

Towards the Design of Certifiable Mixed-Criticality systems

Sanjoy Baruah, Haohan Li The University of North Carolina

Leen Stougie Vrije Universiteit

Outline

Motivation

Certification requirements in embedded systems

Model

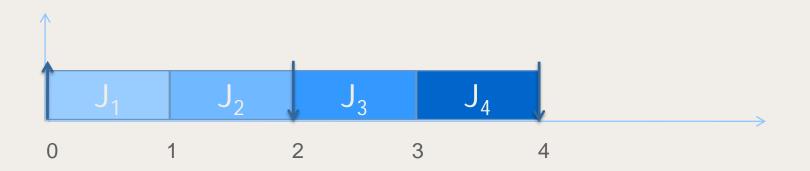
- Definition of mixed-criticality system
- Hardness of feasibility test


- Why EDF and criticality-monotonic fail
- OCBP: A new algorithm

- An example for classic real-time jobs
 - Uniprocessor
 - Preemptive
 - Hard real-time
 - Given finite instance of jobs
 - One-pass job set
 - Known release times and deadlines

An example for classic real-time jobs

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J_2	0	4	1
J ₃	0	4	1
J ₄	0	4	1


An example for classic real-time jobs

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	1
J ₄	0	4	1

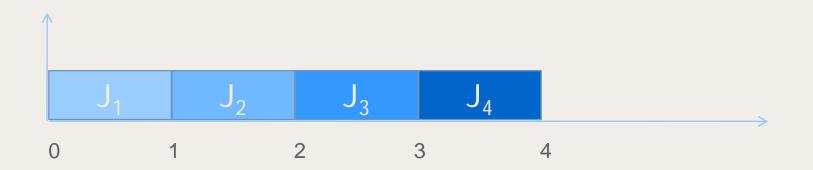
 We can schedule them using earliestdeadline-first(EDF) strategy optimally

An example for classic real-time jobs


	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	1
J ₄	0	4	1

An example for classic real-time jobs

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	1
J ₄	0	4	1



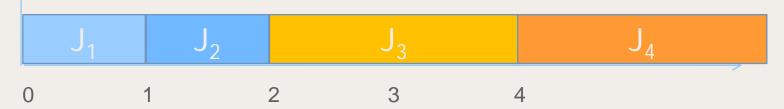
- Execution time is estimated
- With different tools we'll get different estimations
- Sometimes a part of the system must pass certification from authorities. They will simulate the system to check validity.
- Authorities may use more pessimistic estimations.

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	1
J ₄	0	4	1

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁ J ₂	Not critical, like camera, radio, heater		idio, heater
J ₃	Safety-critical, like flight control system		

An example for mixed-criticality jobs

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	\$ ⇒ 2
J ₄	0	4	\$ ⇒ 2

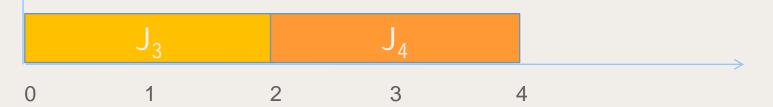

The authorities may estimate differently

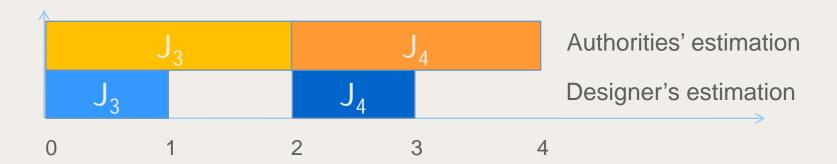
An example for mixed-criticality jobs

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

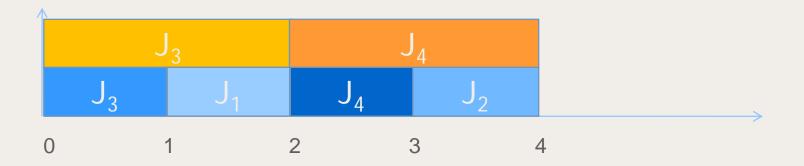
With previous **EDF** schedule:

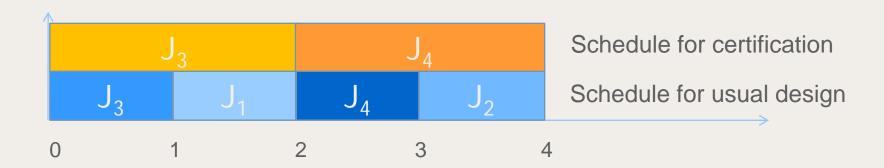
	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

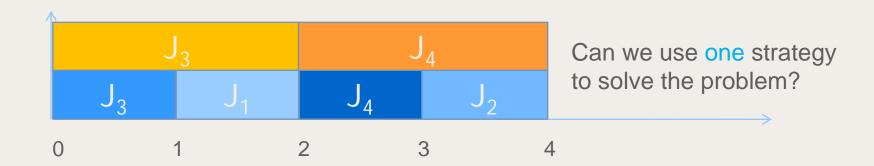

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)	
J_1 Th	These two jobs don't have to be certified			
J ₃	0	4	2	
J ₄	0	4	2	

