Improved Schedulability Tests for Global Fixed-Priority Scheduling

Risat Mahmud Pathan and Jan Jonsson

Chalmers University of Technology, Sweden

(ロ) (同) (三) (三) (三) (○) (○)

Outline

Introduction

2 System Model

- Task Model
- Scheduler

Problems

Our Contributions

- Utilization Bound Test
- Iterative Schedulability Test

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

5 Experimental Results

Conclusion

Introduction

- Multiprocessors, specifically CMPs, are considered for many embedded real-time systems (e.g., automotive)
- The application of real-time systems are often modeled as a collection of recurrent tasks (e.g., control applications)
- Hard real-time systems must meet all the deadlines of its application tasks during runtime
- Problem: How can we guarantee that all the tasks deadlines are met on *m* identical processors?

Task Model

• We consider a set of **sporadic** real-time task set

 $\Gamma = \{\tau_1, \tau_2, \dots \tau_n\}$

- Each task τ_i has three parameters (C_i , D_i , T_i)
 - Implicit-deadline if D_i = T_i
 - Constrained-deadline if $D_i \leq T_i$
 - Total utilization $U = \sum u_i = \sum \frac{C_i}{T_i}$
 - Total dendity $\delta = \sum \lambda_i = \sum \frac{C_i}{D_i}$
- Tasks are given fixed priorities
- Tasks are scheduled on *m* identical processors

Partitioned and Global Scheduling

- Partitioned Scheduling: task can execute in exactly one processor to which it is assigned
- Global Scheduling: task can execute on any processor even when resumed after preemption

(日) (日) (日) (日) (日) (日) (日)

Global Fixed-Priority Preemptive Scheduling

The highest priority ready task is always dispatched by preempting, if any, the execution of a low priority task

Two problems

Priority Assignment

How to assign the fixed priorities for a given task set?

Schedulability Test

How to guarantee the schedulability of a given task set?

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Our Contributions

Priority Assignment and Utilization Bound Test

Proposed new fixed-priority assignment policy, called ISM-US, and derived the schedulability utilization bound

Priority Assignment and Iterative Test

Proposed improved fixed-priority assignment policy for two state-of-the-art iterative schedulability tests

(日) (日) (日) (日) (日) (日) (日)

Utilization Bound Test

Priority Assignment Policy ISM-US

- Implicit-deadline sporadic task systems
 - is also applicable for constrained-deadline

Hybrid (Slack-Monotonic) Priority Assignment (HPA)

A subset of the tasks are given slack-monotonic priority and the other tasks are given the highest fixed-priority

Slack-Monotonic (SM)

Task τ_i has higher SM priority than task τ_k if and only if $(T_i - C_i < T_k - C_k)$

Priority Assignment Policy ISM-US

Policy ISM-US

If $u_i > u_{ts}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given slack-monotonic priority

Threshold Utilization $u_{ts} = \frac{3m - 2 - \sqrt{5m^2 - 8m + 4}}{2m - 2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Priority Assignment Policy ISM-US

Policy ISM-US

If $u_i > u_{ts}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given slack-monotonic priority

Threshold Utilization
$$u_{ts} = \frac{3m - 2 - \sqrt{5m^2 - 8m + 4}}{2m - 2}$$

Theorem (Utilization Bound)

If $U \le m \cdot min\{0.5, u_{ts}\}$, then all the deadlines of task set Γ are met using global FP scheduling

State-of-the-art utilization bound

RM -US[$\frac{1}{3}$]M. Bertogna et. al., OPODIS 2005

If $u_i > \frac{1}{3}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *rate-monotonic* priority

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Utilization Bound: $\frac{m+1}{3}$

State-of-the-art utilization bound

RM -US[$\frac{1}{3}$] M. Bertogna et. al., OPODIS 2005

If $u_i > \frac{1}{3}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *rate-monotonic* priority

Utilization Bound: $\frac{m+1}{3}$

B. Andersson, OPODIS 2008

If $u_i > \frac{2}{3+\sqrt{5}}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *slack-monotonic* priority

Utilization Bound: $\frac{2m}{3+\sqrt{5}}$

State-of-the-art utilization bound

RM -US[$\frac{1}{3}$] M. Bertogna et. al., OPODIS 2005

If $u_i > \frac{1}{3}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *rate-monotonic* priority

Utilization Bound: $\frac{m+1}{3}$

B. Andersson, OPODIS 2008

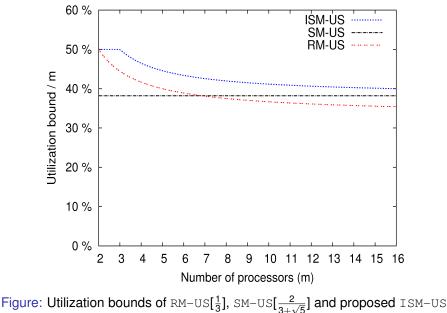
If $u_i > \frac{2}{3+\sqrt{5}}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given *slack-monotonic* priority

