Compositional Analysis Techniques for Multiprocessor Real-Time Scheduling

Hennadiy Leontyev University of North Carolina at Chapel Hill Advisor: Prof. James H. Anderson

August 2009

Compositional Analysis Techniques for Muttiprocessor Scheduling

- I am a fifth-year PhD student at UNC-Chapel Hill
- Currently I am actively looking for a job
- Research interests
 - » Theory of multiprocessor soft real-time scheduling
 - » Component-based systems
 - » Analysis tools
- More at http://cs.unc.edu/~leontyev

Outline

Motivation/Background

- » Recent trends in software and hardware development
- » System models
- » Research need
- » Prior work

• My research

» More detailed outline will follow

- Research goals
- Concluding remarks

- Complex and distributed embedded systems
 - » CAN, FlexRay
- Proliferation of multiprocessor/multicore platforms
 - » Cost reduction
 - » Smaller energy consumption
- Real-time features in Linux:
 - » High-resolution timers, priority inheritance, short non-preemptive sections, ...
- Containers in Linux:
 - » Encapsulate task groups (a little like RT "servers")
 - » Can have a tree of containers of arbitrary depth
 - » Containers may be created, modified, etc. dynamically

• Verification of timing and performance

» Throughput

 QUESTION: What algorithms and analysis tools allow embedded systems with multiprocessor components to be supported <u>efficiently</u>

Background (Sporadic Tasks)

Background (Multiprocessor Scheduling)

Partitioning

Statically assign tasks to processors

Global Scheduling

Use a single run queue

Background

(Streaming Task Model)

Real-Time Calculus

Framework http://www.mpa.ethz.ch

State-of-the-art analysis is for uniprocesor and partitioned systems only!

Outline

Motivation/Background

- » Recent trends in software and hardware development
- » System models
- » Research need
- » Prior work

• My research

» More detailed outline will follow

- Research goals
- Concluding Remarks

(MPEG-2 player)

Each task consumes ~0.7 of available processor time (taken from measurements)

- 4 video streams with different criticality
- No two tasks can be placed on one processor
- 8 processors if traditional RTC is used
- Can do better with new multiprocessor analysis!

(Multiprocessor Execution of MPEG-2 player)

8x0.7=5.6 -> 6 processors are probably sufficient

(Multicomponent Systems)

What if there are fractional requirements on supply? How to isolate misbehaving components?

Prior Work

		Streaming Task Model		
		Sporadic Hard	Sporadic Soft	
Partitioning		Real-Time Calculus Theory [Chakraborty, Wandeler, Thiele]		
Global	UNR	[Bertogna et. al, Baruah, Fisher]	[Devi & Anderson]	
	RESTR	[Shin, Bini, Insup Lee, Eawarsan]		My work

Hard – all deadlines are met Soft – bounded maximum deadline miss (tardiness)

(Directions for Research)

- Develop a scheme for efficient distribution of multiprocessor capacity among components
 - » Understand the behavior of recurring task sets (sporadic tasks) if multiprocessor capacity is restricted
- 2. Consider more advanced workload models (streaming tasks) under restricted capacity

Outline

- Motivation/Background
- My research
 - » Distributing processing power among components
 - Hierarchical bandwidth reservation scheme
 - » Analysis of a single component
 - Multiprocessor extensions to real-time calculus
- Research goals
- Concluding remarks

Problem Addressed

- Given: A characterization of the processing supply available to a container H.
- **Determine:** How to allocate processing time to its children.
 - If child is another container, must characterize its supply too.
- Goal: Would like little or no utilization loss throughout container hierarchy.

Problem Addressed

- Given: A characterization of the processing supply available to a container H.
- **Determine:** How to allocate processing time to its children.
 - If child is another container, must characterize its supply too.
- Goal: Would like little or no utilization loss throughout container hierarchy.

