Improved Schedulability Tests for Global Fixed-Priority Scheduling

Risat Mahmud Pathan and Jan Jonsson

Chalmers University of Technology, Sweden

KO KKO K S A B K S B K V S A V K S

Outline

[Introduction](#page-2-0)

[System Model](#page-3-0)

- **[Task Model](#page-3-0)**
- **•** [Scheduler](#page-4-0)

[Problems](#page-5-0)

[Our Contributions](#page-6-0)

- [Utilization Bound Test](#page-8-0)
- [Iterative Schedulability Test](#page-18-0)

KEL KALEY KEY E NAG

5 [Experimental Results](#page-40-0)

[Conclusion](#page-42-0)

Introduction

- Multiprocessors, specifically CMPs, are considered for many embedded real-time systems (e.g., automotive)
- The application of real-time systems are often modeled as a collection of recurrent tasks (e.g., control applications)
- Hard real-time systems must meet all the deadlines of its application tasks during runtime
- Problem: How can we guarantee that all the tasks deadlines are met on *m* identical processors?

KORKAR KERKER E VOOR

Task Model

We consider a set of **sporadic** real-time task set

 $\Gamma = \{\tau_1, \tau_2, \ldots \tau_n\}$

KORKAR KERKER E VOOR

- Each task τ_i has three parameters $(\textit{C}_i, \textit{D}_i, \textit{T}_i)$
	- \blacktriangleright *Implicit-deadline* if $D_i = T_i$
	- ▶ *Constrained-deadline* if $D_i < T_i$
	- \blacktriangleright *Total utilization* $U = \sum u_i = \sum \frac{C_i}{T_i}$
	- \blacktriangleright *Total dendity* $\delta = \sum \lambda_i = \sum \frac{C_i}{D_i}$
- Tasks are given fixed priorities
- Tasks are scheduled on *m* identical processors

Partitioned and Global Scheduling

- Partitioned Scheduling: task can execute in exactly one processor to which it is assigned
- Global Scheduling: task can execute on any processor even when resumed after preemption

KORK ERKER ADAM ADA

Global Fixed-Priority Preemptive Scheduling

The highest priority ready task is always dispatched by preempting, if any, the execution of a low priority task

Two problems

Priority Assignment

How to assign the fixed priorities for a given task set?

Schedulability Test

How to guarantee the schedulability of a given task set?

KORK ERKER ADAM ADA

Our Contributions

Priority Assignment and Utilization Bound Test

Proposed new fixed-priority assignment policy, called ISM-US, and derived the schedulability utilization bound

Priority Assignment and Iterative Test

Proposed improved fixed-priority assignment policy for two state-of-the-art iterative schedulability tests

KORK ERKER ADAM ADA

Utilization Bound Test

KOXK@XKEXKEX E 1990

Priority Assignment Policy ISM-US

- Implicit-deadline sporadic task systems
	- \blacktriangleright is also applicable for constrained-deadline

Hybrid (Slack-Monotonic) Priority Assignment (HPA)

A subset of the tasks are given slack-monotonic priority and the other tasks are given the highest fixed-priority

Slack-Monotonic (SM)

Task τ*ⁱ* **has higher SM priority than task** τ*^k* **if and only if** $(T_i - C_i < T_k - C_k)$

KORKAR KERKER E VOOR

Priority Assignment Policy ISM-US

Policy ISM-US

If *uⁱ* > *uts***, then task** τ*ⁱ* **is given the highest fixed-priority, otherwise, task** τ*ⁱ* **is given slack-monotonic priority**

Threshold Utilization $u_{ts} =$ 3*m* − 2 − √ 5*m*² − 8*m* + 4 2*m* − 2

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Priority Assignment Policy ISM-US

Policy ISM-US

If *uⁱ* > *uts***, then task** τ*ⁱ* **is given the highest fixed-priority, otherwise, task** τ*ⁱ* **is given slack-monotonic priority**

Threshold Utilization

\n
$$
u_{ts} = \frac{3m - 2 - \sqrt{5m^2 - 8m + 4}}{2m - 2}
$$

Theorem (Utilization Bound)

