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Intel Nehalem

Multiprocessors are now 

the common case.

Some caches are shared 

between processors.

processor 
= 

schedulable hardware context exposed to the OS
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Intel Nehalem

Multiprocessors are now 

the common case.

Some caches are shared 

between processors.

processor 
= 

schedulable hardware context exposed to the OS

#processors 
=

#chips ! #cores per chip ! #threads per core

Image credit: www.devicedaily.com
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Why use multicore computers 
for real-time systems?
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1. To save money.

• may save on power, cooling, weight, wiring, etc.

• multicore: good performance/price ratio 

2. High performance needed.

• e.g., HDTV, other high-quality multimedia apps

• real-time business transaction processing...
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1. To save money.

• may save on power, cooling, weight, wiring, etc.

• multicore: good performance/price ratio 

2. High performance needed.

• e.g., HDTV, other high-quality multimedia apps

• real-time business transaction processing...
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  !!!!!!!!!!!!!!!! “Consistent, Fast Response Times

When critical business applications pause, 
companies lose money. When it comes to 
fulfilling on-line purchases, executing stock trades at 
the real time price, acting on price fluctuations or 
approving loan applications, completing only 85 
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute_appliance.htm?p=p

AZUL builds special-purpose transaction processing 
appliances. They consist of up to 864 cores.

http://www.azulsystems.com/products/compute_appliance.htm?p=p
http://www.azulsystems.com/products/compute_appliance.htm?p=p
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  !!!!!!!!!!!!!!!! “Consistent, Fast Response Times

When critical business applications pause, 
companies lose money. When it comes to 
fulfilling on-line purchases, executing stock trades at 
the real time price, acting on price fluctuations or 
approving loan applications, completing only 85 
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute_appliance.htm?p=p

AZUL builds special-purpose transaction processing 
appliances. They consist of up to 864 cores.

Predictability
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  !!!!!!!!!!!!!!!! “Consistent, Fast Response Times

When critical business applications pause, 
companies lose money. When it comes to 
fulfilling on-line purchases, executing stock trades at 
the real time price, acting on price fluctuations or 
approving loan applications, completing only 85 
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute_appliance.htm?p=p

AZUL builds special-purpose transaction processing 
appliances. They consist of up to 864 cores.

Low latency

Predictability

http://www.azulsystems.com/products/compute_appliance.htm?p=p
http://www.azulsystems.com/products/compute_appliance.htm?p=p
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  !!!!!!!!!!!!!!!! “Consistent, Fast Response Times

When critical business applications pause, 
companies lose money. When it comes to 
fulfilling on-line purchases, executing stock trades at 
the real time price, acting on price fluctuations or 
approving loan applications, completing only 85 
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute_appliance.htm?p=p

AZUL builds special-purpose transaction processing 
appliances. They consist of up to 864 cores.

Correctness depends on temporal correctness

=

A big multicore real-time system!

http://www.azulsystems.com/products/compute_appliance.htm?p=p
http://www.azulsystems.com/products/compute_appliance.htm?p=p
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“Amazon found every 100ms of latency 
cost them 1% in sales. 

Google found an extra .5 seconds in 
search page generation time dropped 
traffic by 20%.  

A broker could lose $4 million in revenues 
per millisecond if their electronic trading 
platform is 5 milliseconds behind the 
competition.”

Source:  http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it and http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346
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Source:  http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it and http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346

“If a broker is
100 milliseconds slower than the fastest broker,

it may as well shut down 
its [trading system] and become a floor broker.”

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346
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Sporadic Task Sequence of Jobs
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  Release r(T j
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  Deadline d(T j
1 )



UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

22

  Release r(T j
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  Deadline d(T j
1 )

  Period p(T1)

 implicit deadlines: p(T1)r(T j
1 ) + = d(T j

1 )



UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

23

  Release r(T j
1 )

  Deadline d(T j
1 )

  Period p(T1)

 implicit deadlines: p(T1)r(T j
1 ) + = d(T j

1 )

 job separation: p(T1)r(T j
1 ) + ≤ r(T j+1

1 )
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  Period p(T1)

  Worst-Case Execution Time e(T1)
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  Period p(T1)

  Worst-Case Execution Time e(T1)

 utilization:
p(T1)
e(T1) = u(T1)
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What happens when a job does not complete on time?

