

Mixed-criticality scheduling: improved resource-augmentation results

Sanjoy Baruah, Haohan Li The University of North Carolina Leen Stougie Vrije Universiteit

Outline

Motivation

Background for certification

Outline

Motivation

- Background for certification
- Model
 - Definition of mixed-criticality system
 - Hardness of feasibility test

Outline

Motivation

Background for certification

Model

- Definition of mixed-criticality system
- Hardness of feasibility test

Solution

- Why EDF and criticality-monotonic fail
- OCBP algorithm

Motivation

An example for classic real-time tasks

Motivation

An example for classic real-time tasks

J ₁		
J ₂		
J ₃		
J ₄		

Motivation

An example for classic real-time tasks

	Release time(A _i)	
J ₁		
J ₂		
J ₃		
J ₄		

Motivation

An example for classic real-time tasks

	Release time(A _i)	
J ₁	0	
J ₂	0	
J ₃	0	
J ₄	0	

Motivation

An example for classic real-time tasks

	Release time(A _i)	Deadline(D _i)	
J ₁	0		
J ₂	0		
J ₃	0		
J ₄	0		

Motivation

An example for classic real-time tasks

	Release time(A _i)	Deadline(D _i)	
J ₁	0	2	
J ₂	0	4	
J ₃	0	4	
J ₄	0	4	

An example for classic real-time tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	
J ₂	0	4	
J ₃	0	4	
J ₄	0	4	

Motivation

An example for classic real-time tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	1
J ₄	0	4	1

An example for classic real-time tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	1
J ₄	0	4	1

We can schedule them using earliestdeadline-first(EDF) strategy optimally

Motivation

An example for classic real-time tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	1
J ₄	0	4	1

Motivation

Execution time is estimated by systemdesigner

Motivation

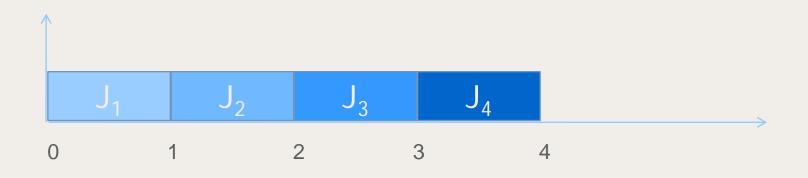
- Execution time is estimated by systemdesigner
- With different tools we'll get different estimations

- Execution time is estimated by systemdesigner
- With different tools we'll get different estimations
- Sometimes a part of the tasks must pass certifications from authorities, who would give a pessimistic estimation

Motivation

An example for mixed-criticality tasks

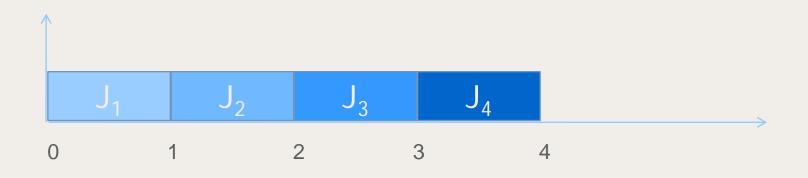
	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	1
J ₄	0	4	1



Motivation

An example for mixed-criticality tasks

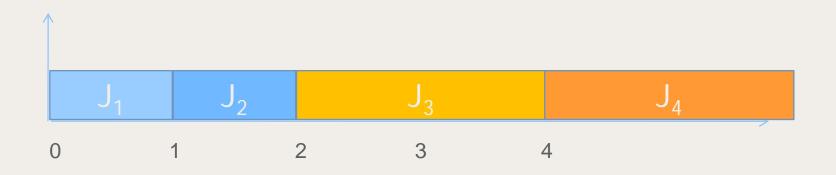
	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	1
J ₄	0	4	1



Motivation

An example for mixed-criticality tasks

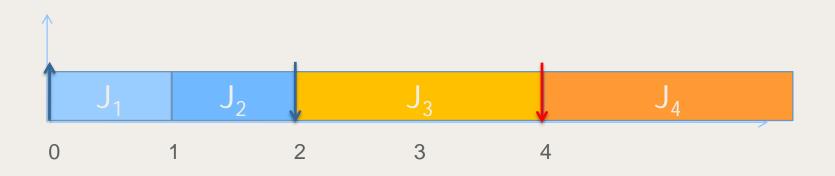
	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2



Motivation

An example for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2



Motivation

An example for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

Motivation

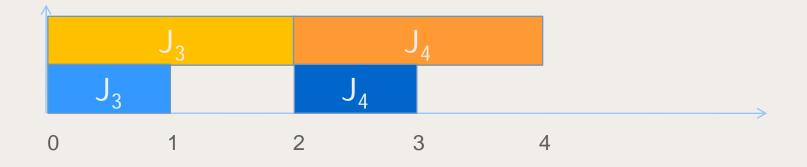
An example for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)	
	These two tasks don't have to be certified			
J ₃	0	4	2	
J ₄	0	4	2	