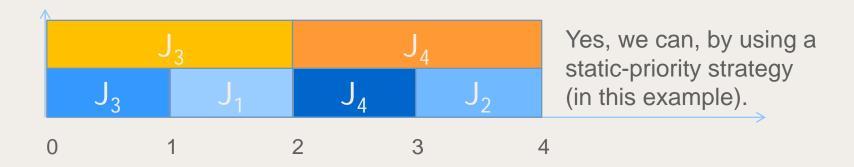

An example for mixed-criticality jobs

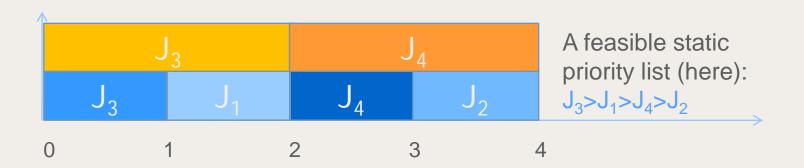
	Release time(A _i)	Deadline(D _i)	Execution time(C _i)		
J_1 Th	These two jobs don't have to be certified				
J_3	0	4	2		
J ₄	0	4	2		

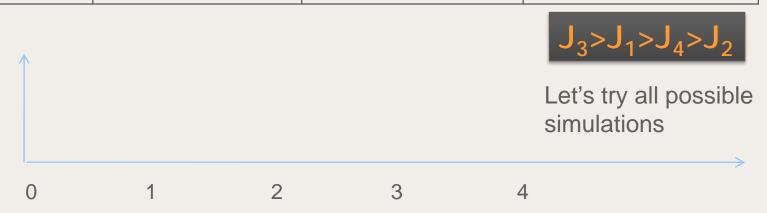

A different schedule(that passes certification):

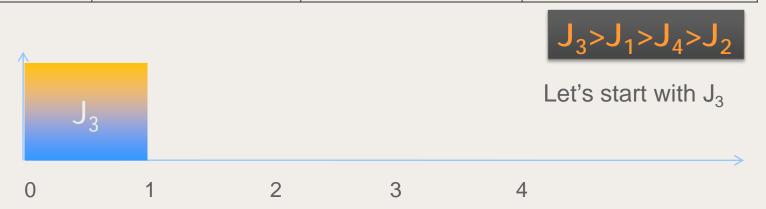

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)	
These two jobs don't have to be certified				
J_3	0	4	2	
J ₄	0	4	2	

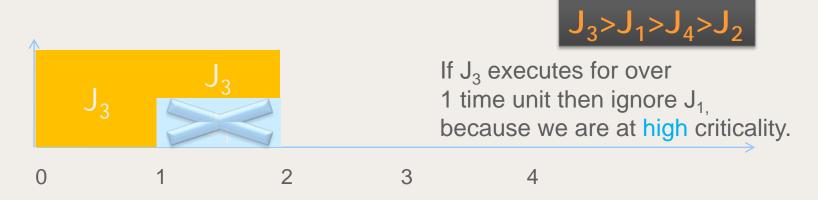

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

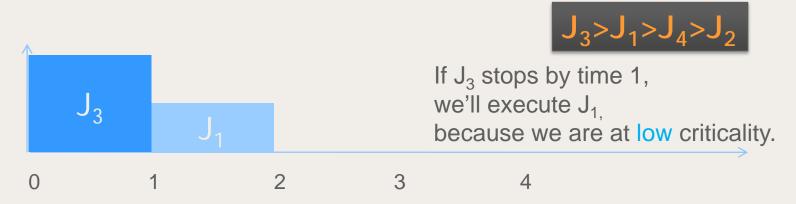

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2


	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2


	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

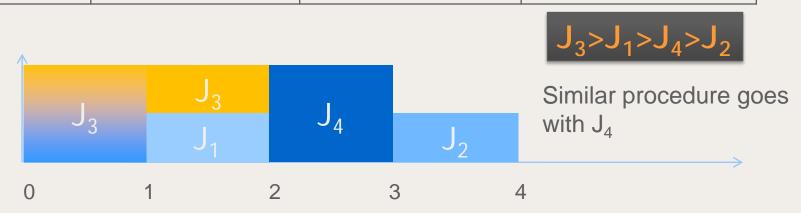

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2


	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2


	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2


	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

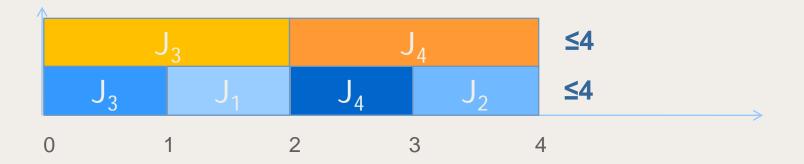
On the base of classic real-time job model, we add a parameter x_i, denoting the criticality of this job.

