
Bjoern Brandenburg
Introduction to Sporadic Tasks
and Real-Time Synchronization
— 9/9/09 —
Björn Brandenburg

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Outline

2

1. Introduction

2. Real-Time Scheduling

3. Real-Time Synchronization

4. Research Agenda

5. Summary

Bjoern Brandenburg

Bjoern Brandenburg

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multicore

3

Intel Nehalem

Image credit: www.devicedaily.com

http://www.devicedaily.com
http://www.devicedaily.com

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multicore

4

Intel Nehalem

Multiprocessors are now

the common case.
Image credit: www.devicedaily.com

http://www.devicedaily.com
http://www.devicedaily.com

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multicore

5

Intel Nehalem

Multiprocessors are now

the common case.

Some caches are shared

between processors.
Image credit: www.devicedaily.com

http://www.devicedaily.com
http://www.devicedaily.com

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multicore

6

Intel Nehalem

Multiprocessors are now

the common case.

Some caches are shared

between processors.

processor
=

schedulable hardware context exposed to the OS

Image credit: www.devicedaily.com

http://www.devicedaily.com
http://www.devicedaily.com

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multicore

7

Intel Nehalem

Multiprocessors are now

the common case.

Some caches are shared

between processors.

processor
=

schedulable hardware context exposed to the OS

#processors
=

#chips ! #cores per chip ! #threads per core

Image credit: www.devicedaily.com

http://www.devicedaily.com
http://www.devicedaily.com

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Why use multicore computers
for real-time systems?

8

1. To save money.

• may save on power, cooling, weight, wiring, etc.

• multicore: good performance/price ratio

2. High performance needed.

• e.g., HDTV, other high-quality multimedia apps

• real-time business transaction processing...

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Why use multicore computers
for real-time systems?

9

1. To save money.

• may save on power, cooling, weight, wiring, etc.

• multicore: good performance/price ratio

2. High performance needed.

• e.g., HDTV, other high-quality multimedia apps

• real-time business transaction processing...

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

One example: AZUL Systems, Inc.

10

 !!!!!!!!!!!!!!!! “Consistent, Fast Response Times

When critical business applications pause,
companies lose money. When it comes to
fulfilling on-line purchases, executing stock trades at
the real time price, acting on price fluctuations or
approving loan applications, completing only 85
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute_appliance.htm?p=p

AZUL builds special-purpose transaction processing
appliances. They consist of up to 864 cores.

http://www.azulsystems.com/products/compute_appliance.htm?p=p
http://www.azulsystems.com/products/compute_appliance.htm?p=p

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

One example: AZUL Systems, Inc.

11

 !!!!!!!!!!!!!!!! “Consistent, