
On the Implementation
of Global Real-Time Schedulers

Björn B. Brandenburg,
and James H. Anderson

The University of North Carolina at Chapel Hill

Work supported by IBM, SUN, and Intel Corps., NSF grants CNS 0834270, CNS 0834132, and CNS 0615197, and ARO grant W911NF-06-1-0425.

RTSS’09, Washington, DC
December 3, 2009

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

UNC’s Implementation Studies (I)

2

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC’s Implementation Studies (I)

3

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Intel 4x 2.7 GHz Xeon SMP
(few, fast processors; private caches)

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC’s Implementation Studies (I)

4

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

partitioned EDF

2 x global EDF

2 x PFAIR

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC’s Implementation Studies (I)

5

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

“for each tested scheme, scenarios exist
in which it is a viable choice”

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

UNC’s Implementation Studies (II)

6

Brandenburg et al. (2008)
➡ What if there are many slow processors?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

UNC’s Implementation Studies (II)

7

Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

UNC’s Implementation Studies (II)

8

Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

G-EDF: high overheads, low schedulability.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

This Study

9

How to implement global schedulers?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

This Study

10

How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Instead of
considering

one
implementation

of several
different
scheduling

algorithms…

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

This Study

11

How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.
➡ Case study: nine G-EDF variants on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF G-EDF

G-EDF G-EDF

G-EDF

G-EDF G-EDF

G-EDF

G-EDF

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Design Choices

12

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Design Choices

13

➡ When to schedule.
➡ Quantum alignment.
➡ How to handle interrupts.
➡ How to queue pending jobs.
➡ How to manage future releases.
➡ How to avoid unnecessary preemptions.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Scheduler Invocation

14

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Scheduler Invocation

15

Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur

immediately

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

release completion

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

release completion

Scheduler Invocation

16

Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur

immediately

Quantum-Driven
➡ on every timer tick
➡ easier to implement
➡ on release a job is just

enqueued; scheduler is
invoked at next tick

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Quantum Alignment

17

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

P1

P2

5 10 150
release completion

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Quantum Alignment

18

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2

5 10 150

P1

P2

5 10 150

release completion

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Quantum Alignment

19

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

P1

P2

5 10 150

release completion

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Quantum Alignment

20

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

staggering delays

5 10 150

release completion

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Quantum Alignment

21

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

staggering delays

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150
release completion

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Interrupt Handling

22

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Interrupt Handling

23

Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be

delayed by each interrupt.

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Interrupt Handling

24

Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be

delayed by each interrupt.

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

Dedicated interrupt handling.
➡ Only one processor services interrupts.
➡ Jobs may execute on other processors.
➡ Jobs are not delayed by release interrupts.
➡ Well-known technique; used in the Spring

kernel (Stankovic and Ramamritham, 1991).
➡ How does it affect schedulability?

J.A. Stankovic and K. Ramamritham (1991), The Spring kernel: A new paradigm for real-time systems. IEEE Software, 8(3):62–72.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Ready Queue

25

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Ready Queue

26

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Ready Queue

27

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.

Requirements.
➡ Mergeable priority queue: release n

jobs in O(log n) time.
➡ Parallel enqueue / dequeue operations.
➡ Mostly cache-local data structures.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Ready Queue

28

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.	

➡ Problem: lock contention.
➡ Problem: bus contention.

P1 P2

…

P32

Coarse-Grained Heap Hierarchical Heaps Fine-Grained Heap

In this study, we consider three queue implementations.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Ready Queue: Coarse-Grained Heap

29

Binomial heap + single lock.
➡ Lock used to synchronize all G-EDF state.
➡ Mergeable queue.
➡ No parallel updates.
➡ No cache-local updates.
➡ Low locking overhead

(only single lock acquisition).

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Ready Queue: Hierarchical Heaps

30

P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Ready Queue: Hierarchical Heaps

31

P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.

Locking.
➡ Dequeue: top-down.
➡ Enqueue: bottom-up.
➡ Enqueue may have to

drop lock, retry.
➡ Additional complexity

wrt. dequeue (see paper).
➡ Bottom line: expensive.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Ready Queue: Fine-Grained Heap

32

Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Ready Queue: Fine-Grained Heap

33

Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Locking.
➡ Many lock acquisitions.
➡ Atomic peek+dequeue

operation needed to check for
preemptions.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Additional Components

34

Release queue.
➡ Support mergeable queues.
➡ Support dedicated interrupt handling.

Job-to-processor mapping.
➡ Quickly determine whether preemption is required.
➡ Avoid unnecessary preemptions.
➡ Used to linearize concurrent scheduling decisions.

(Details in the paper.)

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Implementation in LITMUSRT

35

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

36

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

37

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

38

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.

Scheduler Plugin API.
➡ scheduler_tick()
➡ schedule()
➡ release_jobs()

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Considered G-EDF Variants

39

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

FEm fine-grained event-driven global

HEm hierarchical event-driven global

S-CQm coarse-grained quantum (staggered) global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Considered G-EDF Variants

40

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Considered G-EDF Variants

41

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

Baseline from
(Brandenburg et al., 2008)

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Considered G-EDF Variants

42

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

No fine-grained heaps + quantum-driven scheduling.
(Parallel updates not beneficial due to quantum barrier.)

