
Improved tardiness bounds for Global EDF - Slide 1

Improved tardiness bounds for Global EDF

Jeremy Erickson Sanjoy Baruah UmaMaheswari Devi

University of North Carolina at Chapel Hill

IBM Research Lab, Bangalore, India

January 27, 2010



Improved tardiness bounds for Global EDF - Slide 2

Devi/Anderson Bounds

Devi/Anderson Bounds - Basic Idea

Bound tardiness of each task at x + Ci for some x .

Nontrivial part is finding x .
Bound does vary per task, but x does not.
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Devi/Anderson Bounds

Devi/Anderson Bounds - Specifics

Devi & Anderson 2005 and later papers report several
bounds on the tardiness of EDF.

Derived in 2005 conference paper:

Ci +
Csum − Cmin

m − Usum
(1)

Improved EDF-BASIC: Use only m − 2 execution values.
Further improved EDF-ITER: Like EDF-BASIC, but only
use values from selected m − 1 tasks.
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Improved Bounds

Our Improvement

Use different xi value for each task.

In worst case, becomes same results as Devi/Anderson.
Use concept of a compliant vector.
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Improved Bounds

L(~x)

Vector ~x with xi for each task

L(~x) =
∑

(m−1) largest

(
xiUi + Ci

)
(2)

Can use improved definition L(~x): the largest sum
obtained by summing (m − 2) of the (xiUi + Ci)’s plus an
additional Ci .
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Improved Bounds

Compliant Vector

Using L(~x) as defined, a vector is compliant iff ∀i ,

L(~x)− Ci

m
≤ xi (3)

A compliant vector is minimal if reducing any one
component would produce a non-compliant vector.
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Improved Bounds

Theorem 1

Theorem

Let ~x = 〈x1, x2, . . . , xn〉 denote any compliant vector. For each
τi ∈ τ , each job generated by task τi completes no later than
(Ci + xi) time units after its deadline.

Rather than using LAG (as in previous papers), use W (t)

I = set of jobs with deadlines no later than t .
W (t) =

∑
jobs in I(Ci − work completed before t)
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Improved Bounds

First Lemma

Lemma

For all t ∈ [0,dk ),

W (t) ≤ U(τ)× (dk − t) + L(~x)

We induct over busy and nonbusy intervals

Busy intervals - trivial
Nonbusy intervals - several subcases

Not running through interval - contribute Uj(dk − ti+1)
Tardy at end of interval - contribute Uj(dk − ti+1) + Ujxj + Cj
Not tardy at end, but running - contribute Uj(dk − ti+1) + Cj

Summing contributions reveals claimed upper bound
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Improved Bounds

Second Lemma

Lemma

The job of τk with deadline dk completes by time-instant
dk + xk + Ck .

Use previous lemma to determine that at most L(x) work is
left at dk

Bound follows from here
After this, we’re done
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Improved Bounds

Algorithm for computing minimal compliant vector

FINDCOMPLIANTVECTOR

1 ~x ← 〈0,0, . . . ,0〉� Initialize (to a non-compliant vector)
2 repeat
3 Let τi denote any task violating constraint
4 Let x̂i denote smallest value of xi satisfying constraint
5 Replace xi by x̂i in ~x
6 until ~x is a compliant vector
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Improved Bounds

Minimality of Computed Vector

Theorem

Procedure FINDCOMPLIANTVECTOR returns a minimal
compliant vector.

Lemma

For all j ≥ 0, L(~xj) ≤ L(~xf ).

Increasing an xi value can only increase L(~x).

Each bound, when set, was tight, so at end, all bounds
tight.
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Improved Bounds

Complexity

No bound known on runtime - seems very large from
experiments

Can make pseudo-polynomial by setting minimum increase
ε

Runs tens to thousands of iterations with ε = .1 in
experiments
Additive error bounded by mε
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Experimental Results

Experimental Setup

Used psuedo-polynomial approximation algorithm with
ε = .1.

Random task sets - blocks of 1,000 tasks for each
parameter tested.
Always used uniform distribution over R.
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Experimental Results
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Experimental Results

Faster Algorithm (Unpublished)

Can demonstrate that all bounds are tight for a minimal
compliant vector.

Thus, only need to determine L(~x) and verify that it creates
a compliant vector.
This can be done with an efficient binary search, with the
number of iterations set to the bits of accuracy for L(~x)

m .
In practice, produces much better bounds in far fewer
iterations.
Still working on theory.
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Experimental Results

Review

Devi/Anderson Bounds
Proof of improved bounds
Approximation algorithm
Experimental results
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