If U ≤ **m** · **min**{**0.5,uts**}**, then all the deadlines of task set** Γ **are met using global FP scheduling**

KOD KOD KED KED E VOOR

State-of-the-art utilization bound

$\mathsf{RM\text{-}US}[\frac{1}{3}]$ M. Bertogna et. al., OPODIS 2005

If $u_i > \frac{1}{3}$ 3 **, then task** τ*ⁱ* **is given the highest fixed-priority, otherwise, task** τ*ⁱ* **is given** *rate-monotonic* **priority**

K □ K K 레 K K 레 K X H X X X K K X X X X X X X X

Utilization Bound: *^m*+¹ 3

State-of-the-art utilization bound

$\mathsf{RM\text{-}US}[\frac{1}{3}]$ M. Bertogna et. al., OPODIS 2005

If $u_i > \frac{1}{3}$ 3 **, then task** τ*ⁱ* **is given the highest fixed-priority, otherwise, task** τ*ⁱ* **is given** *rate-monotonic* **priority**

Utilization Bound: *^m*+¹ 3

] B. Andersson, OPODIS 2008

If $u_i > \frac{2}{3+2}$ $\frac{2}{3+\sqrt{5}}$, then task τ_i is given the highest fixed-priority, **otherwise, task** τ*ⁱ* **is given** *slack-monotonic* **priority**

Utilization Bound: $\frac{2m}{3+\sqrt{5}}$

State-of-the-art utilization bound

$\mathsf{RM\text{-}US}[\frac{1}{3}]$ M. Bertogna et. al., OPODIS 2005

If $u_i > \frac{1}{3}$ 3 **, then task** τ*ⁱ* **is given the highest fixed-priority, otherwise, task** τ*ⁱ* **is given** *rate-monotonic* **priority**

Utilization Bound: *^m*+¹ 3

] B. Andersson, OPODIS 2008

If $u_i > \frac{2}{3+2}$ $\frac{2}{3+\sqrt{5}}$, then task τ_i is given the highest fixed-priority, **otherwise, task** τ*ⁱ* **is given** *slack-monotonic* **priority**

Utilization Bound: $\frac{2m}{3+\sqrt{5}}$

State-of-the-art Utilization Bound

- **If** $m \leq 6$, then <code>RM–US[$\frac{1}{3}$ </code> $\frac{1}{3}$] is the best
- If $m > 6$, then SM–US[$\frac{2}{3}$ $\frac{2}{3+\sqrt{5}}$] is the best

Comparison with our bound

 2990 Þ

HPA policy and Global Scheduling

Predictability [Ha and Liu, ICDCS 1994]: If task τ*ⁱ* is schedulable with WCET \mathcal{T}_i , then τ_i is also schedulable with WCET *Cⁱ* .

KORK ERKER ADAM ADA

HPA policy and Global Scheduling

Predictability [Ha and Liu, ICDCS 1994]: If task τ*ⁱ* is schedulable with WCET \mathcal{T}_i , then τ_i is also schedulable with WCET *Cⁱ* .

Separation of Concern

- During schedulability analysis, each highest priority task τ*ⁱ* 's WCET is set to *Tⁱ* and one processor is (virtually) dedicated to τ*ⁱ without any concern*.
- The problem now *reduces* to the schedulability of the other (lower) priority tasks on $(m - m')$ processors $(m'$ is the number of *heavy* tasks)

Iterative Schedulability Test

K ロ X x (日 X X B X X B X X B X X O Q O

Iterative Schedulability test

- We consider *constrained-deadline* sporadic task systems
- We propose an improved fixed-priority assignment policy for two state-of-the-art *iterative tests*:
	- \triangleright the DA-LC test proposed by Davis et al. (RTSJ, 2011)
	- \triangleright the RTA-LC test proposed by Guan et al. (RTSS, 2009).
- **Iterative Test:** one schedulability condition is tested for each of the lower priority tasks

Interference and Workload

When considering the schedulability of a lower priority task τ*^k* within the *problem window*, both RTA-LC and DA-LC tests consider

- the *interference* of each higher priority task $\tau_i \in hp(k)$
- based on the *workload* of each higher priority task τ*ⁱ* in set *hp*(*k*)
- where each higher priority task τ_i is considered either a *carry-in* or a *non carry-in* task

