
Mixed Criticality Plugin

Discussion

Mac Mollison



Outline

1. Review of mixed criticality (2 slides)

2. Current implementation (2 slides)

3. Future implementation: Adding slack 

shifting (10 slides)



Full Architecture

CE CE CE CE

EDF EDF EDF EDF

G-EDF

G-EDF

Best Effort

Level A

Level B

Level C

Level D

Level E

Core 1 Core 2 Core 3 Core 4
higher

(static)

priority

lower

(static)

priority



A (Very) Simple Example

0 10 20 305 15 25

Level B

Level C

…

…

Donated

WCET (at level B)



Status of current implementation

 Levels A through E working

 Caveats

» Level A is currently P-EDF, and not table 

driven (yet)

» No “slack shifting” (yet)

» Minor variations btw. Mac‟s code and 

Jeremy‟s code; going to merge them 

together after this meeting.



Implementation Technique

 Based upon GSN-EDF

 Each „container‟ gets its own rt_domain

» Levels A and B are added to cpu_entry_t. 

Levels C and D are global.

» Minor changes to various functions to deal 

with this

 Treat partitioned tasks basically like 

global tasks, except they only run on 

their partition 



Slack Scheduling

 Algorithm is based on the “ghost job” metaphor 
presented in the paper.



Slack Scheduling – Ghost jobs

 When a job at level X finishes, we convert it to a 
ghost job

 We set a parameter is_ghost to 1.

 It is assigned budget starting at the difference 
between the level-X WCET and the actual 
execution time of the task

 We place this ghost job on the level-X run 
queue.  (If level X is partitioned, we use the run 
queue for the CPU from which the job originally 
ran.)



Scheduling Ghost Jobs (Overview)

 A level-X ghost job is treated as a normal job 
from the perspective of the level-X scheduler.

 It can be selected from the run queue as the job to 
schedule on a CPU.

 A ghost job can preempt a normal job if its deadline 
is shorter.

 From the perspective of a scheduler below level 
X, a ghost job can be completely ignored.

 Schedulers at higher levels are covered on the 
(future) slide discussing preemptions.



Change to Support Ghost Jobs

 We will expand the cpu_entry_t struct.

 We will add an array to track which ghost jobs are 
“executing” (consuming budget) on the same CPU 
– one entry per criticality level.



When a Ghost Job is Scheduled

 When a ghost job is scheduled, the 
cpu_entry_twill be updated and the starting 
time of the job fragment will be recorded.

 We also set a watchdog timer that will go off at 
the earliest time the budget could expire – the 
time at which it would expire given no 
preemptions.

 We then continue making scheduling decisions 
for lower levels as if no job had been 
scheduled.



Preempting Ghost Jobs

 We say a ghost job is preempted if a different 
job at the same or higher criticality is scheduled.  
It is not preempted if a job of lower criticality is 
scheduled.

 On preemption, the ghost job's budget must be 
updated based on how long the fragment 
actually ran, and the job is returned to the ready 
queue.

 To achieve this, whenever any task is linked to 
a CPU, we run this action on all ghost jobs of 
lower criticality on that CPU.



Watchdog Timers

 When a watchdog timer goes off, we update 
and check the budgets of all ghost jobs on the 
relevant CPU.

 Any ghost job which has finished is removed 
from the system, and we perform normal “job 
finished” tasks (i.e. checking for new tasks to 
schedule.)

 This code would also be executed on 
preemption in case a ghost job happens to 
finish just as it is being preempted for a different 
reason.



Global Scheduling – Added 
Complexity

 Currently, a single heap of available 
cpu_entry_t objects is used, and 
preemptions are checked on the CPU of lowest 
priority.

 This is correct with no slack scheduling, because 
we statically prioritize level C over D.

 This is not correct with slack scheduling!



Global Scheduling – Added 
Complexity (contd.)

 Consider the following 2 CPU system:

 On CPU 1, D1 with a deadline of 1000 ms

 Also on CPU 1, ghost job C1

 On CPU 2, D2 with a deadline of 10 ms

 A new job C2 should preempt D2 on CPU 2

 However, a new job D3 with deadline before 
1000 ms should preempt D1 on CPU 1!

 No consistent “lowest priority” CPU!



Global Scheduling – Added 
Complexity (contd.)

 We plan to solve this by having separate CPU 
heaps (referencing the same cpu_entry_t
objects) for levels C and D.

 The priority function will be changed such that:

 At level C, level-C ghost jobs are considered as 
normal level-C jobs.  (The treatment of level-D 
ghost jobs doesn't matter.)

 At level D, level D ghost jobs are considered as 
normal level D jobs, but level C ghost jobs are 
considered as if they were not running.


