
High Precision Event Timer
what it is (and what it can do for you)

Andrea Bastoni

Real-Time Lunch

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 1 / 19



Time Hardware Devices

What is a timer?

Almost all PC timer devices have a similar block diagram

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 2 / 19



Time Hardware Devices x86 Architecture

Time Hardware Devices /1

x86 Architecture supports several time hardware devices:

Real Time Clock (RTC): battery-energized clock that keeps the
current date and time even when the computer is switched off
(e.g., Motorola 146818 chip in PC’s)

Time Stamp Counter (TSC): monotonically increasing counter,
generally coupled with the memory bus clock signal (PowerPC
has a similar counter: Time Base Register TB)

Programmable Interrupt Timer (PIT): device that generates
periodic or one-shot interrupts (e.g., 8254 chip in PC’s)

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 3 / 19



Time Hardware Devices x86 Architecture

Time Hardware Devices /2

CPU Local Timer (LOC): circuit integrated in the CPU that raises
local interrupts (e.g., APIC Local Timer in IA-32 CPU’s, or
Decrementer in PowerPC CPU’s)

ACPI Power Management Timer (PMT) (a.k.a. chipset timer):
monotone counter included in all ACPI-compliant computers

High Precision Event Timer (HPET): device providing a
monotonically increasing 64-bit counter and several timers

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 4 / 19



Time Hardware Devices x86 Architecture

Time Hardware Devices /3

Dev. Clock
Src

Freq. range IRQ One
Shot

Resol. Accur.

RTC Own 2 - 8192 Hz Yes No Low Low (1)

TSC Bus CPU freq. No No High High; Low (2)

PIT Own ≈ 1.2 kHz Yes Yes Low Good

LOC Bus BusFreq / 16 Yes Yes High High; Low (2)

PMT Own 3.58 MHz Yes No Good High (3)

HPET Own ≥ 10 MHz Yes Yes High High

(1) generally not used after booting phase

(2) affected by CPU frequency / voltage scaling

(3) only generates overflow interrupts

TSC and LOC are located on each CPU (or on each core), the others on board

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 5 / 19



Time Hardware Devices x86 Architecture

Some questions. . .

Why are people still using RTC?
I It is well understood and it is easy to program (OSes generally do

not use it, so userspace is free to program it)

PIT is old, is it still used?
I LOC (LAPIC) is commonly used instead of PIT on recent PCs.

However it is often used by kernels at boot time.

If TSC cannot generate interrupts and is affected by scaling, what
is it good for?

I TSC has a low access time, offers a 64-bit counter, is easily
readable from userspace. If frequency scaling is disabled, it is
accurate (on UMA; NUMA machines need additional
considerations)

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 6 / 19



Time Hardware Devices HPET

Why you might want to use HPET

Soft real-time processing of video / audio streams (“old” HPET
name was multimedia timer)

I synchronization of streams can exploit the 64-bit HPET up-counter
Use different timers for various scheduling purposes

I Tick based scheduling through periodic interrupt generation (cyclic
schedulers. . . )

I Program different one shot timers to be informed of different
deadlines expiration

Use the counter as a time-base reference (frequency scaling
insensitive) on NUMA / Multiprocessor systems
Substitute legacy specific-purpose timer hardware devices
. . .

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 7 / 19



Time Hardware Devices HPET

High Precision Event Timer /1

The HPET architecture defines a set of timers that can be used by
the OS
Each timer can be configured to generate a separate interrupt

I timers can be configured to generate one-shot or periodic interrupts

Timers are implemented through one monotonic up-counter and a
set of comparators
Intel specification allows up to 32 comparators per timer block,
with support for 8 blocks maximum (256 timers)

I Current implementations only have a small subset of these timers

HPET will gradually replace both PIT and RTC

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 8 / 19



Time Hardware Devices HPET

High Precision Event Timer /2

Block diagram:

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 9 / 19



Time Hardware Devices HPET

High Precision Event Timer /3

One-shot timer mode:

Periodic timer mode:

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 10 / 19



Time Hardware Devices HPET

High Precision Event Timer /4

Minimal recommendations for HPET devices:

Main counter must be a 64-bit up-counter
Minimal clock frequency: 10 MHz, typical frequencies are around
14 MHz (14.318180 MHz in most implementations)