A delayed job...
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What happens when a job does not complete on time?

... finishes late; delays next job. A delayed job...
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What happens when a job does not complete on time?

Tasks are sequential: 

next job cannot be scheduled until prior job completes. 
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What happens when a job does not complete on time?

Tardiness
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What happens when a job does not complete on time?

Tardiness

hard real-time (HRT)

all jobs finish on time 
= zero tardiness
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What happens when a job does not complete on time?

Tardiness

hard real-time (HRT)

all jobs finish on time 
= zero tardiness

soft real-time (SRT)

maximum tardiness is 
bounded
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Earliest Deadline First (EDF)
=

Execute pending jobs
in order of non-decreasing deadline;

break ties arbitrarily.
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Static Priority (SP)
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Assign unique priorities to tasks;
execute pending jobs

in order of decreasing task priority.

Uniprocessor Scheduling
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in order of non-decreasing deadline;

break ties arbitrarily.
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EDF is optimal:

all deadlines met 

if system not over-utilized
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Static Priority (SP)
=

Assign unique priorities to tasks;
execute pending jobs

in order of decreasing task priority.

Uniprocessor Scheduling

38

Earliest Deadline First (EDF)
=

Execute pending jobs
in order of non-decreasing deadline;

break ties arbitrarily.

EDF is optimal:

all deadlines met 

if system not over-utilized

SP is not optimal:

meeting all deadlines may require

cap on utilization (idle time)



UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multiprocessor Scheduling

39



UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multiprocessor Scheduling

40

Partitioning
=

use uniprocessor algorithm
on each processor
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Partitioning
=

use uniprocessor algorithm
on each processor

Global
=

one global run queue;
served by all processors
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Multiprocessor Scheduling
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Partitioning
=

use uniprocessor algorithm
on each processor

Global
=

one global run queue;
served by all processors

Clustered
=

globally schedule
clusters of processors
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

One run queue per 

processor.
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

Tasks are assigned 

statically to processors.
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Good cache affinity.
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Partitioning

47

Low queue contention:

processors access mostly local queues.
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But: partitioning requires a bin-packing problem to be solved...
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Partitioning
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Example:" three identical tasks
" " " " " period " = 3
" " " " " wcet " " = 2
" " " " util.  "     = 2/3

" " " " " two unit processors

2/3 2/3 2/3

0.5

0.0

1.0
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Partitioning
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Example:" three identical tasks
" " " " " period " = 3
" " " " " wcet " " = 2
" " " " util.  "     = 2/3

" " " " " two unit processors

2/3 2/3
2/30.5

0.0

1.0

Bin packing

Even though there is sufficient total capacity, 

the last task cannot be placed.
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Partitioning

49

Example:" three identical tasks
" " " " " period " = 3
" " " " " wcet " " = 2
" " " " util.  "     = 2/3

" " " " " two unit processors

2/3 2/3
2/30.5

0.0

1.0

Bin packing

Even though there is sufficient total capacity, 

the last task cannot be placed.

With partitioned 

scheduling, up to m/2 

utilization may be wasted.
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Global Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4 One global run queue:

frequent migrations possible
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4Weak cache affinity:

consistency traffic and 

memory bus contention 

possible
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Main Memory

L2 
Cache

L2 
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Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
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4 Significant queue 

contention
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Main Memory

L2 
Cache

L2 
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Core 1 Core 2 Core 4Core 3

Q
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1

T b
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T c
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T d
4

Queue length:

higher overheads 

due to larger N
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But: no bin-packing required!
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

But: no bin-packing required!

All multiprocessor real-time scheduling algorithms 
that have been proven optimal are global.
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Clustered Scheduling
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Main Memory

L2 
Cache

L2 
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Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
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Q
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4

Group cores by shared caches
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Statically assign tasks to clusters.
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

“Globally” schedule clusters.
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Clustered Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Less contention, better affinity 

than pure global scheduling.
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Clustered Scheduling
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Main Memory
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Easier bin-packing problem:

fewer and larger bins.
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Relevant Scheduling Algorithms

63

Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

global clustered partitioned
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Relevant Scheduling Algorithms
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global clustered partitioned

G-EDF C-EDF P-EDF
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PFAIR C-PFAIR
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Real-Time Operating Systems:

everything but P-SP scheduling is “impractical”


