Improved tardiness bounds for Global EDF

Jeremy Erickson Sanjoy Baruah UmaMaheswari Devi

University of North Carolina at Chapel Hill

IBM Research Lab, Bangalore, India

January 27, 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Devi/Anderson Bounds - Basic Idea

• Bound tardiness of each task at $x + C_i$ for some x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Devi/Anderson Bounds - Basic Idea

• Bound tardiness of each task at $x + C_i$ for some x.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

• Nontrivial part is finding *x*.

Devi/Anderson Bounds - Basic Idea

• Bound tardiness of each task at $x + C_i$ for some x.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

- Nontrivial part is finding *x*.
- Bound does vary per task, but *x* does not.

Devi/Anderson Bounds - Specifics

 Devi & Anderson 2005 and later papers report several bounds on the tardiness of EDF.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Devi/Anderson Bounds - Specifics

- Devi & Anderson 2005 and later papers report several bounds on the tardiness of EDF.
- Derived in 2005 conference paper:

$$C_i + \frac{C_{\rm sum} - C_{\rm min}}{m - U_{\rm sum}} \tag{1}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Devi/Anderson Bounds - Specifics

- Devi & Anderson 2005 and later papers report several bounds on the tardiness of EDF.
- Derived in 2005 conference paper:

$$C_i + \frac{C_{\rm sum} - C_{\rm min}}{m - U_{\rm sum}} \tag{1}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

• Improved EDF-BASIC: Use only m - 2 execution values.

Devi/Anderson Bounds - Specifics

- Devi & Anderson 2005 and later papers report several bounds on the tardiness of EDF.
- Derived in 2005 conference paper:

$$C_i + \frac{C_{\rm sum} - C_{\rm min}}{m - U_{\rm sum}} \tag{1}$$

- Improved EDF-BASIC: Use only *m* − 2 execution values.
- Further improved EDF-ITER: Like EDF-BASIC, but only use values from selected *m* – 1 tasks.

• Use different *x_i* value for each task.

- Use different x_i value for each task.
- In worst case, becomes same results as Devi/Anderson.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Use different x_i value for each task.
- In worst case, becomes same results as Devi/Anderson.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

• Use concept of a compliant vector.

 $L(\vec{x})$

• Vector \vec{x} with x_i for each task

 $L(\vec{x})$

۲

• Vector \vec{x} with x_i for each task

$$\mathbf{L}(\vec{x}) = \sum_{(m-1) \text{ largest}} \left(x_i U_i + C_i \right)$$
(2)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $L(\vec{x})$

• Vector \vec{x} with x_i for each task

$$\mathbf{L}(\vec{x}) = \sum_{(m-1) \text{ largest}} \left(x_i U_i + C_i \right)$$
(2)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Can use improved definition L(*x*): the largest sum obtained by summing (*m*−2) of the (*x_iU_i* + *C_i*)'s plus an additional *C_i*.

• Using $L(\vec{x})$ as defined, a vector is *compliant* iff $\forall i$,

$$\frac{\mathbf{L}(\vec{x}) - C_i}{m} \le x_i \tag{3}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Using $L(\vec{x})$ as defined, a vector is *compliant* iff $\forall i$,

$$\frac{\mathsf{L}(\vec{x}) - C_i}{m} \le x_i \tag{3}$$

 A compliant vector is *minimal* if reducing any one component would produce a non-compliant vector.

Theorem 1

Theorem

Let $\vec{x} = \langle x_1, x_2, ..., x_n \rangle$ denote any compliant vector. For each $\tau_i \in \tau$, each job generated by task τ_i completes no later than $(C_i + x_i)$ time units after its deadline.

• Rather than using LAG (as in previous papers), use W(t)

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

SQA

Theorem 1

Theorem

Let $\vec{x} = \langle x_1, x_2, ..., x_n \rangle$ denote any compliant vector. For each $\tau_i \in \tau$, each job generated by task τ_i completes no later than $(C_i + x_i)$ time units after its deadline.

• Rather than using **LAG** (as in previous papers), use W(t)

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

SQA

• *I* = set of jobs with deadlines no later than *t*.

Theorem 1

Theorem

Let $\vec{x} = \langle x_1, x_2, ..., x_n \rangle$ denote any compliant vector. For each $\tau_i \in \tau$, each job generated by task τ_i completes no later than $(C_i + x_i)$ time units after its deadline.