• Assumptions:

- No non-RT tasks.
- No dynamic changes.
- Most tasks are SRT (as opposed to HRT).
 - Motivated by focus on Linux and multiprocessors.
- All (RT) tasks are sporadic with implicit deadlines.

Problem Addressed

- Given: A characterization of the processing supply available to a container H.
- **Determine:** How to allocate processing time to its children.
 - If child is another container, must characterize its supply too.
- Goal: Would like little or no utilization loss throughout container hierarchy.

Background SRT Tasks

- SRT tasks may miss deadlines, but must have bounded tardiness.
- A variety of global scheduling algorithms can ensure bounded tardiness with no utilization loss [Leontyev & Anderson 2007].

- More on this later...

Background SRT Tasks

Background Container Model

- Determine how container supplies should be restricted.
- Given such a supply for the parent, determine how to schedule its children (tasks and containers).

- We borrow heavily from prior work here.

 Show that supplies for child containers are correctly restricted.

Running Example

We will use this example to illustrate the approach...

Container Supply

Two obvious approaches...

- Maximize parallelism:
 - » May be beneficial if there are a large number of HRT tasks.
 - » Restricts task utilizations.
 - » Difficult to analyze osp. with nesting.

Minimize parallelism:

- » Can ensure bounded tardiness w/o utilization restrictions.
 - See paper.
- » Lessens tardiness bounds.
 - Again, see paper.
- » May be difficult to ensure hard deadlines.

Container Supply

Example 1

Suppose that C1 with w(C1) = 4/3 in running example has a task T5(5,6)...

Compositional Analysis Techniques for Muttiprocessor Scheduling

Container Supply Example 2

Now suppose that C1 contains two tasks, T5(2,3) and T6(2,3)...

Container Supply MinPar Supply

- We require the supply for container C to satisfy the MinPar Rule:
 - » C gets [w(C)] dedicated processors plus an additional processor that is allocated at a rate of f(C) = w(C) [w(C)] (= fractional part of its bandwidth).
- If MinPar holds for parent container, it can easily be ensured for any child container:
 - » Create a fictional "server" sporadic task of util. f(C) to supply the fractional part.

Running Example

We view server tasks as SRT.

» SRT tasks don't require utilization constraints.

• Thus, there are two remaining problems:

» Scheduling HRT tasks.

» Scheduling SRT tasks (which may be either "real" tasks or server tasks).

- Given our assumption that there are few (if any) such tasks, we use a very simple approach:
 - » Assign HRT tasks to a new child container.
 - » Schedule them within that container using partitioned EDF (PEDF).

• Notes:

- » Some (small) utilization loss may result.
- » Other approaches are possible.

Running Example

Last Remaining Sub-Problem

Need to determine how to schedule all SRT tasks.

- » Such a task may either be a "real" task or a server task.
- » Given the MinPar Rule and the design decisions so far, these tasks will be scheduled on $X \leq \lfloor w(H) \rfloor$ dedicated processors and at most one additional partiallyavailable processor.
- » Our Goal: Ensure bounded tardiness for these tasks.

Last Remaining Sub-Problem

Need to determine how to schedule all SRT tasks.

- » Such a task may either be a "real" task or a server task.
- » Civen the MinDer Dule and the decign decisions co far, This goal can be met using any ed window-constrained global algorithm [Leontyev & Anderson 2007].

Window-Constrained Priorities

$$r(T_{i,j}) - \varphi_i \leq \chi(T_{i,j},t) \leq d(T_{i,j}) + \psi_i$$

release time
of job Ti,j
of job Ti,j
at time t
two constants

 $r(T) - m < \gamma(T + t) < \lambda(T) + \eta(T)$ **Theorem [Leontyev & Anderson 2007]: If processing** time is supplied according to the MinPar Rule, then any window-constrained algorithm ensures bounded tardiness without utilization constraints.

GEDF, FIFO, Pfair, EPDF, LLF, EDZL are all window-constrained.

