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Multicore
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Multicore
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Shared L3 Cache
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Multiprocessors are now
the common case.
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Multicore

processor

schedulable hardware context exposed to the OS
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the common case. between processors.
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Multicore

processor

schedulable hardware context exposed to the OS

Hprocessors

H#Hchips x #cores per chip x #threads per core

4 4

Multiprocessors are now} | Some caches are shared
the common case. between processors.

UNC Chapel Hill B. Brandenburg


http://www.devicedaily.com
http://www.devicedaily.com

Operating System Infrastructure for Multiprocessor Real-Time Systems

Why use multicore computers
for real-time systems!

. To save money.
®* may save on power, cooling, weight, wiring, etc.
* multicore: good performance/price ratio
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WWhy use multicore computers
for real-time systems?

. To save money.
®* may save on power, cooling, weight, , etc.
* multicore: good performance/price ratio

2. High performance needed.
e e.g.,HDTYV, other high-quality multimedia apps
* real-time business transaction processing...
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One example: AZUL Systems, Inc.

AZUL builds special-purpose transaction processing
appliances. They consist of up to 864 cores.

“Consistent, Fast Response Times

When critical business applications pause,
companies lose money.When it comes to
fulfilling on-line purchases, executing stock trades at
the real time price, acting on price fluctuations or
approving loan applications, completing only 85
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute appliance.htm2p=p
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One example: AZUL Systems, Inc.

Correctness depends on temporal correctness

A big multicore real-time system!

app

When critical busine: B applications pause,
companies lose mor. gWhen it comes to
fulfilling on-line Durchases-&ecuting stock trades at
ICe, acting on price flu *
approving loan applications, completing only 85
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute appliance.htm2p=p
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“Amazon found every 100ms of latency
cost them 1% in sales.

Google found an extra .5 seconds in
search page generation time dropped

traffic by 20%.

A broker could lose $4 million in revenues
per millisecond if their electronic trading
platform is 5 milliseconds behind the
competition.”

Source: http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it and http://www.tabbgroup.com/PublicationDetail.aspx?PublicationlD=346
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“If a broker is
100 milliseconds slower than the fastest broker,
it may as well shut down
its [trading system] and become a floor broker.”

A broker could lose $4 million in revenues
per millisecond if their electronic trading

platform is 5 milliseconds behind the
competition.”

Source: http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it and http://www.tabbgroup.com/PublicationDetail.aspx?PublicationlD=346
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Sporadic Task Model
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Sporadic Task Model

‘ Sporadic Task '

5 6 7 8 9 10 11 12 13 14

UNC Chapel Hill B. Brandenburg



Operating System Infrastructure for Multiprocessor Real-Time Systems

Sporadic Task Model

Sporadic Task Sequence of Jobs
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Sporadic Task Model

9 10 11 12 13 14

Release r(77)
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Sporadic Task Model

Deadline d(77)
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Release r(77)
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Sporadic Task Model

Deadline d(77)

Period p(71)

9 10 11 12 13 14
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Sporadic Task Model

Deadline d(77)

Period p(71)

I I
| job separation: r(T7)

Release r(77)
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Sporadic Task Model

Perlod p(171)

| &1 &1

Worst-Case Execution Time (7T’
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Sporadic Task Model

Perlod p(171)

| &1 &1

Worst-Case Execution Time (7T’

/|

-

utilization:
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Tardiness

What happens when a job does not complete on time!

5 6 7 8 9 10 11 12 13 14
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Tardiness

What happens when a job does not complete on time!
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Tardiness

What happens when a job does not complete on time!
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‘ A delayed job... '
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Tardiness

What happens when a job does not complete on time!

{ < 10 11 12 13 14
.
‘ A delayed job... ' ... finishes late; delays next job.
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Tardiness

What happens when a job does not complete on time?

