Discovering Hypervisor Overheads using Micro and Macrobenchmarks

Andrea Bastoni Paolo Palana Daniel P. Bovet Marco Cesati

University of Rome "Tor Vergata" System Programming Research Group {bastoni,palana,bovet,cesati}@sprg.uniroma2.it

Computer Architecture and Operating System co-design Pisa – January 23, 2010

An overview of Virtualization

Virtualization refers to the separation of a *service request* from the *physical delivery* that service

Virtualization is not a new concept:

- was introduced by IBM (IBM M44, IBM VM/370) in the 1960's
- but has gained renewed interest in recent years, especially for *server consolidation*

Server consolidation allows to reduce waste of resources by consolidating *group* of servers into *one* physical machine

Full Virtualization

In full virtualization solutions:

- unmodified guest kernels run on top of a virtualization layer
- guest VMs are unaware of the virtualization layer
- The Virtual Machine Monitor (*hypervisor*) deceives guest kernels:
 - all guest kernels sensitive instructions are trapped or binary-translated to safely execute on the physical CPU
 - the guest VM believes to run directly on the real hardware

Using virtualization to perform server consolidation allows for an higher level of *isolation* among consolidated servers

On *x86* architecture:

- guest kernels and applications run at a lower privilege level (*ring*) than the hypervisor
- ring deprivileging is the major source of architectural problems in supporting x86 full virtualization

Hardware support to virtualization

Supporting unmodified x86 guest without ring deprivileging is possible:

- hardware modifications and extensions are needed
- AMD (AMD-V) and Intel (Intel VT-x/VT-i) started integrating such modifications in 2005

Two new operating modes:

- guest mode for VM
- root mode for hypervisor

Guest OSes run in their original privilege levels

Hypervisor controls guest execution through *control bits* and *hardware-defined* structures (*VMCS*)

4/24

Virtual Machines execution is *slowed down* by several overheads

Previous studies that analyzed these overheads suffer some drawbacks:

- studies focusing on the impact of virtualization on server consolidation use entirely different workloads or stress different hardware components
 - may prevent the discovery of overheads and scalability problems
- studies using microbenchmarks focus on a single virtualized component of the system
 - cannot register interactions among virtualized components

Furthermore:

- few studies targeted overheads of hardware support
- few studies explored virtualization of 64-bit guest on 64-bit host

Evaluate performance and scalability for three open source virtualization technologies with hardware support

- Global performance evaluation using SPECweb2005 macrobenchmark
 - Some behaviours are difficult to explain
- Integrate macrobenchmark results using microbenchmark
 - Some behaviours are unexpected and difficult to explain

A more detailed analysis is needed, but...

- Currently available profiling and monitoring techniques provide inadequate support to full virtualization
- We propose some *architectural changes* that may help in overcoming these limitations

Tested full virtualization solutions

Xen	KVM	VirtualBox
Type 1 Hypervisor	Hybrid type 1 Hypervisor (The OS <i>is</i> the VMM)	Type 2 Hypervisor
Modified QEMU device model	QEMU device model	Own device model (Originally based on QEMU)

Macrobenchmark (SPECweb2005):

- uniform workload on all virtual machines concurrently executing on the hypervisor
- evaluate overheads due to interactions between system components (CPU, network, disk)
- is the de-facto standard for web server performance evaluation
 - Simulates a real web server workload in a real environment

SPECweb performance metric:

- SPEC simultaneous sessions: number of sessions the SUT supports while meeting a pre-defined Quality-of-Service level
 - QoS requirements are defined by two parameters (*Time_Good*, *Time_Tolerable*)
 - these parameters identify the maximum aggregate response time allowed for each page request

Microbenchmarks:

- evaluate overheads of a single component of the system
- Bzip2: CPU overheads
- Netperf: Network overheads
- dd: disk overheads
- Performance metrics are defined by each microbenchmark
 - Bzip: seconds
 - Netperf: Mb/s
 - dd: MB/s

Specific test of 64 bit VMs on 64 bit Hypervisor:

 compare performance with previous studies on 32 bit guest over 32 bit host

Experimental setup

- Virtualizators version:
 - Xen: 3.3.0, KVM: 75, Virtual Box: 2.0.6
- Hypervisor and Guests Linux kernel: 2.6.21.7
- System Under Testing:
 - AMD Opteron: 4 dual-core NUMA, 2GHz, 16 GB Ram
 - HTTP Apache Web Server 2.2.9
- Each VM has 1.5 GB Ram and 1 or 2 VCPUs
- 1 to 10 VMs concurrently executing
- Tests setup:
 - E-Commerce SPECweb workload (3 iterations = 1 complete run)
 - Netperf TCP test (standard 10 second test)
 - dd raw copy of Gentoo livecd image (742 MB)
 - bzip compression of the same file
- Systems rebooted after each run

