
Mixed Criticality Plugin

Discussion

Mac Mollison

Outline

1. Review of mixed criticality (2 slides)

2. Current implementation (2 slides)

3. Future implementation: Adding slack

shifting (10 slides)

Full Architecture

CE CE CE CE

EDF EDF EDF EDF

G-EDF

G-EDF

Best Effort

Level A

Level B

Level C

Level D

Level E

Core 1 Core 2 Core 3 Core 4
higher

(static)

priority

lower

(static)

priority

A (Very) Simple Example

0 10 20 305 15 25

Level B

Level C

…

…

Donated

WCET (at level B)

Status of current implementation

 Levels A through E working

 Caveats

» Level A is currently P-EDF, and not table

driven (yet)

» No “slack shifting” (yet)

» Minor variations btw. Mac‟s code and

Jeremy‟s code; going to merge them

together after this meeting.

Implementation Technique

 Based upon GSN-EDF

 Each „container‟ gets its own rt_domain

» Levels A and B are added to cpu_entry_t.

Levels C and D are global.

» Minor changes to various functions to deal

with this

 Treat partitioned tasks basically like

global tasks, except they only run on

their partition 

Slack Scheduling

 Algorithm is based on the “ghost job” metaphor
presented in the paper.

Slack Scheduling – Ghost jobs

 When a job at level X finishes, we convert it to a
ghost job

 We set a parameter is_ghost to 1.

 It is assigned budget starting at the difference
between the level-X WCET and the actual
execution time of the task

 We place this ghost job on the level-X run
queue. (If level X is partitioned, we use the run
queue for the CPU from which the job originally
ran.)

Scheduling Ghost Jobs (Overview)

 A level-X ghost job is treated as a normal job
from the perspective of the level-X scheduler.

 It can be selected from the run queue as the job to
schedule on a CPU.

 A ghost job can preempt a normal job if its deadline
is shorter.

 From the perspective of a scheduler below level
X, a ghost job can be completely ignored.

 Schedulers at higher levels are covered on the
(future) slide discussing preemptions.

Change to Support Ghost Jobs

 We will expand the cpu_entry_t struct.

 We will add an array to track which ghost jobs are
“executing” (consuming budget) on the same CPU
– one entry per criticality level.

When a Ghost Job is Scheduled

 When a ghost job is scheduled, the
cpu_entry_twill be updated and the starting
time of the job fragment will be recorded.

 We also set a watchdog timer that will go off at
the earliest time the budget could expire – the
time at which it would expire given no
preemptions.

 We then continue making scheduling decisions
for lower levels as if no job had been
scheduled.

Preempting Ghost Jobs

 We say a ghost job is preempted if a different
job at the same or higher criticality is scheduled.
It is not preempted if a job of lower criticality is
scheduled.

 On preemption, the ghost job's budget must be
updated based on how long the fragment
actually ran, and the job is returned to the ready
queue.

 To achieve this, whenever any task is linked to
a CPU, we run this action on all ghost jobs of
lower criticality on that CPU.

Watchdog Timers

 When a watchdog timer goes off, we update
and check the budgets of all ghost jobs on the
relevant CPU.

 Any ghost job which has finished is removed
from the system, and we perform normal “job
finished” tasks (i.e. checking for new tasks to
schedule.)

 This code would also be executed on
preemption in case a ghost job happens to
finish just as it is being preempted for a different
reason.

Global Scheduling – Added
Complexity

 Currently, a single heap of available
cpu_entry_t objects is used, and
preemptions are checked on the CPU of lowest
priority.

 This is correct with no slack scheduling, because
we statically prioritize level C over D.

 This is not correct with slack scheduling!

Global Scheduling – Added
Complexity (contd.)

 Consider the following 2 CPU system:

 On CPU 1, D1 with a deadline of 1000 ms

 Also on CPU 1, ghost job C1

 On CPU 2, D2 with a deadline of 10 ms

 A new job C2 should preempt D2 on CPU 2

 However, a new job D3 with deadline before
1000 ms should preempt D1 on CPU 1!

 No consistent “lowest priority” CPU!

Global Scheduling – Added
Complexity (contd.)

 We plan to solve this by having separate CPU
heaps (referencing the same cpu_entry_t
objects) for levels C and D.

 The priority function will be changed such that:

 At level C, level-C ghost jobs are considered as
normal level-C jobs. (The treatment of level-D
ghost jobs doesn't matter.)

 At level D, level D ghost jobs are considered as
normal level D jobs, but level C ghost jobs are
considered as if they were not running.