I main counter will wrap in ≈ 40853 years
Clock drift:

I 500 ppm (0.05%) for intervals greater than 1 ms
I 2000 ppm (0.2%) for intervals less than 100 µs

At least 3 comparators (32 bits width minimum)
I a 32 bit comparator can only “count” up to ≈ 5 minutes

1 of 3 must be a periodic capable timer, all 3 timers must be
one-shot capable

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 11 / 19



HPET implementations

High Precision Event Timer

From specification to real implementations:

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 12 / 19



HPET implementations

HPET real implementations /1

Information on commonly available implementations of HPET can
be found (for example) in Intel I/O Controller Hub specification
(ICHx)
Up to ICH9, HPET implementations provide:

I one 64 bits up-counter @ 14.318180 MHz
I one 64 bits comparator (periodic interrupts capable, can work in 32

bits mode)
I three 32 bits comparators (one shot interrupts only)

From ICH10 (Corporate Chipset version):
I seven 32 bits comparators (one shot interrupts only)
I 8 comparators in total

Reading HPET registers can be tricky:
a read takes 1− 2µs
can we read 64 bits at once?

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 13 / 19



HPET implementations

HPET real implementations /2

HPET implementations seem to match specification quite well!

. . . but:
if HPET is available on your hardware, the OS is willing to use it
unfortunately OS starts before our programs!

Linux typically wants to use two timers:

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 14 / 19



HPET implementations

HPET real implementations /3

And it will take the best (and easier to manage) timers!

Linux uses timer0 (the periodic interrupts capable timer) as a
periodic clockevent (for example, for scheduling tick)
Linux uses timer1 to emulate RTC device

I Next expire time is set by software (timer1 is one-shot only)

Issues:
Timer0 is the only timer which can fire periodic interrupts
Timer1 rises interrupts on same RTC IRQ line

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 15 / 19



HPET implementations

HPET real implementations /4

Userspace can only use the remaining timers:

most of the times only 1,2 timers left (timer2, timer3)
32 bits timers
we must share the interrupt line with other devices
even if we have more timers (ICH10), we do not have enough
interrupt lines (timers 4,5,6,7 deliver interrupts through FSB —
MSI interrupt)

If we want to make use of timer0 and timer1:
we need to disable kernel HPET support (it is subtle in x86-64)
we need to patch the kernel (a new driver is needed; HPET
memory addresses are allocated by BIOS. . . )

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 16 / 19



HPET implementations Userspace HPET programming

Userspace Linux support to HPET

Linux offers a two level driver to manage the HPET:

a low level kernel driver:
I used by the kernel to program the HPET
I it cannot be used by userspace, but it is used by the high level

driver (the design is not clean, low level kernel driver needs to call
high level driver to proper initialize HPET)

a high level driver which exposes to the userspace a character
device (/dev/hpet) that can be used to control the HPET

I supports normal file operations (open, close, read, ioctl)

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 17 / 19



HPET implementations Userspace HPET programming

Controlling HPET from userspace

Typical initialization code for the HPET:

1 i n t h p e t _ i n i t ( const char∗ hpet_path , unsigned i n t f r eq )
{

3 i n t hpet_fd ;

5 i f ( ( hpet_fd = open ( hpet_path , O_RDONLY) ) < 0) {
pe r ro r ( hpet_path ) ;

7 return errno ;
}

9
i f ( i o c t l ( hpet_fd , HPET_IRQFREQ, f req ) < 0) {

11 pe r ro r ( " Cannot set p e r i o d i c IRQ" ) ;
goto ou t_e r r ;

13 }

15 i f ( i o c t l ( hpet_fd , HPET_IE_ON, 0) < 0) {
pe r ro r ( " Enable p e r i o d i c i n t e r r u p t s i o c t l " ) ;

17 goto ou t_e r r ;
}

19
return hpet_fd ;

21
ou t_e r r :

23 c lose ( hpet_fd ) ;
return −1;

25 }

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 18 / 19



HPET implementations Userspace HPET programming

Questions

Andrea Bastoni (SPRG) High Precision Event Timer 11/04/2009 19 / 19


	Time Hardware Devices
	x86 Architecture
	HPET

	HPET implementations
	Userspace HPET programming