Utilization Bound: $\frac{2m}{3+\sqrt{5}}$

State-of-the-art Utilization Bound

- If $m \le 6$, then RM–US[$\frac{1}{3}$] is the best
- If m > 6, then SM-US $\left[\frac{2}{3+\sqrt{5}}\right]$ is the best

Comparison with our bound



HPA policy and Global Scheduling

Predictability [Ha and Liu, ICDCS 1994]: If task τ_i is schedulable with WCET T_i, then τ_i is also schedulable with WCET C_i.

(ロ) (同) (三) (三) (三) (○) (○)

HPA policy and Global Scheduling

Predictability [Ha and Liu, ICDCS 1994]: If task τ_i is schedulable with WCET T_i, then τ_i is also schedulable with WCET C_i.

Separation of Concern

- During schedulability analysis, each highest priority task *τ_i*'s WCET is set to *T_i* and one processor is (virtually) dedicated to *τ_i* without any concern.
- The problem now *reduces* to the schedulability of the other (lower) priority tasks on (m – m') processors (m' is the number of *heavy* tasks)

Iterative Schedulability Test

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Iterative Schedulability test

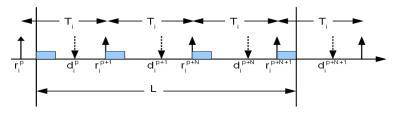
- We consider *constrained-deadline* sporadic task systems
- We propose an improved fixed-priority assignment policy for two state-of-the-art *iterative tests*:
 - the DA-LC test proposed by Davis et al. (RTSJ, 2011)
 - ▶ the RTA-LC test proposed by Guan et al. (RTSS, 2009).
- Iterative Test: one schedulability condition is tested for each of the lower priority tasks

Interference and Workload

When considering the schedulability of a lower priority task τ_k within the **problem window**, both RTA-LC and DA-LC tests consider

- the *interference* of each higher priority task $\tau_i \in hp(k)$
- based on the *workload* of each higher priority task τ_i in set hp(k)
- where each higher priority task τ_i is considered either a *carry-in* or a *non carry-in* task

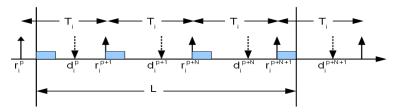
Carry-in and Non Carry-in Interference



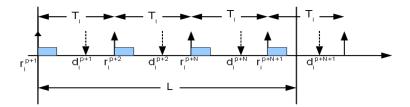
 $I_i^C(L, C_k) =$ carry-in interference of task τ_i on τ_k

・ コット (雪) (小田) (コット 日)

Carry-in and Non Carry-in Interference



 $I_i^C(L, C_k) =$ carry-in interference of task τ_i on τ_k



 $I_i^{NC}(L, C_k) =$ **non carry-in interference** of task τ_i on τ_k

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$D_k \geq C_k + \left\lfloor rac{I_k(D_k)}{m}
ight
floor$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor$$

 The RTA-LC test (Guan et al. RTSS 2009) for task τ_k is given as follows:

$$R_k^{t+1} \leftarrow C_k + \left\lfloor \frac{I_k(R_k^t)}{m} \right\rfloor$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor$$

 The RTA-LC test (Guan et al. RTSS 2009) for task τ_k is given as follows:

$$R_k^{t+1} \leftarrow C_k + \left\lfloor \frac{I_k(R_k^t)}{m} \right\rfloor$$

• The function $I_k(L)$ is calculated as follows:

$$I_k(L) = \sum_{i \in hp(k)} I_i^{NC}(L, C_k) + \sum_{i \in Max(k, m-1)} I_i^{DIFF}(L, C_k)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor$$

 The RTA-LC test (Guan et al. RTSS 2009) for task τ_k is given as follows:

$$R_k^{t+1} \leftarrow C_k + \left\lfloor \frac{I_k(R_k^t)}{m} \right\rfloor$$

• The function $I_k(L)$ is calculated as follows:

1

$$I_k(L) = \sum_{i \in hp(k)} I_i^{NC}(L, C_k) + \sum_{i \in Max(k, m-1)} I_i^{DIFF}(L, C_k)$$

- where
 - ► Max(k, m 1) is the set of (m 1) higher priority tasks in hp(k) that have the largest value of I_i^{DIFF}(L, C_k), and