Carry-in and Non Carry-in Interference

 $I_i^C(L, C_k) =$ **carry-in interference** of task τ_i on τ_k

K ロ ト K 何 ト K ヨ ト K ヨ ト

 2990

B

Carry-in and Non Carry-in Interference

 $I_i^C(L, C_k) =$ **carry-in interference** of task τ_i on τ_k

 $I_i^{NC}(L, C_k) =$ $I_i^{NC}(L, C_k) =$ $I_i^{NC}(L, C_k) =$ **non carry-in interferen[ce](#page-20-0)** [o](#page-5-0)[f](#page-19-0) [t](#page-20-0)[a](#page-21-0)[s](#page-22-0)k τ_i τ_i o[n](#page-39-0) τ_k 2990

• The $DA-LC$ test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$
D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

• The DA-LC test (Davis et al. RTSJ 2011) for task τ_k is given as follows:

$$
D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor
$$

• The RTA-LC test (Guan et al. RTSS 2009) for task τ_k is given as follows:

$$
R_k^{t+1} \leftarrow C_k + \left\lfloor \frac{l_k(R_k^t)}{m} \right\rfloor
$$

KOD KARD KED KED BE YOUR

The DA-LC test (Davis et al. RTSJ 2011) for task τ*^k* is given as follows:

$$
D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor
$$

• The RTA-LC test (Guan et al. RTSS 2009) for task τ_k is given as follows:

$$
R_k^{t+1} \leftarrow C_k + \left\lfloor \frac{l_k(R_k^t)}{m} \right\rfloor
$$

• The function $I_k(L)$ is calculated as follows:

$$
I_k(L) = \sum_{i \in hp(k)} I_i^{NC}(L, C_k) + \sum_{i \in Max(k, m-1)} I_i^{DIFF}(L, C_k)
$$

KEL KALEYKEN E VAG

The DA-LC test (Davis et al. RTSJ 2011) for task τ*^k* is given as follows:

$$
D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor
$$

The RTA-LC test (Guan et al. RTSS 2009) for task τ*^k* is given as follows:

$$
R_k^{t+1} \leftarrow C_k + \left\lfloor \frac{l_k(R_k^t)}{m} \right\rfloor
$$

• The function $I_k(L)$ is calculated as follows:

$$
I_{k}(L) = \sum_{i \in hp(k)} I_{i}^{NC}(L, C_{k}) + \sum_{i \in Max(k, m-1)} I_{i}^{DIFF}(L, C_{k})
$$

- **•** where
	- \blacktriangleright *Max*(*k*, *m* − 1) is the set of (*m* − 1) higher priority tasks in *hp*(*k*) that have the largest value of $I_i^{DIFF}(L, \allowbreak C_k),$ and

The DA-LC test (Davis et al. RTSJ 2011) for task τ*^k* is given as follows:

$$
D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor
$$

The RTA-LC test (Guan et al. RTSS 2009) for task τ*^k* is given as follows:

$$
R_k^{t+1} \leftarrow C_k + \left\lfloor \frac{l_k(R_k^t)}{m} \right\rfloor
$$

• The function $I_k(L)$ is calculated as follows:

$$
I_k(L) = \sum_{i \in hp(k)} I_i^{NC}(L, C_k) + \sum_{i \in Max(k, m-1)} I_i^{DIFF}(L, C_k)
$$

• where

 \blacktriangleright *Max*(*k*, *m* − 1) is the set of (*m* − 1) higher priority tasks in *hp*(*k*) that have the largest value of $I_i^{DIFF}(L, \allowbreak C_k),$ and

KOD KOD KED KED E VOOR

$$
\blacktriangleright \ \ I_i^{DIFF}(L, C_k) = I_i^{C}(L, C_k) - I_i^{NC}(L, C_k)
$$

RTA-LC and DA-LC test

R. Davis and A. Burns (RTSJ, 2011) have showed that

- \bullet For a given fixed-priority ordering, the RTA-LC test dominates the DA-LC test
- Audsley's Optimal Priority Assignment(OPA) algorithm is applicable to the DA-LC test but not to the RTA-LC test
- Empirically shown that DA-LC+OPA outperforms RTA-LC test