Motivation

An example for mixed-criticality tasks

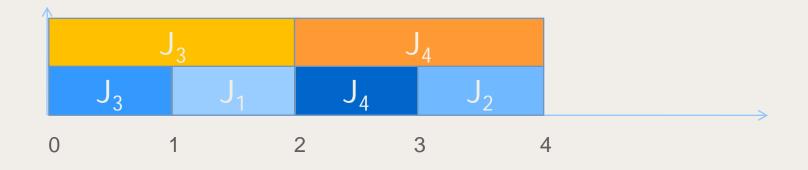
	Release time(A _i)	Deadline(D _i)	Execution time(C _i)	
	These two tasks don't have to be certified			
J ₃	0	4	2	
J ₄	0	4	2	



Motivation

An example for mixed-criticality tasks

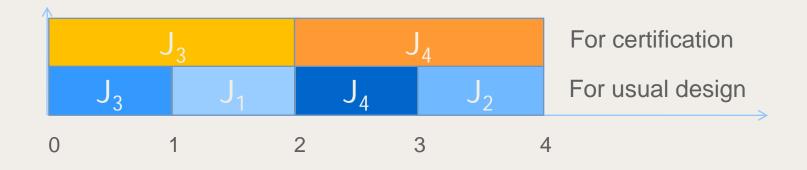
	Release time(A _i)	Deadline(D _i)	Execution time(C _i)	
	These two tasks don't have to be certified			
J ₃	0	4	2	
J ₄	0	4	2	



Motivation

An example for mixed-criticality tasks

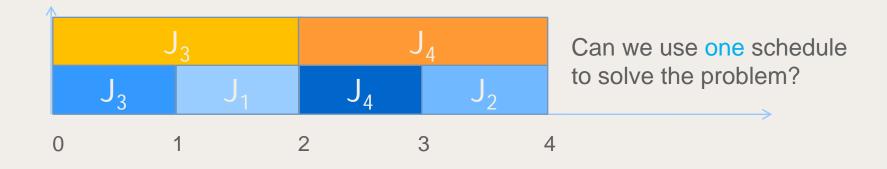
	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2



Motivation

An example for mixed-criticality tasks

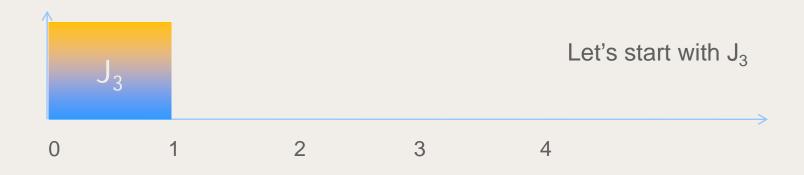
	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2



Motivation

An example for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2



Motivation

A solution for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

Motivation

A solution for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2



Motivation

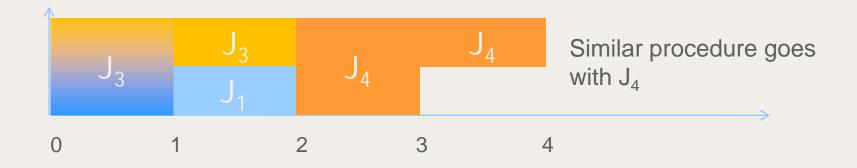
A solution for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

Motivation

A solution for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2



Motivation

A solution for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

Motivation

A solution for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

Motivation

A solution for mixed-criticality tasks

	Release time(A _i)	Deadline(D _i)	Execution time(C _i)
J ₁	0	2	1
J ₂	0	4	1
J ₃	0	4	2
J ₄	0	4	2

Model

On the base of classic real-time task model, we add a parameter x_i, denoting the criticality of this task.

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	2	1	1	1
J ₂	0	4	1	1	1
J ₃	0	4	2	1	2
J ₄	0	4	2	1	2

Model

We assume that

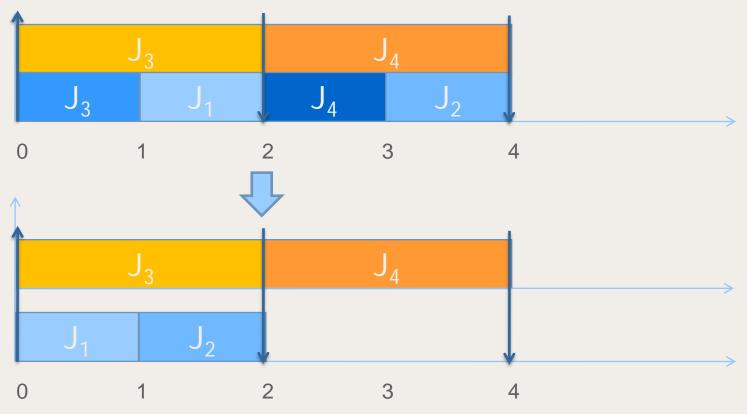
- Defined execution time means worst-case execution time. The actual execution time will only be known when a task really executes;
- Execution time for low-criticality is no greater than the time for high criticality.

