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Information

updates):

® Free online copy (w/ kernel APl - FVu il ) AV o1

http://lwn.net/Kernel/LDD3/

e 600+ pages

e JONATHAN CORBET, ALESSANDRO RUBINI
O’REILLY" & GREG KROAH-HARTMAN
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What is a device driver!?

® Usually a module in the kernel

® Conforms to a standard API set by the
kernel to provide access to users

® Translates APl-defined operations into
device-specific operations
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Types of Device Drivers

® Char Device
® Stream of bytes

® Sequential access (though back and forth may also be
occasionally used)

® Block Device

® Can host a filesystem

® High performance (/O scheduling)
® Network Device

® Packet transmission

® |[nterrupt optimization
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Figure 1-1. A split view of the kernel

System Structure
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Modules

® Constraints on kernel-space drivers (as
modules):

® module_init()/module_exit()

® must be reentrant (though driver define
concurrent operation)

® May be stacked to implement complex
systems
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#include <linux/init.h>
#include <linux/module.h>
MODULE LICENSE("Dual BSD/GPL");

static int hello init(void)

{
printk (KERN_ALERT "Hello, world\n");
return 0;
}
static void hello exit(void)
{
printk (KERN_ALERT "Goodbye, cruel world\n");
}

module init(hello init);
module exit(hello exit);

Module init()/exit()
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Figure 2-1. Linking a module to the kernel

Block Driver Module

Monday, October 25, 2010




Port sharing
and device
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Figure 2-2. Stacking of parallel port driver modules

Stackable Drivers:

printer (Ip) on top of parallel port
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Character Drivers

® |[fit's not a disk and it’s not a network
interface, it’s probably a character device.

® Properties:

® Does not require traditional I/O
scheduling

® Data streams

® |itmus Examples:TRACE() & FeatherTrace
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Character Drivers

® Drivers register themselves with the kernel
® “Major” number maps device to driver.
® “Minor” number maps to device.

® Device handle appears in /dev
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Character Drivers

® 1nt register chrdev region(dev t first,
unsigned 1nt cout, char *name)

® Device numbers must be known apriori

® int alloc chrdev region(dev t *dev, unsigned
int firstminor, unsigned int count, char
*name)

® [ et the kernel pick device numbers

e vold unregister chrdev region(dev t first,
unsigned 1nt count)

® [ree device numbers
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Character Drivers

® Char drivers must interface with users
through a well defined API.

lIseek()
read()
aio_read()
write()
aio_write()
readdir()
poll()

iOCtl() - for direct device control
mmap()

open()

flush()

release()

fsync()
aio_fsync()
fasync()
lock()
readv()
writev()
sendfile()
sendpage()
get _unmapped_area()
check flags()
dir_notify()
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struct file operations scull fops = {

.OWNer = THIS MODULE,
.1lseek = scull llseek,
.read = scull read,
write = scull write,

.J0ctl scull ioctl,
.open = scull open,
.release = scull release,

};

Example Char Driver Operations
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Block Drivers

® Character Drivers can be used to support
filesystems, though performance would be
terrible

® Block Drivers:
® Centered on performance
® APl is centered on “requests”

® [ransfer blocks of data
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Block Drivers

® Every block device has a request queue
® Requests are scheduled

® Reorder request to optimize disk
performance (exploit locality)

® Merge adjacent requests
® Deadline scheduler (best effort)

® Anticipatory scheduler
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