OPA+DA-LC is the state-of-the-art iterative schedulability test

KORK ERKER ADAM ADA

Audsley's OPA for multiprocessors (RTSS, 2009)

Algorithm OPA (Taskset A, number of processors *m*ˆ **, Test S)**

- 1. for each priority level *k*, lowest first
- 2. for each unassigned task $\tau \in A$
3. If τ is schedulable using S on
- 3. If τ is schedulable using *S* on *m*ˆ processors at priority *k*
- 4. assign τ to priority *k*
- 5. break (continue outer loop)
- 6. return "unschedulable"
- 7. return "schedulable"

OPA+DA-LC (RTSJ, 2011)

Call OPA (Γ, *m*, DA-LC)

• OPA +DA-LC is proved optimal (RTSJ, 2011).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \bullet OPA +DA-LC is proved optimal (RTSJ, 2011).
- This combination is optimal only under the assumption that it is applied to the entire task set and to all processors

KORK EXTERNED ARA

 \blacktriangleright i.e., Call OPA(Γ , m , DA-LC)

- OPA +DA-LC is proved optimal (RTSJ, 2011).
- This combination is optimal only under the assumption that it is applied to the entire task set and to all processors
	- \blacktriangleright i.e., Call OPA(Γ , m , DA-LC)

Scope for Improvement?

- Is it possible to obtain a more effective priority assignment if
	- ^I OPA+DA-LC is applied to a **subset** of the entire task set and on a **lower** number of processors
	- \triangleright while other tasks are assigned the highest priorities based on HPA and predictability?

• Recall the $DA-LC$ test for task τ_k :

$$
D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor
$$

• $I_k(L)$ depends on $(m-1)$ carry-in terms

$$
I_k(L) = \sum_{i \in hp(k)} I_i^{NC}(L, C_k) + \sum_{i \in Max(k, m-1)} I_i^{DIFF}(L, C_k)
$$

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

• Recall the $DA-LC$ test for task τ_k :

$$
D_k \geq C_k + \left\lfloor \frac{I_k(D_k)}{m} \right\rfloor
$$

I^k (*L*) depends on (*m* − 1) carry-in terms

$$
I_k(L) = \sum_{i \in hp(k)} I_i^{NC}(L, C_k) + \sum_{i \in Max(k, m-1)} I_i^{DIFF}(L, C_k)
$$

Observation

- **•** If we remove one task, say τ_h , from $hp(k)$ and
- reduce the number of processors from *m* to (*m* − 1), and
- apply the OPA+DA-LC test on $(\Gamma \tau_h)$ and on $(m 1)$ processors,
- then $I_k(D_k)$ depends on $(m-2)$ carry-in tasks in $(hp(k) - \{\tau_h\})$

Example

- Consdier $\Gamma = \{\tau_1, \ldots \tau_4\}$ and $m = 3$
- $(C_i, D_i, T_i) =$ $\{(23, 33, 33), (106, 210, 214), (58, 216, 217), (46, 60, 64)\}$

KORK EXTERNED ARA

- **OPA (**Γ**,** *m* = 3**, DA-LC) returns "unschedulable"**
- $I_k(D_k)$ considers $(m-1) = 2$ as carry-in task

Example

- **Consdier** $\Gamma = \{\tau_1, \ldots, \tau_4\}$ and $m = 3$
- $(C_i, D_i, T_i) =$ $\{(23, 33, 33), (106, 210, 214), (58, 216, 217), (46, 60, 64)\}\$
- **OPA (**Γ**,** *m* = 3**, DA-LC) returns "unschedulable"**
- $I_k(D_k)$ considers $(m-1) = 2$ as carry-in task

- The highest density task τ_4 is given the highest priority
- **o** *OPA* $\{(\tau_1, \tau_2, \tau_3\}, m = 2, DA-LC\}$ returns "schedulable"
- $I_3(D_3)$ considers $(m-1) = 1$ task as carry-in task

HPA policy applied to OPA+DA-LC

The HPA policy (due to the predictability) can improve $OPA + DA-LO$ as follows:

- OPA+DA-LC is applied to the $(n m')$ lowestdensity tasks to be scheduled on $(m - m')$ processors, and
- \bullet the remaining m' highest-density tasks are assigned the highest fixed priority

KORK EXTERNED ARA

for some m' , $0 \le m' < m$.