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor$$

The RTA-LC test (Guan et al. RTSS 2009) for task τ_k is given as follows:

$$R_k^{t+1} \leftarrow C_k + \left\lfloor \frac{I_k(R_k^t)}{m} \right\rfloor$$

• The function $I_k(L)$ is calculated as follows:

1

$$I_k(L) = \sum_{i \in hp(k)} I_i^{NC}(L, C_k) + \sum_{i \in Max(k, m-1)} I_i^{DIFF}(L, C_k)$$

where

► Max(k, m - 1) is the set of (m - 1) higher priority tasks in hp(k) that have the largest value of I_i^{DIFF}(L, C_k), and

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$I_i^{DIFF}(L, C_k) = I_i^C(L, C_k) - I_i^{NC}(L, C_k)$$

RTA-LC and DA-LC test

R. Davis and A. Burns (RTSJ, 2011) have showed that

- For a given fixed-priority ordering, the RTA-LC test dominates the DA-LC test
- Audsley's Optimal Priority Assignment(OPA) algorithm is applicable to the DA-LC test but not to the RTA-LC test
- Empirically shown that DA-LC+OPA outperforms RTA-LC test

OPA+DA-LC is the state-of-the-art iterative schedulability test

Audsley's OPA for multiprocessors (RTSS, 2009)

Algorithm OPA (Taskset A, number of processors \hat{m} , Test S)

- 1. for each priority level k, lowest first
- 2. for each unassigned task $\tau \in A$
- 3. If τ is schedulable using S on \hat{m} processors at priority k
- 4. assign τ to priority k
- 5. break (continue outer loop)
- 6. return "unschedulable"
- 7. return "schedulable"

OPA+DA-LC (RTSJ, 2011)

Call OPA (F, m, DA-LC)

• OPA +DA-LC is proved optimal (RTSJ, 2011).

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ●

- OPA +DA-LC is proved optimal (RTSJ, 2011).
- This combination is optimal only under the assumption that it is applied to the entire task set and to all processors

(ロ) (同) (三) (三) (三) (○) (○)

▶ i.e.,Call OPA(Γ, m, DA-LC)

- OPA +DA-LC is proved optimal (RTSJ, 2011).
- This combination is optimal only under the assumption that it is applied to the entire task set and to all processors
 - ▶ i.e.,Call OPA(Γ, m, DA-LC)

Scope for Improvement?

- Is it possible to obtain a more effective priority assignment if
 - OPA+DA-LC is applied to a subset of the entire task set and on a lower number of processors
 - while other tasks are assigned the highest priorities based on HPA and predictability?

• Recall the DA-LC test for task τ_k :

$$D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m}
ight
floor$$

• $I_k(L)$ depends on (m-1) carry-in terms

$$I_k(L) = \sum_{i \in hp(k)} I_i^{NC}(L, C_k) + \sum_{i \in Max(k, m-1)} I_i^{DIFF}(L, C_k)$$

• Recall the DA-LC test for task τ_k :

$$D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m}
ight
floor$$

• $I_k(L)$ depends on (m-1) carry-in terms

$$I_k(L) = \sum_{i \in hp(k)} I_i^{NC}(L, C_k) + \sum_{i \in Max(k, m-1)} I_i^{DIFF}(L, C_k)$$

Observation

- If we remove one task, say τ_h , from hp(k) and
- reduce the number of processors from m to (m-1), and
- apply the OPA+DA-LC test on $(\Gamma \tau_h)$ and on (m 1) processors,
- then *I_k(D_k)* depends on (*m* − 2) carry-in tasks in (*hp*(*k*) − {τ_h})

Example

- Consdier $\Gamma = \{\tau_1, \dots \tau_4\}$ and m = 3
- $(C_i, D_i, T_i) =$ {(23, 33, 33), (106, 210, 214), (58, 216, 217), (46, 60, 64)}

(日) (日) (日) (日) (日) (日) (日)

- OPA (Γ , m = 3, DA-LC) returns "unschedulable"
- $I_k(D_k)$ considers (m-1) = 2 as carry-in task

Example

- Consdier $\Gamma = \{\tau_1, \dots \tau_4\}$ and m = 3
- $(C_i, D_i, T_i) =$ {(23, 33, 33), (106, 210, 214), (58, 216, 217), (46, 60, 64)}
- OPA (Γ , m = 3, DA–LC) returns "unschedulable"
- $I_k(D_k)$ considers (m-1) = 2 as carry-in task

- The highest density task τ_4 is given the highest priority
- OPA ($\{\tau_1, \tau_2, \tau_3\}$, m = 2, DA-LC) returns "schedulable"
- $I_3(D_3)$ considers (m-1) = 1 task as carry-in task

HPA policy applied to OPA+DA-LC

The HPA policy (due to the predictability) can improve OPA +DA-LC as follows:

- OPA+DA-LC is applied to the (n m') lowestdensity tasks to be scheduled on (m - m')processors, and
- the remaining m' highest-density tasks are assigned the highest fixed priority

(日) (日) (日) (日) (日) (日) (日)

for some m', $0 \le m' < m$.

