Mixed Ciriticality Plugin
Discussion

Mac Mollison

Outline

. Review of mixed criticality (2 slides)
. Current implementation (2 slides)

. Future implementation: Adding slack
shifting (10 slides)

Level A

Level B

Level C

Level D

Level E

Full Architecture

Core 1 Core 2 Core 3 Core 4
CE CE CE CE
EDF EDF EDF EDF

G-EDF
G-EDF

Best Effort

higher
(static)
priority

lower
(static)
priority

A (Very) Simple Example

WCET (at level B)

- [- T |

Level B <

-

Level C {

Status of current implementation

e Levels A through E working

e Caveats

» Level A Is currently P-EDF, and not table
driven (yet)

» No “slack shifting” (yet)

» Minor variations btw. Mac’s code and
Jeremy’s code; going to merge them
together after this meeting.

Implementation Technigue

e Based upon GSN-EDF

e Each ‘container’ gets its own rt_domain

» Levels A and B are added to cpu_entry t.
Levels C and D are global.

» Minor changes to various functions to deal
with this
e Treat partitioned tasks basically like
global tasks, except they only run on
their partition ©

Slack Scheduling

 Algorithmis based on the “ghost job™ metaphor
presented in the paper.

Slack Scheduling — Ghost jobs

« When a job at level X finishes, we convertit to a
ghost job

« Weset a parameter is ghost to 1.

. It is assigned budget starting at the difference
between the level-X WCET and the actual
execution time of the task

« We place this ghost job on the level-X run
gueue. (If level X Is partitioned, we use the run
gueue for the CPU from which the job originally
ran.)

Scheduling Ghost Jobs (Overview)

. Alevel-X ghostjob Is treated as a normal job
from the perspective of the level-X scheduler.

o It can be selected from the run queue as the job to
schedule on a CPU.

« A ghost job can preempt a normal job If its deadline
IS shorter.

« From the perspective of a scheduler below level
X, a ghost job can be completely ignored.

» Schedulers at higher levels are covered on the
(future) slide discussing preemptions.

Change to Support Ghost Jobs

. We will expandthe cpu entry t struct.

 Wewill add an array to track which ghost jobs are
“executing” (consuming budget) on the same CPU
— one entry per criticality level.

When a Ghost Job i1s Scheduled

. When a ghost job Is scheduled, the
cpu entry twillbe updated and the starting

time of the job fragment will be recorded.

« We also set a watchdog timer that will go off at
the earliest time the budget could expire — the
time at which it would expire given no
preemptions.

« We then continue making scheduling decisions
for lower levels as if no job had been

scheduled.

Preempting Ghost Jobs

. We say a ghost job Is preempted if a different
job at the same or higher criticality Is scheduled.
It Is not preempted Iif a job of lower criticality is
scheduled.

« On preemption, the ghost job's budget must be
updated based on how long the fragment
actually ran, and the job is returned to the ready

queue.

» To achieve this, whenever any task is linked to
a CPU, we run this action on all ghost jobs of
lower criticality on that CPU.

Watchdog Timers

. When a watchdog timer goes off, we update
and check the budgets of all ghost jobs on the
relevant CPU.

« Any ghost job which has finished is removed
from the system, and we perform normal “job
finished” tasks (i.e. checking for new tasks to
schedule.)

 This code would also be executed on
preemption in case a ghost job happens to
finishjust as it is being preempted for a different
reason.

Global Scheduling — Added
Complexity

Currently, a single heap of avallable
cpu entry tobjectsis used, and

preemptions are checked on the CPU of lowest
priority.

« This is correct with no slack scheduling, because
we statically prioritize level C over D.

This is not correct with slack scheduling!

Global Scheduling — Added
Complexity (contd.)

Consider the following 2 CPU system:
« OnCPU 1, D, with a deadline of 1000 ms

 Also on CPU 1, ghost job C,
« On CPU 2, D, with a deadline of 10 ms

A new job C, shou

However, a new |o

d preempt D, on CPU 2

0 D, with deadline before

1000 ms should preempt D, on CPU 1!
No consistent “lowest priority” CPU!

Global Scheduling — Added
Complexity (contd.)

« We plan to solve this by

having separate CPU

heaps (referencing the same cpu entry t

objects) for levels C and
 The priority function will

D.
ne changed such that:

obs are considered as

. Atlevel C, level-C ghost |

normal level-C jobs. (The treatment of level-D
ghost jobs doesn't matter.)

. Atlevel D, level D ghost |

obs are considered as

normal level D jobs, but level C ghost jobs are
considered as If they were not running.

