
Discovering Hypervisor Overheads using Micro
and Macrobenchmarks

Andrea Bastoni Paolo Palana
Daniel P. Bovet Marco Cesati

University of Rome “Tor Vergata”
System Programming Research Group

{bastoni,palana,bovet,cesati}@sprg.uniroma2.it

Computer Architecture and Operating System co-design
Pisa – January 23, 2010

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 1 / 24



An overview of Virtualization

Virtualization refers to the separation of a service request from the
physical delivery that service

Virtualization is not a new concept:
was introduced by IBM (IBM M44, IBM VM/370) in the 1960’s
but has gained renewed interest in recent years, especially for
server consolidation

Server consolidation allows to
reduce waste of resources by
consolidating group of servers into
one physical machine

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 2 / 24



Full Virtualization

In full virtualization solutions:
unmodified guest kernels run on top of a virtualization layer
guest VMs are unaware of the virtualization layer

The Virtual Machine Monitor (hypervisor) deceives guest kernels:
all guest kernels sensitive instructions are trapped or
binary-translated to safely execute on the physical CPU
the guest VM believes to run directly on the real hardware

Using virtualization to perform server consolidation allows for an higher
level of isolation among consolidated servers

On x86 architecture:
guest kernels and applications run at a lower privilege level (ring)
than the hypervisor
ring deprivileging is the major source of architectural problems in
supporting x86 full virtualization

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 3 / 24



Hardware support to virtualization

Supporting unmodified x86 guest without ring deprivileging is possible:
hardware modifications and extensions are needed
AMD (AMD-V) and Intel (Intel VT-x/VT-i) started integrating such
modifications in 2005

Two new operating modes:
guest mode for VM
root mode for hypervisor

Guest OSes run in their
original privilege levels

Hypervisor controls guest
execution through control bits
and hardware-defined
structures (VMCS)

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 4 / 24



Motivation

Virtual Machines execution is slowed down by several overheads

Previous studies that analyzed these overheads suffer some
drawbacks:

studies focusing on the impact of virtualization on server
consolidation use entirely different workloads or stress different
hardware components

I may prevent the discovery of overheads and scalability problems
studies using microbenchmarks focus on a single virtualized
component of the system

I cannot register interactions among virtualized components

Furthermore:
few studies targeted overheads of hardware support
few studies explored virtualization of 64-bit guest on 64-bit host

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 5 / 24



The proposed approach

Evaluate performance and scalability for three open source
virtualization technologies with hardware support

Global performance evaluation using SPECweb2005
macrobenchmark

I Some behaviours are difficult to explain
Integrate macrobenchmark results using microbenchmark

I Some behaviours are unexpected and difficult to explain

A more detailed analysis is needed, but. . .

Currently available profiling and monitoring techniques provide
inadequate support to full virtualization
We propose some architectural changes that may help in
overcoming these limitations

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 6 / 24



Tested full virtualization solutions

Xen KVM VirtualBox

Type 1 Hypervisor Hybrid type 1
Hypervisor

(The OS is the VMM)

Type 2 Hypervisor

Modified QEMU
device model

QEMU device model Own device model
(Originally based on

QEMU)

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 7 / 24



Benchmarks and Performance Metrics

Macrobenchmark (SPECweb2005):
uniform workload on all virtual machines concurrently executing
on the hypervisor
evaluate overheads due to interactions between system
components (CPU, network, disk)
is the de-facto standard for web server performance evaluation

I Simulates a real web server workload in a real environment

SPECweb performance metric:
SPEC simultaneous sessions: number of sessions the SUT
supports while meeting a pre-defined Quality-of-Service level

I QoS requirements are defined by two parameters
(Time_Good, Time_Tolerable)

I these parameters identify the maximum aggregate response time
allowed for each page request

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 8 / 24



Benchmarks and Performance Metrics

Microbenchmarks:
evaluate overheads of a single component of the system
Bzip2: CPU overheads
Netperf: Network overheads
dd: disk overheads

Performance metrics are defined by each microbenchmark
Bzip: seconds
Netperf: Mb/s
dd: MB/s

Specific test of 64 bit VMs on 64 bit Hypervisor:
compare performance with previous studies on 32 bit guest over
32 bit host

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 9 / 24



Experimental setup

Virtualizators version:
I Xen: 3.3.0, KVM: 75, Virtual Box: 2.0.6

Hypervisor and Guests Linux kernel: 2.6.21.7

System Under Testing:
I AMD Opteron: 4 dual-core NUMA, 2GHz, 16 GB Ram
I HTTP Apache Web Server 2.2.9

Each VM has 1.5 GB Ram and 1 or 2 VCPUs
1 to 10 VMs concurrently executing

Tests setup:
I E-Commerce SPECweb workload (3 iterations = 1 complete run)
I Netperf TCP test (standard 10 second test)
I dd raw copy of Gentoo livecd image (742 MB)
I bzip compression of the same file

Systems rebooted after each run

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 10 / 24



Experimental Setup

SPECweb test setup

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 11 / 24



Experimental Setup

Microbenchmark test setup

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 12 / 24



Macrobenchmark performance
SPEC simultaneous sessions normalized to Linux (“Higher is better”)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 VCPU

