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Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.
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Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Intel 4x 2.7 GHz Xeon SMP
(few, fast processors; private caches)

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?
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Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

partitioned EDF

2 x global EDF

2 x PFAIR

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?
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Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

“for each tested scheme, scenarios exist 
in which it is a viable choice”



UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

UNC’s Implementation Studies (II)

6

Brandenburg et al. (2008)
➡ What if there are many slow processors?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.
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Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2
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Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

G-EDF: high overheads, low schedulability.
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How to implement global schedulers?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.
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How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Instead of 
considering

one 
implementation 

of several
different 
scheduling 

algorithms…
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How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.
➡ Case study: nine G-EDF variants on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF G-EDF

G-EDF G-EDF

G-EDF

G-EDF G-EDF

G-EDF

G-EDF
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➡ When to schedule.
➡ Quantum alignment.
➡ How to handle interrupts.
➡ How to queue pending jobs.
➡ How to manage future releases.
➡ How to avoid unnecessary preemptions.



UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Scheduler Invocation

14



UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Scheduler Invocation

15

Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur 

immediately

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

release completion
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Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur 

immediately

Quantum-Driven
➡ on every timer tick
➡ easier to implement
➡ on release a job is just 

enqueued; scheduler is 
invoked at next tick

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150
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Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

P1

P2

5 10 150
release completion
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Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

Staggered
➡ Ticks spread out 

across quantum.
➡ Reduced bus and 

lock contention.
➡ Additional latency.

P1

P2

5 10 150

P1

P2

5 10 150

release completion
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Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

Staggered
➡ Ticks spread out 

across quantum.
➡ Reduced bus and 

lock contention.
➡ Additional latency.
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T x

1T y
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T z
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Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

Staggered
➡ Ticks spread out 

across quantum.
➡ Reduced bus and 

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

staggering delays

5 10 150

release completion
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Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

Staggered
➡ Ticks spread out 

across quantum.
➡ Reduced bus and 

lock contention.
➡ Additional latency.
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P2
T x

1T y
2

T z
3 T y

2

staggering delays

5 10 150
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T x
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T z
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delay partially-used quantum

5 10 150
release completion
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Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be 

delayed by each interrupt.
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Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be 

delayed by each interrupt.
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Dedicated interrupt handling.
➡ Only one processor services interrupts.
➡ Jobs may execute on other processors.
➡ Jobs are not delayed by release interrupts.
➡ Well-known technique; used in the Spring 

kernel (Stankovic and Ramamritham, 1991).
➡ How does it affect schedulability?

J.A. Stankovic and K. Ramamritham (1991), The Spring kernel: A new paradigm for real-time systems. IEEE Software, 8(3):62–72.
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Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.
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27

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.

Requirements.
➡ Mergeable priority queue: release n 

jobs in O(log n) time.
➡ Parallel enqueue / dequeue operations.
➡ Mostly cache-local data structures.
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Globally-shared priority queue.
➡ Problem: hyper-period boundaries.	


➡ Problem: lock contention.
➡ Problem: bus contention.

P1 P2

…

P32

Coarse-Grained  Heap Hierarchical Heaps Fine-Grained Heap

In this study, we consider three queue implementations.
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Binomial heap + single lock.
➡ Lock used to synchronize all G-EDF state.
➡ Mergeable queue.
➡ No parallel updates.
➡ No cache-local updates.
➡ Low locking overhead 

(only single lock acquisition).
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P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.
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P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.

Locking.
➡ Dequeue: top-down.
➡ Enqueue: bottom-up.
➡ Enqueue may have to 

drop lock, retry.
➡ Additional complexity 

wrt. dequeue (see paper).
➡ Bottom line: expensive.
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Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.
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Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Locking.
➡ Many lock acquisitions.
➡ Atomic peek+dequeue 

operation needed to check for 
preemptions.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.
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Release queue.
➡ Support mergeable queues.
➡ Support dedicated interrupt handling.