• Rather than using **LAG** (as in previous papers), use W(t)

うして 山田 マイボット ボット シックション

- *I* = set of jobs with deadlines no later than *t*.
- $W(t) = \sum_{\text{jobs in } t} (C_i \text{work completed before } t)$

First Lemma

Lemma

For all $t \in [0, d_k)$,

$W(t) \leq U(au) imes (d_k - t) + \mathbf{L}(\vec{x})$

• We induct over busy and nonbusy intervals

First Lemma

Lemma

For all $t \in [0, d_k)$,

$W(t) \leq U(au) imes (d_k - t) + \mathbf{L}(ec{x})$

- We induct over busy and nonbusy intervals
- Busy intervals trivial

First Lemma

Lemma

For all $t \in [0, d_k)$,

$W(t) \leq U(au) imes (d_k - t) + \mathbf{L}(\vec{x})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- We induct over busy and nonbusy intervals
- Busy intervals trivial
- Nonbusy intervals several subcases

First Lemma

Lemma

For all $t \in [0, d_k)$,

$W(t) \leq U(au) imes (d_k - t) + \mathbf{L}(\vec{x})$

- We induct over busy and nonbusy intervals
- Busy intervals trivial
- Nonbusy intervals several subcases
 - Not running through interval contribute $U_i(d_k t_{i+1})$

うして 山田 マイボット ボット シックション

First Lemma

Lemma

For all $t \in [0, d_k)$,

$W(t) \leq U(au) imes (d_k - t) + \mathbf{L}(\vec{x})$

- We induct over busy and nonbusy intervals
- Busy intervals trivial
- Nonbusy intervals several subcases
 - Not running through interval contribute $U_i(d_k t_{i+1})$
 - Tardy at end of interval contribute $U_j(d_k t_{i+1}) + U_j x_j + C_j$

First Lemma

Lemma

For all $t \in [0, d_k)$,

$W(t) \leq U(au) imes (d_k - t) + \mathbf{L}(\vec{x})$

- We induct over busy and nonbusy intervals
- Busy intervals trivial
- Nonbusy intervals several subcases
 - Not running through interval contribute $U_i(d_k t_{i+1})$
 - Tardy at end of interval contribute $U_j(d_k t_{i+1}) + U_j x_j + C_j$
 - Not tardy at end, but running contribute $U_j(d_k t_{i+1}) + C_j$

First Lemma

Lemma

For all $t \in [0, d_k)$,

$W(t) \leq U(au) imes (d_k - t) + \mathbf{L}(\vec{x})$

- We induct over busy and nonbusy intervals
- Busy intervals trivial
- Nonbusy intervals several subcases
 - Not running through interval contribute $U_i(d_k t_{i+1})$
 - Tardy at end of interval contribute $U_j(d_k t_{i+1}) + U_j x_j + C_j$
 - Not tardy at end, but running contribute $U_j(d_k t_{i+1}) + C_j$
- Summing contributions reveals claimed upper bound

Second Lemma

Lemma

The job of τ_k with deadline d_k completes by time-instant $d_k + x_k + C_k$.

 Use previous lemma to determine that at most L(x) work is left at d_k

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Second Lemma

Lemma

The job of τ_k with deadline d_k completes by time-instant $d_k + x_k + C_k$.

 Use previous lemma to determine that at most L(x) work is left at d_k

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Bound follows from here

Second Lemma

Lemma

The job of τ_k with deadline d_k completes by time-instant $d_k + x_k + C_k$.

 Use previous lemma to determine that at most L(x) work is left at d_k

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

- Bound follows from here
- After this, we're done

Algorithm for computing minimal compliant vector

FINDCOMPLIANTVECTOR

1 $\vec{x} \leftarrow \langle 0, 0, \dots, 0 \rangle \triangleright$ Initialize (to a non-compliant vector)2repeat3Let τ_i denote any task violating constraint4Let \hat{x}_i denote smallest value of x_i satisfying constraint5Replace x_i by \hat{x}_i in \vec{x} 6until \vec{x} is a compliant vector

うして 山田 マイボット ボット シックション

Minimality of Computed Vector

Theorem

Procedure FINDCOMPLIANTVECTOR *returns a minimal compliant vector.*

Lemma

For all $j \ge 0$, $\mathbf{L}(\vec{x_j}) \le \mathbf{L}(\vec{x_f})$.