Linux
KVM
Xen

VBox

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 VCPU

800

210 200 160

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 VCPUs

Linux
KVM
Xen

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 VCPUs

950

325 295

Performance far below non-virtualized Linux

Adding a virtual CPU introduces additional overheads (NUMA)

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 13 / 24



Macrobenchmark scalability

Cumulative SPEC simultaneous sessions as number of VM increases

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 14 / 24



Macrobenchmark scalability
Cumulative SPEC simultaneous sessions as number of VM increases

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

S
P

E
C

si
m

ul
ta

ne
ou

s
se

ss
io

n

Number of VMs

Xen (2 CPU)
KVM (2 CPU)
VBox (1 CPU)

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

S
P

E
C

si
m

ul
ta

ne
ou

s
se

ss
io

n

Number of VMs

Xen (1 CPU)
KVM (1 CPU)
VBox (1 CPU)

Linux performance not shown: 2750 sessions on average

KVM and Xen performance drops as number of VMs increases

Xen (1 VCPU) obtains poor performance

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 15 / 24



Microbenchmark results

Bzip2 performance normalized to Linux (“Higher is better”, 1 VCPU)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

1 5 10
Number of VMs

Xen
KVM
VBox

VBox performs better than
non-virtualized Linux
VBox runs threads at kernel
privilege level
avoids many sanity checks normally
done by kernel in dealing with
userspace
Likely to influence the good VBox
performance in SPEC scalability

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 16 / 24



Microbenchmark results

Netperf performance normalized to Linux (“Higher is better”, 1 VCPU)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 5 10
Number of VMs

Xen
KVM
VBox

Xen performs very poorly
Confirm results from
Apparao et al. (2006)1

Likely to influence the poor SPEC
cumulative performance of Xen
1 VCPU

1
Apparao et al. (2006), Characterization of network processing overheads in Xen, In Proc. of the 2nd Int. Workshop on

Virtualization Technology in Distributed Computing

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 17 / 24



Limitations of current analysis techniques

Comparison of micro and macrobenchmark results:
High overheads with respect to Linux
64 bit over 64 bit obtains similar results to those previously
published (32 bit on 32 bit)
unexpected behaviours (e.g., VBox CPU performance)
behaviours difficult to explain (e.g., Xen poor cumulative
performance)

Need of a deeper analysis:
on-line monitoring
profiling

Currently available tools are limited:
top, sar provide limited information on VM resources usage
Profiling and monitoring tools for virtualized solutions are available
for paravirtualized techniques only (Xenoprof, Xenmon)

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 18 / 24



Limitations of current analysis techniques

Xenoprof2 profiler:
“Porting of Oprofile” to Xen
Two level profiler:

I Hypervisor layer (Xenoprof): monitors performance counters and
forwards PC interrupts to domains

I Domain layer: modified Oprofile for attributing samples to routines
inside VM

Domains need to be modified to interact with VMM
In a virtualized environment:

Profiling cannot be centralized:
I Hypervisor cannot determine the process currently running in a

guest domain

Domains cannot access hardware performance counters

2
Menon et al. (2005), Diagnosing performance overheads in the xen virtual machine environment, In VEE ’05: Proc of the

1st ACM/USENIX international conference on Virtual execution environments

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 19 / 24



Virtualization-aware hardware performance counters

Extend the virtualization hardware support to include virtualized
performance counters:

guest can access hardware performance counters
non-modified profiling and monitoring tools can directly execute on
guest domains
simple system-wide profiling of the machine (VMM and VMs)

Virtualization-aware Hardware Performance Counter architecture

Expand the Virtual Machine Control Structure (VMCS)
Save the status of physical performance counters upon Virtual
Machine switch

VMCS is the main hardware support control structure:
controls root � non-root VM operating modes transitions
each VM has one VMCS per VCPU

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 20 / 24



Virtualization-aware hardware performance counters

While active and running, each non-modified VM can program
hardware performance counters:

the VMM intercepts PC interrupts and delivers them to the VM
On Virtual Machine switch:

the current value of PCs (used by the switched-out VM) is saved
on the VMCS
the PC values used by the switched-in VM are restored

Furthermore:
Performance counters programming information can also be
saved on VMCS
Hypervisor performance counters accounting can be done
similarly

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 21 / 24



Virtualization-aware hardware performance counters

Each guest domain:
has coherent access to its performance statistics
can directly execute non-modified profiling and monitoring tools

I e.g., Oprofile, in-kernel support to hardware performance
counters. . .

Easy system-wide profiling of the machine:
can be done by the hypervisor only
gather per-VM performance counters information

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 22 / 24



Conclusion

Hypervisor performance analysis:
Neither macrobenchmarks nor microbenchmarks can fully explain
some behaviours of full virtualization solutions
A more detailed analysis is needed

Profiling and monitoring tools:
Available tools cannot be used in a full virtualized environment
Virtualization-aware hardware performance counters integrate
hardware performance counters in the hardware virtualization
support
Non-modified profiling and monitoring tools can be used on full
virtualized guests

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 23 / 24



Thank you!

Bastoni, Palana, Bovet, Cesati Discovering Hypervisor Overheads using Micro and Macrobenchmarks CAOS ’10 24 / 24


	Introduction to Virtualization
	Full Virtualization
	Hardware support
	Virtualization performance
	Tests setup
	Results
	Limitations of available analysis techniques