Job-to-processor mapping.
➡ Quickly determine whether preemption is required.
➡ Avoid unnecessary preemptions.
➡ Used to linearize concurrent scheduling decisions.

(Details in the paper.)
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Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems
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Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.
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Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.

Scheduler Plugin API.
➡ scheduler_tick()
➡ schedule()
➡ release_jobs()
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Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

FEm fine-grained event-driven global

HEm hierarchical event-driven global

S-CQm coarse-grained quantum (staggered) global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated



UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Considered G-EDF Variants

40

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated
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Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

Baseline from
(Brandenburg et al., 2008)
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Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

No fine-grained heaps + quantum-driven scheduling.
(Parallel updates not beneficial due to quantum barrier.)
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Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated
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Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated

No hierarchical heaps + dedicated interrupt handling.
(Hierarchical heaps not beneficial if only one proc. enqueues.)
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Compare the discussed implementations
in terms of the ratio of randomly-generated task sets

that can be shown to be schedulable
under consideration of system overheads.



UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Scheduling Overheads

47



UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Scheduling Overheads

48

Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Context switch overhead.
➡ Changing address space.

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion
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Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Tick overhead.
➡ Cost of a periodic timer interrupt.
➡ Beginning of a new quantum.

Context switch overhead.
➡ Changing address space.

Preemption and migration overhead.
➡ Loss of cache affinity.
➡ Known from (Brandenburg et al., 2008).

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion
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P1

P2 T x
1T y

2

T z
3 T y

2

IPI latency

5 10 150

Inter-processor interrupts (IPIs).
➡ Interrupt may be processed by a processor different from the one 

that will schedule a newly-arrived job.
➡ Requires notification of remote processor.
➡ Event-based scheduling incurs added latency.

release completion
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LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed 

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara” 
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LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed 

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara” 

0

100

200

300

400

500

600

700

PFAIR S-PFAIR G-EDF C-EDF P-EDF

Overheads
➡ Traced overheads under each of the plugins.
➡ Collected more than 640,000,000 samples (total).
➡ Computed worst-case and average-case overheads.
➡ Over 20 graphs; see online version. 

Outliers
➡ Removed top 1% of samples to discard outliers.
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Example: Release Overhead
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Quantum-Driven

Event-Driven
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Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for 

each G-EDF implementation).
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Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for 

each G-EDF implementation).
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Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded 

tardiness.
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Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for 

each G-EDF implementation).
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Task set generation.
➡ Six utilization distributions (uniform and bimodal).
➡ Three period distributions (uniform).
➡ Over 300 graphs; see online version.

Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded 

tardiness.
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“Higher is better.”
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Dedicated

Zero Overh.Global

Dedicated interrupt handling
was generally preferable (or no worse).
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Staggered

Zero OverheadsAligned

Staggered quanta
were generally preferable (or no worse).
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Quantum
Event

Event-driven scheduling 
was preferable in most cases.

Zero Overh.
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The coarse-grained ready queue
performed better than the hierarchical queue.
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Zero O.Coarse-Grained

Fine-Grained

The fine-grained ready queue
performed marginally better than the coarse-grained queue 
if used together with dedicated interrupt handling.
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Implementation choices 
can impact schedulability as much as 

scheduling-theoretic tradeoffs.

Unless task counts are very high
or periods very short,

G-EDF can scale to 32 processors.
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Best results obtained with combination of:

fine-grained heap
event-driven scheduling

dedicated interrupt handling
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Platform.
➡ Repeat study on embedded hardware platform.

Implementation.
➡ Simplify locking requirements.
➡ Parallel mergeable heaps?

Analysis.
➡ Less pessimistic hard real-time G-EDF schedulability tests.
➡ Less pessimistic interrupt accounting.
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Thank you!

available at
http://www.cs.unc.edu/~anderson/litmus-rt

http://www.cs.unc.edu/~anderson/litmus-rt
http://www.cs.unc.edu/~anderson/litmus-rt

