting Observation

OPA +DA-LC is proved optimal (RTSJ, 2011).

This combination is optimal only under the
assumption that it is applied to the entire
task set and to all processors

I i.e.,Call OPA(Γ,m,DA-LC)

Scope for Improvement?

Is it possible to obtain a more effective priority
assignment if

I OPA+DA-LC is applied to a subset of the entire
task set and on a lower number of processors

I while other tasks are assigned the highest
priorities based on HPA and predictability?

Interesting Observation

OPA +DA-LC is proved optimal (RTSJ, 2011).

This combination is optimal only under the
assumption that it is applied to the entire
task set and to all processors

I i.e.,Call OPA(Γ,m,DA-LC)

Scope for Improvement?

Is it possible to obtain a more effective priority
assignment if

I OPA+DA-LC is applied to a subset of the entire
task set and on a lower number of processors

I while other tasks are assigned the highest
priorities based on HPA and predictability?

Interesting Observation
Recall the DA-LC test for task τk :

Dk ≥ Ck +

⌊
Ik (Dk)

m

⌋
Ik (L) depends on (m − 1) carry-in terms

Ik (L) =
∑

i∈hp(k)

INC
i (L,Ck) +

∑
i∈Max(k,m−1)

IDIFF
i (L,Ck)

Observation
If we remove one task, say τh, from hp(k) and

reduce the number of processors from m to (m − 1), and

apply the OPA+DA-LC test on (Γ− τh) and on (m − 1)
processors,

then Ik (Dk) depends on (m − 2) carry-in tasks in
(hp(k)− {τh})

Interesting Observation
Recall the DA-LC test for task τk :

Dk ≥ Ck +

⌊
Ik (Dk)

m

⌋
Ik (L) depends on (m − 1) carry-in terms

Ik (L) =
∑

i∈hp(k)

INC
i (L,Ck) +

∑
i∈Max(k,m−1)

IDIFF
i (L,Ck)

Observation
If we remove one task, say τh, from hp(k) and

reduce the number of processors from m to (m − 1), and

apply the OPA+DA-LC test on (Γ− τh) and on (m − 1)
processors,

then Ik (Dk) depends on (m − 2) carry-in tasks in
(hp(k)− {τh})

Example

Consdier Γ = {τ1, . . . τ4} and m = 3

(Ci ,Di ,Ti) =
{(23,33,33), (106,210,214), (58,216,217), (46,60,64)}

OPA (Γ, m = 3, DA-LC) returns “unschedulable”

Ik (Dk) considers (m − 1) = 2 as carry-in task

The highest density task τ4 is given the highest priority

OPA ({τ1, τ2, τ3}, m = 2, DA-LC) returns “schedulable”

I3(D3) considers (m − 1) = 1 task as carry-in task

Example

Consdier Γ = {τ1, . . . τ4} and m = 3

(Ci ,Di ,Ti) =
{(23,33,33), (106,210,214), (58,216,217), (46,60,64)}

OPA (Γ, m = 3, DA-LC) returns “unschedulable”

Ik (Dk) considers (m − 1) = 2 as carry-in task

The highest density task τ4 is given the highest priority

OPA ({τ1, τ2, τ3}, m = 2, DA-LC) returns “schedulable”

I3(D3) considers (m − 1) = 1 task as carry-in task

HPA policy applied to OPA+DA-LC

The HPA policy (due to the predictability) can improve
OPA +DA-LC as follows:

OPA+DA-LC is applied to the (n −m′) lowest-
density tasks to be scheduled on (m −m′)
processors, and

the remaining m′ highest-density tasks are
assigned the highest fixed priority

for some m′, 0 ≤ m′ < m.

HPA+OPA +DA-LC

Algorithm HybridOPA (Γ, m)
1. for m′ = 0 to (m − 1)

2. remove m′ highest desnity tasks from given task set Γ

3. if OPA (Γ, m −m′, DA-LC) returns “schedulable” then
4. return “schedulable”

5. end for

6. return “unschedulable”

We call this test HP-DA-LC test

HPA+RTA-LC

RTA-LC is OPA-incompatible

But HPA is applicable to the RTA-LC test as
follows:

I assign the m′ highest-density tasks the highest fixed
priority and

I the fixed-priority ordering of the remaining (n −m′)
lowest-density tasks remains the same as given for the
entire task set Γ

for some m′, 0 ≤ m′ < m

Experimental Results

Improvement of HP-DA-LC over DA-LC

Figure: Acceptance Ratio (m = 4,n = 16)

Improvement of HP-DA-LC over DA-LC

Figure: Exclusive-Passed Ratio

Conclusion

Improved utilization bound for global fixed-priority
scheduling based on ISM-US priority assignment.

Improved two iterative schedulability tests by
proposing better priority assignment policy and
schedulability tests.

HPA policy and predictability, originally used to
circumvent Dhall’s effect in RM-US[m

3m−2],
provides

I separation of concern for schedulability analysis

I effective priority assignment

for global fixed-priority scheduling.

Thank You

Backup Slides

Special Task Systems

Special Task Systems
An implicit-deadline sporadic task system Γ is special on m
processor if it satisfies the following two properties:

Property 1: umax ≤ m
2m−1

Property 2: U ≤ min{Fm(umin),Fm(umax)}

where Fm(x) =
m(1− x)

2− x
+ x

Theorem
Sporadic task system Γ that is special on m processors is
feasible using global slack-monotonic scheduling on m
processors

Special Task Systems

Special Task Systems
An implicit-deadline sporadic task system Γ is special on m
processor if it satisfies the following two properties:

Property 1: umax ≤ m
2m−1

Property 2: U ≤ min{Fm(umin),Fm(umax)}

where Fm(x) =
m(1− x)

2− x
+ x

Theorem
Sporadic task system Γ that is special on m processors is
feasible using global slack-monotonic scheduling on m
processors

Constrained Deadline Task System and ISM-DS

Slack: Di − Ci Total Density: δ =
∑
λi =

∑ Ci
Di

Policy ISM-DS
If di > dts, then task τi is given the highest fixed-priority,
otherwise, task τi is given slack-monotonic priority

Threshold Utilization

dts =
3m − 2−

√
5m2 − 8m + 4

2m − 2

Theorem (Utilization Bound)
If δ ≤ m ·min{0.5,dts}, then all the deadlines of task set Γ are
met using global FP scheduling

Constrained Deadline Task System and ISM-DS

Slack: Di − Ci Total Density: δ =
∑
λi =

∑ Ci
Di

Policy ISM-DS
If di > dts, then task τi is given the highest fixed-priority,
otherwise, task τi is given slack-monotonic priority

Threshold Utilization

dts =
3m − 2−

√
5m2 − 8m + 4

2m − 2

Theorem (Utilization Bound)
If δ ≤ m ·min{0.5,dts}, then all the deadlines of task set Γ are
met using global FP scheduling

	Introduction
	System Model
	Task Model
	Scheduler

	Problems
	Our Contributions
	Utilization Bound Test
	Iterative Schedulability Test

	Experimental Results
	Conclusion