$HPA+OPA +DA-IC$

Algorithm HybridOPA (Γ**,** *m***)**

- 1. **for** $m' = 0$ **to** $(m 1)$
- 2. remove *m*⁰ highest desnity tasks from given task set Γ
- 3. **if** OPA (Γ, *m* − *m'*, DA-LC) returns "schedulable" then

KEL KALEYKEN E VAG

- 4. **return** "schedulable"
- 5. **end for**
- 6. **return** "unschedulable"

We call this test HP-DA-LC test

HPA+RTA-LC

• RTA-LC is OPA-incompatible

- \bullet But HPA is applicable to the RTA-LC test as follows:
	- \triangleright assign the *m'* highest-density tasks the highest fixed priority and
	- ► the fixed-priority ordering of the remaining $(n m)$ lowest-density tasks remains the same as given for the entire task set Γ

KORK EXTERNED ARA

for some $m',\, 0\leq m'< m$

Experimental Results

K ロ X x (日 X X B X X B X X B X X O Q O

Improvement of HP-DA-LC over DA-LC

(ロトメ部) (文書) (文書) ÷. 299

Improvement of HP-DA-LC over DA-LC

(ロトイ団) → イ君 → イ君 → 299 ÷.

Conclusion

- Improved utilization bound for global fixed-priority scheduling based on **ISM-US** priority assignment.
- Improved two iterative schedulability tests by proposing better priority assignment policy and schedulability tests.
- HPA policy and predictability, originally used to circumvent Dhall's effect in RM-US[*^m* 3*m*−2], provides
	- \triangleright separation of concern for schedulability analysis
	- \blacktriangleright effective priority assignment

for global fixed-priority scheduli[ng](#page-41-0)[.](#page-43-0)

Thank You

KOXK@XKEXKEX E 1990

Backup Slides

K ロ X x (日 X X B X X B X X B X X O Q O

Special Task Systems

Special Task Systems

An implicit-deadline sporadic task system Γ is *special* on *m* processor if it satisfies the following two properties:

Property 1: $u_{max} \leq \frac{m}{2m}$ 2*m*−1 **Property 2:** $U \leq \min\{F_m(u_{min}), F_m(u_{max})\}$

where
$$
F_m(x) = \frac{m(1-x)}{2-x} + x
$$

KEL KALEY KEY E NAG

Special Task Systems

Special Task Systems

An implicit-deadline sporadic task system Γ is *special* on *m* processor if it satisfies the following two properties:

Property 1: $u_{max} \leq \frac{m}{2m}$ 2*m*−1 **Property 2:** $U \leq \min\{F_m(u_{min}), F_m(u_{max})\}$

where
$$
F_m(x) = \frac{m(1-x)}{2-x} + x
$$

Theorem

Sporadic task system Γ that is *special* on *m* processors is feasible using global slack-monotonic scheduling on *m* processors

Constrained Deadline Task System and ISM-DS

Slack: $D_i - C_i$ Total Density: $\delta = \sum_i \lambda_i = \sum_i \frac{C_i}{D_i}$

Policy ISM-DS

If *dⁱ* > *dts***, then task** τ*ⁱ* **is given the highest fixed-priority, otherwise, task** τ*ⁱ* **is given slack-monotonic priority**

Constrained Deadline Task System and ISM-DS

Slack: $D_i - C_i$ Total Density: $\delta = \sum_i \lambda_i = \sum_i \frac{C_i}{D_i}$

Policy ISM-DS

If *dⁱ* > *dts***, then task** τ*ⁱ* **is given the highest fixed-priority, otherwise, task** τ*ⁱ* **is given slack-monotonic priority**

Threshold Utilization $d_{ts} =$ 3*m* − 2 − √ 5*m*² − 8*m* + 4 2*m* − 2

Theorem (Utilization Bound)

If δ ≤ *m* · *min*{0.5, *dts*}**, then all the deadlines of task set** Γ **are met using global FP scheduling**