• Increasing an x_i value can only increase $L(\vec{x})$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Minimality of Computed Vector

Theorem

Procedure FINDCOMPLIANTVECTOR *returns a minimal compliant vector.*

Lemma

For all $j \ge 0$, $\mathbf{L}(\vec{x_j}) \le \mathbf{L}(\vec{x_f})$.

- Increasing an x_i value can only increase $L(\vec{x})$.
- Each bound, when set, was tight, so at end, all bounds tight.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 No bound known on runtime - seems very large from experiments

- No bound known on runtime seems very large from experiments
- Can make pseudo-polynomial by setting minimum increase ϵ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- No bound known on runtime seems very large from experiments
- Can make pseudo-polynomial by setting minimum increase ϵ

• Runs tens to thousands of iterations with $\epsilon = .1$ in experiments

- No bound known on runtime seems very large from experiments
- Can make pseudo-polynomial by setting minimum increase ϵ

- Runs tens to thousands of iterations with $\epsilon = .1$ in experiments
- Additive error bounded by *m*

Improved tardiness bounds for Global EDF - Slide 13 Experimental Results

• Used psuedo-polynomial approximation algorithm with $\epsilon = .1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Improved tardiness bounds for Global EDF - Slide 13 Experimental Results

Experimental Setup

• Used psuedo-polynomial approximation algorithm with $\epsilon = .1$.

 Random task sets - blocks of 1,000 tasks for each parameter tested. Improved tardiness bounds for Global EDF - Slide 13 Experimental Results

Experimental Setup

• Used psuedo-polynomial approximation algorithm with $\epsilon = .1$.

- Random task sets blocks of 1,000 tasks for each parameter tested.
- Always used uniform distribution over \mathbb{R} .

Experimental Results

A D F A P F A D F A D F

ъ

590

Experimental Results

イロト 不得 トイヨト イヨト

ъ

Sac

Experimental Results

Experimental Results

Experimental Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

990

Experimental Results

Experimental Results

Iterations

Experimental Results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ł

900

Iterations

Experimental Results

Iterations

・ロット 4回ット 4回ットロッ

Experimental Results

lterations

Experimental Results

Iterations

Improved tardiness bounds for Global EDF - Slide 25 Experimental Results

Faster Algorithm (Unpublished)

Can demonstrate that all bounds are tight for a minimal compliant vector.

Improved tardiness bounds for Global EDF - Slide 25 Experimental Results

Faster Algorithm (Unpublished)

- Can demonstrate that all bounds are tight for a minimal compliant vector.
- Thus, only need to determine L(x) and verify that it creates a compliant vector.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Faster Algorithm (Unpublished)

- Can demonstrate that all bounds are tight for a minimal compliant vector.
- Thus, only need to determine L(x) and verify that it creates a compliant vector.
- This can be done with an efficient binary search, with the number of iterations set to the bits of accuracy for $\frac{\mathbf{L}(\vec{x})}{m}$.

うして 山田 マイボット ボット シックション

Faster Algorithm (Unpublished)

- Can demonstrate that all bounds are tight for a minimal compliant vector.
- Thus, only need to determine L(x) and verify that it creates a compliant vector.
- This can be done with an efficient binary search, with the number of iterations set to the bits of accuracy for $\frac{\mathbf{L}(\vec{x})}{m}$.

うして 山田 マイボット ボット シックション

 In practice, produces much better bounds in far fewer iterations.

Faster Algorithm (Unpublished)

- Can demonstrate that all bounds are tight for a minimal compliant vector.
- Thus, only need to determine L(x) and verify that it creates a compliant vector.
- This can be done with an efficient binary search, with the number of iterations set to the bits of accuracy for $\frac{\mathbf{L}(\vec{x})}{m}$.
- In practice, produces much better bounds in far fewer iterations.
- Still working on theory.

Improved tardiness bounds for Global EDF - Slide 26 Experimental Results

Review

- Devi/Anderson Bounds
- Proof of improved bounds

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Approximation algorithm
- Experimental results