Running Example

Computing Next-Level Supply

This is pretty easy:

- » Each child container is allocated:
 - some set S of fully-available processors;
 - at most on partially-available processor P.
 - The allocation rate of P can be formally characterized.
 - This is based on corresponding server task's execution cost, period, and tardiness bound.
 - See the paper
 - » [Real-Time Systems Journal ECRTS'08 special issue].

Hierarchical Scheduling Summary

- Scalable multiprocessor hierarchical scheduling scheme
 - » Theoretically unlimited container tree depth
 - » Bounded job response times
 - » No utilization loss in fully SRT case
- Relevance to embedded systems
 - » Distribute the processing power of a multiprocessor among multiple components

Motivation

(Multicomponent Systems)

Outline

Motivation/Background

My research

- » Distributing processing power among components
 - Hierarchical bandwidth reservation scheme
- » Analysis of a single component
 - Multiprocessor extensions to real-time calculus (joint work with Prof. Samarjit Chakraborty)
- Research goals
- Concluding remarks

(System Model)

MPEG-2 Example

Abstraction I

Compositional Analysis Techniques for Muttiprocessor Scheduling

(System Model)

Abstraction Step I

Abstraction Step II Multiprocessor supply Inputs Job arrivals **Outputs**

(Job Arrival Functions [Wandeler])

(Supply Functions)

(System Model)

(Overview)

$$\beta^{l'}(\Delta) = \sup_{0 \le \lambda \le \Delta} \left\{ \beta^{l}(\lambda) - \alpha^{u}(\lambda) \right\}$$

(What is the response time?)

All jobs execute sequentially and in order!

(Calculating job completions)

(Calculating Remaining Supply)

$$\begin{array}{l} \text{Minimum guaranteed}\\ \text{residual supply} & \downarrow \\ \beta^{l'}(\Delta) = \sup_{0 \leq y \leq \Delta} \left\{ \begin{array}{l} \beta^{l}(y) - \alpha^{u}(y) \right\} \\ \text{Minimum guaranteed}\\ \text{Minimum guaranteed}\\ \text{residual supply} \\ \downarrow \\ B'(\Delta) = \sup_{0 \leq y \leq \Delta} \left\{ \begin{array}{l} \text{Minimum guaranteed input supply} \\ \downarrow \\ B(y) - \sum_{T_i \in \tau} \min(y, \gamma_i(\alpha^{u}_i(y + \Theta_i))) \\ \uparrow \\ \text{Maximum possible demand of T}_i \end{array} \right\} \\ \end{array}$$

(Finding Response-Time Bounds)

- Pseudopolynomial time procedure for checking response-time bounds under global EDF
- Based on prior work by Baruah [RTSS'07] and Leontyev and Anderson [RTSS'08]
- Bounds are computed by iterative checking
- Currently working on finding closed-form expressions

(System Model)

Example

(Multiprocessor Execution of MPEG-2 player)

<u>(Summary)</u>

- New type of building blocks for multiprocessor systems
- Wider range of supported workloads
- High computational complexity
- Future work:
 - » Improving analysis accuracy
 - » Improving computational complexity

Outline

- Motivation/Background
- My research
 - » Distributing processing power among components
 - Hierarchical bandwidth reservation scheme
 - » Analysis of a single component
 - Multiprocessor extensions to real-time calculus
- Research goals
- Concluding Remarks

Research Goals

- Non-preemptive case
- Synchronization across containers
- Task interference
- Cyclic-dependencies between tasks/Pipelines
- Mutual exclusion

Research Goals

- Non-preemptive case
- Synchronization across containers
- Task interference
- Cyclic-dependencies between tasks/Pipelines

Research Goals (Cyclic dependencies/Pipelines)

Execution of T_1 and T_2 may overlap

No theory even for partitioned case

- Two approaches that extend state-of-the-art analysis
 - » Hierarchical container-based scheme
 - » Multiprocessor RTC
- New type of systems can be analyzed
- Compatible with previously developed theory
- Many promising directions for future work

Thank you!