Experimental Setup

SPECweb test setup

Experimental Setup

Microbenchmark test setup

Macrobenchmark performance

SPEC simultaneous sessions normalized to Linux ("Higher is better")

- Performance far below non-virtualized Linux
- Adding a virtual CPU introduces additional overheads (NUMA)

Cumulative SPEC simultaneous sessions as number of VM increases

Linux performance not shown: 2750 sessions on average

Macrobenchmark scalability

Cumulative SPEC simultaneous sessions as number of VM increases

Linux performance not shown: 2750 sessions on average

- KVM and Xen performance drops as number of VMs increases
- Xen (1 VCPU) obtains poor performance

Microbenchmark results

Bzip2 performance normalized to Linux ("Higher is better", 1 VCPU)

- VBox performs better than non-virtualized Linux
- VBox runs threads at kernel privilege level
- avoids many sanity checks normally done by kernel in dealing with userspace
- Likely to influence the good VBox performance in SPEC scalability

Microbenchmark results

Netperf performance normalized to Linux ("Higher is better", 1 VCPU)

- Xen performs very poorly
- Confirm results from Apparao et al. (2006)¹
- Likely to influence the poor SPEC cumulative performance of Xen 1 VCPU

Apparao et al. (2006), Characterization of network processing overheads in Xen, In Proc. of the 2nd Int. Workshop on Virtualization Technology in Distributed Computing

Limitations of current analysis techniques

Comparison of micro and macrobenchmark results:

- High overheads with respect to Linux
- 64 bit over 64 bit obtains similar results to those previously published (32 bit on 32 bit)
- unexpected behaviours (e.g., VBox CPU performance)
- behaviours difficult to explain (e.g., Xen poor cumulative performance)

Need of a deeper analysis:

- on-line monitoring
- profiling

Currently available tools are limited:

- top, sar provide limited information on VM resources usage
- Profiling and monitoring tools for virtualized solutions are available for paravirtualized techniques only (Xenoprof, Xenmon)

Xenoprof² profiler:

- "Porting of Oprofile" to Xen
- Two level profiler:
 - Hypervisor layer (Xenoprof): monitors performance counters and forwards PC interrupts to domains
 - Domain layer: modified Oprofile for attributing samples to routines inside VM
- Domains need to be *modified* to interact with VMM
- In a virtualized environment:
 - Profiling cannot be centralized:
 - Hypervisor cannot determine the process currently running in a guest domain
 - Domains cannot access hardware performance counters

²Menon et al. (2005), Diagnosing performance overheads in the xen virtual machine environment, In VEE '05: Proc of the state ACM/USENIX international conference on Virtual execution environments

Virtualization-aware hardware performance counters

Extend the virtualization hardware support to include *virtualized performance counters*:

- guest can access hardware performance counters
- non-modified profiling and monitoring tools can directly execute on guest domains
- simple system-wide profiling of the machine (VMM and VMs)

Virtualization-aware Hardware Performance Counter architecture

- Expand the Virtual Machine Control Structure (VMCS)
- Save the status of physical performance counters upon Virtual Machine switch

VMCS is the main hardware support control structure:

- each VM has one VMCS per VCPU

While active and running, each non-modified VM can program hardware performance counters:

- the VMM intercepts PC interrupts and delivers them to the VM
- On Virtual Machine switch:
 - the current value of PCs (used by the switched-out VM) is saved on the VMCS
 - the PC values used by the switched-in VM are restored

Furthermore:

- Performance counters programming information can also be saved on VMCS
- Hypervisor performance counters accounting can be done similarly

Each guest domain:

- has coherent access to its performance statistics
- can directly execute *non-modified* profiling and monitoring tools
 - e.g., Oprofile, in-kernel support to hardware performance counters...

Easy system-wide profiling of the machine:

- can be done by the hypervisor only
- gather per-VM performance counters information

Hypervisor performance analysis:

- Neither macrobenchmarks nor microbenchmarks can fully explain some behaviours of full virtualization solutions
- A more detailed analysis is needed

Profiling and monitoring tools:

- Available tools cannot be used in a full virtualized environment
- Virtualization-aware hardware performance counters integrate hardware performance counters in the hardware virtualization support
- Non-modified profiling and monitoring tools can be used on full virtualized guests

Thank you!