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Considered G-EDF Variants

43

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Considered G-EDF Variants

44

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated

No hierarchical heaps + dedicated interrupt handling.
(Hierarchical heaps not beneficial if only one proc. enqueues.)

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Schedulability Study

45

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Objective

46

Compare the discussed implementations
in terms of the ratio of randomly-generated task sets

that can be shown to be schedulable
under consideration of system overheads.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Scheduling Overheads

47

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Scheduling Overheads

48

Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Context switch overhead.
➡ Changing address space.

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Scheduling Overheads

49

Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Tick overhead.
➡ Cost of a periodic timer interrupt.
➡ Beginning of a new quantum.

Context switch overhead.
➡ Changing address space.

Preemption and migration overhead.
➡ Loss of cache affinity.
➡ Known from (Brandenburg et al., 2008).

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

IPI Latency

50

P1

P2 T x
1T y

2

T z
3 T y

2

IPI latency

5 10 150

Inter-processor interrupts (IPIs).
➡ Interrupt may be processed by a processor different from the one

that will schedule a newly-arrived job.
➡ Requires notification of remote processor.
➡ Event-based scheduling incurs added latency.

release completion

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Test Platform

51

LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara”

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Test Platform

52

LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara”

0

100

200

300

400

500

600

700

PFAIR S-PFAIR G-EDF C-EDF P-EDF

Overheads
➡ Traced overheads under each of the plugins.
➡ Collected more than 640,000,000 samples (total).
➡ Computed worst-case and average-case overheads.
➡ Over 20 graphs; see online version.

Outliers
➡ Removed top 1% of samples to discard outliers.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Example: Tick Overhead

53

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

ov
er

he
ad

 (u
s)

number of tasks

worst-case tick overhead

CEm tick overhead (worst-case)
CE1 tick overhead (worst-case)
FEm tick overhead (worst-case)
FE1 tick overhead (worst-case)

CQm tick overhead (worst-case)
CQ1 tick overhead (worst-case)
HEm tick overhead (worst-case)“Higher is worse.”

number of tasks

m
ic

ro
se

co
nd

s

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Example: Tick Overhead

54

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

ov
er

he
ad

 (u
s)

number of tasks

worst-case tick overhead

CEm tick overhead (worst-case)
CE1 tick overhead (worst-case)
FEm tick overhead (worst-case)
FE1 tick overhead (worst-case)

CQm tick overhead (worst-case)
CQ1 tick overhead (worst-case)
HEm tick overhead (worst-case)

Event-Driven

Quantum-Driven

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450

ov
er

he
ad

 (u
s)

number of tasks

worst-case release overhead

CEm release overhead (worst-case)
CE1 release overhead (worst-case)
FEm release overhead (worst-case)
FE1 release overhead (worst-case)

CQm release overhead (worst-case)
CQ1 release overhead (worst-case)
HEm release overhead (worst-case)

Example: Release Overhead

55

Quantum-Driven

Event-Driven

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Study Setup

56

Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Study Setup

57

Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded

tardiness.
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Study Setup

58

Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Task set generation.
➡ Six utilization distributions (uniform and bimodal).
➡ Three period distributions (uniform).
➡ Over 300 graphs; see online version.

Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded

tardiness.
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Results

59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

increasing utilizationsc
he

du
la

bl
e

ta
sk

 s
et

s

“Higher is better.”

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Interrupt Handling

60

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

Dedicated

Zero Overh.Global

Dedicated interrupt handling
was generally preferable (or no worse).

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Quantum Staggering

61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Staggered

Zero OverheadsAligned

Staggered quanta
were generally preferable (or no worse).

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Quantum- vs. Event-Driven

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF FE1 S-CQ1

Quantum
Event

Event-driven scheduling
was preferable in most cases.

Zero Overh.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Choice of Ready Queue (1)

63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm HEm

Hierarchical
Coarse-Grained

Zero Overh.

The coarse-grained ready queue
performed better than the hierarchical queue.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Choice of Ready Queue (II)

64

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

Zero O.Coarse-Grained

Fine-Grained

The fine-grained ready queue
performed marginally better than the coarse-grained queue
if used together with dedicated interrupt handling.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Conclusion

65

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Summary of Results

66

Implementation choices
can impact schedulability as much as

scheduling-theoretic tradeoffs.

Unless task counts are very high
or periods very short,

G-EDF can scale to 32 processors.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Recommendation

67

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

Best results obtained with combination of:

fine-grained heap
event-driven scheduling

dedicated interrupt handling

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

Future Work

68

Platform.
➡ Repeat study on embedded hardware platform.

Implementation.
➡ Simplify locking requirements.
➡ Parallel mergeable heaps?

Analysis.
➡ Less pessimistic hard real-time G-EDF schedulability tests.
➡ Less pessimistic interrupt accounting.

UNC Chapel Hill

On the Implementation of Global Real-Time Schedulers

Brandenburg and Anderson

RTSS’09

69

Thank you!

available at
http://www.cs.unc.edu/~anderson/litmus-rt

http://www.cs.unc.edu/~anderson/litmus-rt
http://www.cs.unc.edu/~anderson/litmus-rt

