Brief Overview of
Device Drivers

Glenn Elliott
LITMUSRT Lunch
October 25,2010

Information

updates):

® Free online copy (w/ kernel APl - FVu il) AV o1

http://lwn.net/Kernel/LDD3/

e 600+ pages

e JONATHAN CORBET, ALESSANDRO RUBINI
O’REILLY" & GREG KROAH-HARTMAN

Monday, October 25, 2010

What is a device driver!?

® Usually a module in the kernel

® Conforms to a standard API set by the
kernel to provide access to users

® Translates APl-defined operations into
device-specific operations

Monday, October 25, 2010

Types of Device Drivers

® Char Device
® Stream of bytes

® Sequential access (though back and forth may also be
occasionally used)

® Block Device

® Can host a filesystem

® High performance (/O scheduling)
® Network Device

® Packet transmission

® |[nterrupt optimization

Monday, October 25, 2010

The System Call Interface

Process Memory Filesystems Device Networking
i management § | management control Kamal
' ' subsystems
Concurrency, Virtual Files and dirs: Ttys & = Features
multitasking memory the VFS device access Connectivity implemented
----- i File system Character Network i
: Ard‘li- Memory types devices subsystem
ependent manager i ,
code L O O L Software
S . e — support
Block devices IF drivers
O O [
,,,,,,,,,,,,,, I -
(PU Memory Disks & (Ds Consoles, Network
etc. interfaces

D features implemented as modules

Figure 1-1. A split view of the kernel

System Structure

Monday, October 25, 2010

Modules

® Constraints on kernel-space drivers (as
modules):

® module_init()/module_exit()

® must be reentrant (though driver define
concurrent operation)

® May be stacked to implement complex
systems

Monday, October 25, 2010

#include <linux/init.h>
#include <linux/module.h>
MODULE LICENSE("Dual BSD/GPL");

static int hello init(void)

{
printk (KERN_ALERT "Hello, world\n");
return 0;
}
static void hello exit(void)
{
printk (KERN_ALERT "Goodbye, cruel world\n");
}

module init(hello init);
module exit(hello exit);

Module init()/exit()

Monday, October 25, 2010

insmod init function _
----- » add_disk()
Y st
gendisk

<

request() request_queue_ |
———————— >
________ > —
———————— >

el gendik | — »Dataoperation | Multiple functions
----- +» del_gendis ; :
rmmod f(lllean-up ' o Qomter Single functions
nction |_____ + blk_cleanup_queue() - ---* Function call
Function pointer Data

Figure 2-1. Linking a module to the kernel

Block Driver Module

Monday, October 25, 2010

Port sharing
and device
registration

Lou(-level
device

" Kernel AP!

operations roortine I |
E parport I B
1p I B

(Message
printing, driver
registration,
port allocation,

etc.)

Figure 2-2. Stacking of parallel port driver modules

Stackable Drivers:

printer (Ip) on top of parallel port

Monday, October 25, 2010

Character Drivers

® |[fit's not a disk and it’s not a network
interface, it’s probably a character device.

® Properties:

® Does not require traditional I/O
scheduling

® Data streams

® |itmus Examples:TRACE() & FeatherTrace

Monday, October 25, 2010

Character Drivers

® Drivers register themselves with the kernel
® “Major” number maps device to driver.
® “Minor” number maps to device.

® Device handle appears in /dev

Monday, October 25, 2010

Character Drivers

® 1nt register chrdev region(dev t first,
unsigned 1nt cout, char *name)

® Device numbers must be known apriori

® int alloc chrdev region(dev t *dev, unsigned
int firstminor, unsigned int count, char
*name)

® [et the kernel pick device numbers

e vold unregister chrdev region(dev t first,
unsigned 1nt count)

® [ree device numbers

Monday, October 25, 2010

A N A

‘Is -I’ on /dev

root
root
root
root
root
vCsa
vCsa
root

root
root
root
tty
uucp
tty
tty
root

10
4,
4,
4,
7,
7,

-

3 Apr

1 Apr

1 Oct
64 Apr
65 Apr
1 Apr
129 Apr
5 Apr

11
o |
28
11
11
i o |
: o |
=1

2002
2002

03:04

2002

2002
2002
2002

2002

null
pSaux
ttyl
ttysO
ttys1
vcsl
vcsal
ZE€xo0

Monday, October 25, 2010

Character Drivers

® Char drivers must interface with users
through a well defined API.

lIseek()
read()
aio_read()
write()
aio_write()
readdir()
poll()

iOCtl() - for direct device control
mmap()

open()

flush()

release()

fsync()
aio_fsync()
fasync()
lock()
readv()
writev()
sendfile()
sendpage()
get _unmapped_area()
check flags()
dir_notify()

Monday, October 25, 2010

struct file operations scull fops = {

.OWNer = THIS MODULE,
.1lseek = scull llseek,
.read = scull read,
write = scull write,

.J0ctl scull ioctl,
.open = scull open,
.release = scull release,

};

Example Char Driver Operations

Monday, October 25, 2010

Block Drivers

® Character Drivers can be used to support
filesystems, though performance would be
terrible

® Block Drivers:
® Centered on performance
® APl is centered on “requests”

® [ransfer blocks of data

Monday, October 25, 2010

Block Drivers

® Every block device has a request queue
® Requests are scheduled

® Reorder request to optimize disk
performance (exploit locality)

® Merge adjacent requests
® Deadline scheduler (best effort)

® Anticipatory scheduler

Monday, October 25, 2010