HPA+OPA +DA-LC

Algorithm HybridOPA (Γ, m)

- 1. for m' = 0 to (m 1)
- 2. remove m' highest desnity tasks from given task set Γ
- 3. If OPA (Γ , m m', DA-LC) returns "schedulable" then
- 4. return "schedulable"
- 5. **end for**
- 6. return "unschedulable"

We call this test HP-DA-LC test

HPA+RTA-LC

- RTA-LC is OPA-incompatible
- But HPA is applicable to the RTA-LC test as follows:
 - assign the m' highest-density tasks the highest fixed priority and
 - the fixed-priority ordering of the remaining (n m') lowest-density tasks remains the same as given for the entire task set Γ

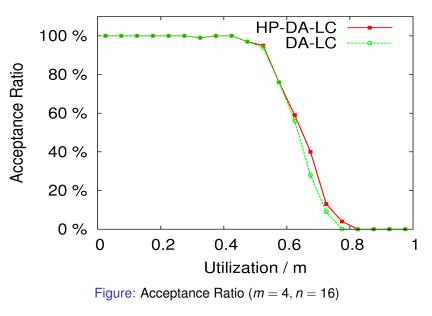
(日) (日) (日) (日) (日) (日) (日)

for some m', $0 \le m' < m$

Experimental Results

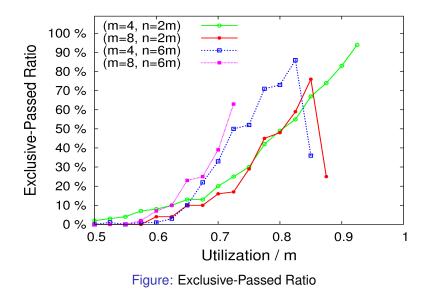
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Improvement of HP-DA-LC over DA-LC



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Improvement of HP-DA-LC over DA-LC



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Conclusion

- Improved utilization bound for global fixed-priority scheduling based on ISM-US priority assignment.
- Improved two iterative schedulability tests by proposing better priority assignment policy and schedulability tests.
- HPA policy and predictability, originally used to circumvent Dhall's effect in RM-US [m/3m-2], provides
 - separation of concern for schedulability analysis
 - effective priority assignment

for global fixed-priority scheduling.

Thank You

Backup Slides

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Special Task Systems

Special Task Systems

An implicit-deadline sporadic task system Γ is **special** on *m* processor if it satisfies the following two properties:

Property 1: $u_{max} \le \frac{m}{2m-1}$ Property 2: $U \le \min\{F_m(u_{min}), F_m(u_{max})\}$

where
$$F_m(x) = rac{m(1-x)}{2-x} + x$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Special Task Systems

Special Task Systems

An implicit-deadline sporadic task system Γ is **special** on *m* processor if it satisfies the following two properties:

Property 1: $u_{max} \le \frac{m}{2m-1}$ Property 2: $U \le \min\{F_m(u_{min}), F_m(u_{max})\}$

where
$$F_m(x) = rac{m(1-x)}{2-x} + x$$

Theorem

Sporadic task system Γ that is **special** on *m* processors is feasible using global slack-monotonic scheduling on *m* processors

Constrained Deadline Task System and ISM-DS

Slack: $D_i - C_i$ Total Density: $\delta = \sum \lambda_i = \sum \frac{C_i}{D_i}$

Policy ISM-DS

If $d_i > d_{ts}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given slack-monotonic priority

Threshold Utilization
$$d_{ts} = rac{3m-2-\sqrt{5m^2-8m+4}}{2m-2}$$

(日) (日) (日) (日) (日) (日) (日)

Constrained Deadline Task System and ISM-DS

Slack: $D_i - C_i$ Total Density: $\delta = \sum \lambda_i = \sum \frac{C_i}{D_i}$

Policy ISM-DS

If $d_i > d_{ts}$, then task τ_i is given the highest fixed-priority, otherwise, task τ_i is given slack-monotonic priority

Threshold Utilization
$$d_{ts} = \frac{3m - 2 - \sqrt{5m^2 - 8m + 4}}{2m - 2}$$

Theorem (Utilization Bound)

If $\delta \le m \cdot min\{0.5, d_{ts}\}$, then all the deadlines of task set Γ are met using global FP scheduling