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	2	Low	1	1
J ₂	0	4	Low	1	1
J ₃	0	4	High	1	2
J_4	0	4	High	1	2

- We define a job set as mixed-criticality schedulable(MC-schedulable) if there exists a schedule such that:
 - If every job uses less than specified execution time at low criticality, every job will meet its deadline;
 - If at least one high-criticality job uses more than specified execution time at low criticality, every high-criticality job will meet its deadline.

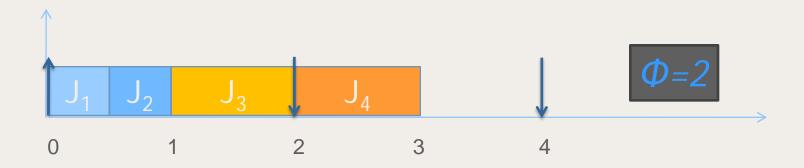
Intractability Result

- Determining whether a given instance is MC-schedulable is NP-hard in the strong sense even if:
 - Every job's release time is exactly the same;
 - Jobs are preemptive.


- Processor Speed-up Factor
 - A scheduling algorithm has a processor speed-up factor ϕ if
 - ◆ it can schedule any MC-schedulable instance

 - without any knowledge of the optimal schedule
 - ❖ The optimal schedule may even be clairvoyant
 - We use speed-up factor as a measurement
 - Lower means better, $\phi=1$ means optimal.

- We seek scheduling algorithms with low processor speed-up factor Φ:
 - An algorithm can schedule any MC-schedulable (or full-utilized) instance on a Φ -speed processor.


- A schedulability test with $\phi=2$ is trivial by worst-case reservation strategy.
 - Because the summation of time demands in each criticality can not exceed the overall available processor time.

- A schedulability test with $\phi=2$ is trivial by worst-case reservation strategy.
 - Because the summation of time demands in each criticality can not exceed the overall available processor time.

- A schedulability test with $\phi=2$ is trivial by worst-case reservation strategy.
 - Because the summation of time demands in each criticality can not exceed the overall available processor time.

- Classical scheduling algorithms
 - Earliest deadline first(EDF): $\Phi = 2$
 - It's no better than worst-case reservation
 - Criticality monotonic: Ф=∞
 - It can need arbitrarily high speed-up factor to meet all deadlines.

- Own-Criticality-Based-Priority algorithm (OCBP algorithm):
 - It's very similar to "Audsley's Approach"
 - Repeatedly determine which remaining job can be assigned with lowest-priority.

- Own-Criticality-Based-Priority algorithm:
 - J may be assigned with lowest priority if it meets its deadline as the lowest-priority job, when all other jobs executes for their worst-case execution time at J's criticality.
 - ◆ If J is of high criticality, it will assume all other jobs use maximum possible execution time;
 - ◆If J is of low criticality, it will assume all other jobs use low-criticality execution time.
 - ❖ Otherwise we can just drop J.

Own-Criticality-Based-Priority algorithm (OCBP algorithm):

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	2	Low	1	1
J ₂	0	4	Low	1	1
J ₃	0	4	High	1	2
J ₄	0	4	High	1	2

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	2	Low	1	1
J ₂	0	4	Low	1	1
J ₃	0	4	High	1	2
J ₄	0	4	High	1	2

• For J₂, if all other jobs use low-criticality time, total time demand is 4, J₂ can be the lowest-priority job.

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	2	Low	1	1
J ₂	0	4	Low	1	1
J ₃	0	4	High	1	2
J ₄	0	4	High	1	2

 For J₁, if all other jobs use low-criticality time, total demand is 4, too. J₁ can not be the lowest-priority job.

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	2	Low	1	1
J ₂	0	4	Low	1	1
J ₃	0	4	High	1	2
J ₄	0	4	High	1	2

 For J₁, if all other jobs use low-criticality time, total demand is 4, too. J₁ can not be the lowest-priority job.

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	2	Low	1	1
J ₂	0	4	Low	1	1
J ₃	0	4	High	1	2
J ₄	0	4	High	1	2

• For J_4 , if all other jobs use high-criticality time, total demand is 5, J_4 can be the lowest-priority job with $\Phi=1.2$.

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	2	Low	1	1
J ₂	0	4	Low	1	1
J ₃	0	4	High	1	2
J ₄	0	4	High	1	2

• J₁ and J₃ can both be the lowest-priority job.

Own-Criticality-Based-Priority algorithm (OCBP algorithm):

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	2	Low	1	1
J ₂	0	4	Low	1	1
J ₃	0	4	High	1	2
J ₄	0	4	High	1	2

• Final priority order:

$$J_1>J_3>J_4>J_2$$
, or $J_3>J_1>J_4>J_2$.

Our result is:

- OCBP algorithm will need at most $\Phi=1.618$ speed-up factor to schedule any MC-schedulable instance with 2 criticalities.
- OCBP algorithm runs in polynomial time.

Future work

- Extend the current result to periodic/sporadic real-time job model;
- Consider practical issues, like jitters, context-switches, or interruptions;
- Explore new algorithms to schedule mixed-criticality systems.

