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Background

Task Model

Sporadic task model

Every task has a worst-case execution time and minimum
separation time
Every deadline assumed to be equal to minimum
separation time (implicit deadline)

All tasks independent
Fully preemptible
No self-suspensions
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Background

Notation

m = # of processors

Ci = Worst-case execution time
Ti = Minimum separation time
Ui = A task’s utilization Ci/Ti
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Background

Scheduler (Global EDF)

EDF = Earliest Deadline First
Here we consider the behavior of global EDF
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Background

Hard Real-time

Hard Real-time = all deadlines met

Schedulable if:

∀i ,Ui ≤ 1 and∑
Ui ≤ m

Requires context switch time to be accounted for in Ui

Number of context switches may be huge!
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Background

Soft Real-time

Soft Real-time = bounded tardiness

Sufficient for broad range of applications
Schedulable under same conditions as HRT, but may
reduce total context switch cost and thus Ui values

Global EDF provides SRT schedulability with many fewer
context switches than algorithms such as PFAIR
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Devi/Anderson Bounds

Devi/Anderson Bounds - Basic Idea

Devi & Anderson (2005) provide a method to compute
tardiness bounds for global EDF.

Bound tardiness of each task at x + Ci for some x .
Nontrivial part is finding x .
Bound does vary per task, but x does not.
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Devi/Anderson Bounds

Devi/Anderson Bounds - Basic Bound

Devi & Anderson 2005 and later papers report several
bounds on the tardiness of global EDF.

Derived in 2005 conference paper (“Naive Bound”):
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Devi/Anderson Bounds

Devi/Anderson Bounds - Prior Improvements

Devi & Anderson 2005 also presents improved bounds.
EDF-BASIC: Use only m − 2 utilization values.
Further improved EDF-ITER: Like EDF-BASIC, but only
use values from selected m − 1 tasks.
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Improved Bounds

Our Improvement

We present improvements that apply to both the naive and
EDF-ITER techniques.

Use different xi value for each task.
Thus, we deal with a vector ~x instead of a single x .
In worst case, becomes same results as Devi/Anderson.
Only a summary of resulting differences given here.
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Improved Bounds

L(~x)

Define a function L(~x) used while evaluating whether a
proposed ~x produces valid bounds.

L(~x) =
∑

(m−1) largest

(
xiUi + Ci

)
(1)

Improves on naive bound in Devi/Anderson

Can use improved definition L(~x): the largest sum
obtained by summing (m − 2) of the (xiUi + Ci)’s plus an
additional Ci .

Improves on EDF-ITER in Devi/Anderson
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Improved Bounds

Compliant Vector

Using L(~x) as defined, a vector is compliant iff ∀i ,

L(~x)− Ci

m
≤ xi (2)
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Improved Bounds

Theorem 1

Theorem

Let ~x = 〈x1, x2, . . . , xn〉 denote any compliant vector. For each
task τi , each job generated by τi completes no later than
(Ci + xi) time units after its deadline.

Proof is fundamentally similar to that of Devi and
Anderson, although with notational differences.

By utilizing xi instead of x , we can bound tardiness of a
specific task under consideration more tightly.
This allows the proof to pull through using the definition of
“compliant vector” above.
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Improved Bounds

Theorem 1 - Proof Details

Rather than using LAG (as in previous papers), use W (t)

I = set of jobs with deadlines no later than t .
W (t) =

∑
jobs in I(Ci − work completed before t)
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Improved Bounds

First Lemma

Lemma

For all t ∈ [0,dk ),

W (t) ≤ U(τ)× (dk − t) + L(~x)

We induct over busy and nonbusy intervals

Busy intervals - trivial
Nonbusy intervals - several subcases

Not running through interval - contribute Uj(dk − ti+1)
Tardy at end of interval - contribute Uj(dk − ti+1) + Ujxj + Cj
Not tardy at end, but running - contribute Uj(dk − ti+1) + Cj

Summing contributions reveals claimed upper bound
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Improved Bounds

Second Lemma

Lemma

The job of τk with deadline dk completes by time-instant
dk + xk + Ck .

Use previous lemma to determine that at most L(x) work is
left at dk

Bound follows from here
After this, we’re done
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Improved Bounds

Minimal Compliant Vector

In light of the theorem, we would like to find a “small”
compliant vector

We define a compliant vector as minimal if reducing any
one component would produce a non-compliant vector.
Now how do we compute it?
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Improved Bounds

Algorithm for computing minimal compliant vector

FINDCOMPLIANTVECTOR

1 ~x ← 〈0,0, . . . ,0〉� Initialize (to a non-compliant vector)
2 repeat
3 Let τi denote any task violating constraint
4 Let x̂i denote smallest value of xi satisfying constraint
5 Replace xi by x̂i in ~x
6 until ~x is a compliant vector
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Improved Bounds

Minimality of Computed Vector

Theorem

Procedure FINDCOMPLIANTVECTOR returns a minimal
compliant vector.

Lemma

For all j ≥ 0, L(~xj) ≤ L(~xf ).

Increasing an xi value can only increase L(~x).

Each bound, when set, was tight, so at end, all bounds
tight.



Improved tardiness bounds for Global EDF - Slide 19

Improved Bounds

Minimality of Computed Vector

Theorem

Procedure FINDCOMPLIANTVECTOR returns a minimal
compliant vector.

Lemma

For all j ≥ 0, L(~xj) ≤ L(~xf ).

Increasing an xi value can only increase L(~x).
Each bound, when set, was tight, so at end, all bounds
tight.



Improved tardiness bounds for Global EDF - Slide 20

Improved Bounds

Complexity

No bound known on runtime - seems very large from
experiments

Can make pseudo-polynomial by setting minimum increase
ε

Runs tens to thousands of iterations with ε = .1 in
experiments
Additive error bounded by mε
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Experimental Results

Experimental Setup

Used psuedo-polynomial approximation algorithm with
ε = .1

Generated random sets of tasks with 1,000 sets for each
experiment
Randomly selected WCET and utilization for each task
Always used uniform distribution over some interval
Experiments tested differing mean and variance of WCET
and utilization, as well as differing number of CPUs
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Experimental Results

Review

Provided optimized bounds for global EDF schedule by
using multiple xi values.
Evaluated bounds experimentally
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Experimental Results

Thank You!
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