"9 10 11 12 13 14

Tasks are sequential:
next job cannot be scheduled until prior job completes.
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Tardiness

What happens when a job does not complete on time!
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‘ Tardiness '
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-

hard real-time (HRT) iness

all jobs finish on time

. does not complete on time?
= zero tardiness

[
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‘ Tardiness '
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4 4

hard real-time (HRT) it soft real-time (SRT)

all jobs finish on time |41 maximum tardiness is
= zero tardiness bounded

17 Nk
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‘ Tardiness '
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Uniprocessor Scheduling
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Uniprocessor Scheduling

Earliest Deadline First (EDF)

Execute pending jobs
in order of non-decreasing deadline;
break ties arbitrarily.
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Uniprocessor Scheduling

Earliest Deadline First (EDF)

Execute pending jobs
in order of non-decreasing deadline;
break ties arbitrarily.

Static Priority (SP)

Assign unique priorities to tasks;
execute pending jobs
in order of decreasing task priority.
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Uniprocessor Scheduling

Earliest Deadline First (EDF)

EDF is optimal:

all deadlines met
If system not over-utilized

Static Priority (SP)

Assign unique priorities to tasks;
execute pending jobs
in order of decreasing task priority.




Uniprocessor Scheduling

Earliest Deadline First (EDF)

EDF is optimal:

all deadlines met
If system not over-utilized

Static Priority (SP)

SP is not optimal:

meeting all deadlines may require
cap on utilization (idle time)
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Multiprocessor Scheduling
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Multiprocessor Scheduling

Partitioning

use uniprocessor algorithm
on each processor
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Multiprocessor Scheduling

(

Partitioning Global

use uniprocessor algorithm one global run queue;
on each processor served by all processors
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Multiprocessor Scheduling

Partitioning

on each processor

use uniprocessor algorithm

~

Global

one global run queue;
served by all processors

UNC Chapel Hill

Clustered

globally schedule
clusters of processors

B. Brandenburg
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Partitioning

/Y Y Y
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Partitioning

One run queue per
processor.
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Partitioning
4

Tasks are assigned
statically to processors.
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Partitioning

Good cache affinity.

UNC Chapel Hill B. Brandenburg



Operating System Infrastructure for Multiprocessor Real-Time Systems

Partitioning

Low queue contention:
processors access mostly local queues.
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Partitioning

But: partitioning requires a bin-packing problem to be solved...
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Partitioning
Example: three identical tasks
period =3

wcet =2
2/312/312/3
util. =2/3 / / /

tWO unit processors

1.0

0.5

0.0
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Partitioning
Bin packing

Even though there is sufficient total capacity,
the last task cannot be placed.

tWO unit processors

1.0

0.5

0.0
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Partitioning

Bin packing

Even though there is sufficient total capacity,
the last task cannot be placed.

With partitioned
scheduling, up to m/2
utilization may be wasted.
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Global Scheduling
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Global Scheduling

One global run queue:
frequent migrations possible
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Global Scheduling

-

Weak cache affinity:
consistency traffic and
memory bus contention
possible

)
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Global Scheduling
4

Significant queue
contention
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Global Scheduling

Queue length:
higher overheads
due to larger N
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Global Scheduling

But: no bin-packing required!
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Global Scheduling

But: no bin-packing required!

All multiprocessor real-time scheduling algorithms
that have been proven optimal are global.
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Clustered Scheduling
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Clustered Scheduling

Group cores by shared caches
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Clustered Scheduling

Statically assign tasks to clusters.
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Clustered Scheduling

“Globally” schedule clusters.
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Clustered Scheduling

Less contention, better affinity
than pure global scheduling.
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Clustered Scheduling

Easier bin-packing problem:
fewer and larger bins.
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Relevant Scheduling Algorithms

global clustered partitioned

UNC Chapel Hill B. Brandenburg



Operating System Infrastructure for Multiprocessor Real-Time Systems

Relevant Scheduling Algorithms

global clustered partitioned
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Relevant Scheduling Algorithms

global clustered partitioned

Y4,
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Relevant Scheduling Algorithms

global clustered partitioned

G-EDF @ P-EDF

Y4,

Cacl
L]
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Theory: use global
only global algorithms do not require utilization caps

@ P-EDF

A

[ 1

T,

12 L
Cach Cache
EN EEEN
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Theory: use global
only global algorithms do not require utilization caps

-

XA

N\ /N LN\ /N N\ N\

Real-Time Operating Systems:
everything but P-SP scheduling is “impractical”
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