Model

- We define a task set as mixed-criticality schedulable(MC-schedulable) if there exists a schedule that:
 - If every task's execution time is no greater than defined execution time at low criticality, every task will meet the deadline;
 - If at least one criticality-2 task's execution time is greater than defined execution time at low criticality, every criticality-2 task will meet the deadline.

Model

- The MC-schedulability testing is NP-hard in the strong sense even if:
 - There are only two criticalities;
 - Every job's release time is the same.


Solution

- Because MC-schedulability test is highly intractable, we focus on the following approximation test:
 - If an instance is MC-schedulable on a processor, this instance will pass our proposed test on any Φ times faster processor, or to say, a Φ-speed processor.

Solution

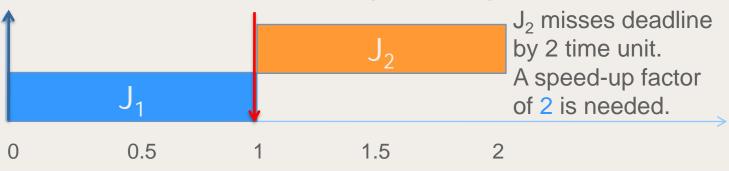
A schedulability test with Φ=2 is trivial by processor-sharing strategy.

Solution

Classical schedule algorithm:

• Earliest-deadline-first: EDF Φ=2

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	1	1	1	1
J ₂	0	1	2	0	1


Solution

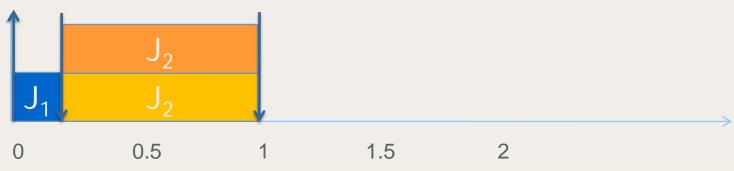
Classical schedule algorithm:

• Earliest-deadline-first(EDF): Φ=2

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	1	1	1	1
J ₂	0	1	2	0	1

But EDF will need a speed-up factor of 2:

Solution


⊕=∞

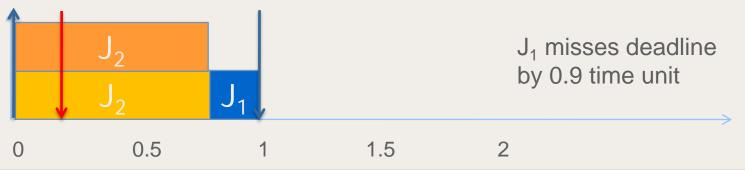
Classical schedule algorithm:

Criticality monotonic:

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	0.1	1	0.1	0.1
J ₂	0	1	2	0.9	0.9

• This is MC-schedulable:

Solution


D=∞

Classical schedule algorithm:

Criticality monotonic:

	Release time(A _i)	Deadline (D _i)	Criticality (x _i)	Execution time for low-criticality	Execution time for high-criticality
J ₁	0	0.1	1	0.1	0.1
J ₂	0	1	2	0.9	0.9

• But criticality-monotonic will fail:

Solution

- Own-Criticality-Based-Priority algorithm (OCBP algorithm):
 - The algorithm seeks one task to be the lowest priority if:
 - This task is criticality-1, and all the other tasks have used criticality-1 execution time, and this task can still meet its deadline.
 - This task is criticality-2, and all the other tasks have used criticality-2 execution time, and this task can still meet its deadline.

Solution

Our previous result is:

- OCBP algorithm will need at most Φ =1.618 speed-up factor to schedule any MC-schedulable instance with only 2 criticalities.
 - It was accepted by 16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2010.

Solution

- In this paper we've shown the situation where there are n different criticalities.
- One of the second second
- We assume that:
 - The tasks are not repetitive;
 - Every criticality-(i+k) task will also be criticality-i task;
 - Execution time at higher criticality is no smaller than execution time at lower criticality.

Solution

• The result is:

• OCBP will schedule any MC-schedulable instance with n criticalities on a Φ_n -speed processor, where

$$\phi_n = \frac{1 + \sqrt{1 + 4\phi_{n-1}^2}}{2}$$

• The result will converge to $\Phi_n = n/2$ with increasing n.

Solution

• The result is:

n(trivial)	Φ _n	optimal
1	1.0000	1
2	1.6180	1
3	2.1935	1
4	2.7498	1
5	3.2949	1
6	3.8326	1
7	4.3651	1
8	4.8936	1
9	5.4191	1
10	5.9421	1

Future work

- Extend the current result to periodic/sporadic real-time task model;
- Tighten the current result to an optimal lower bound for OCBP algorithm;
- Explore new algorithms to schedule mixed-criticality system.

Thank you

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL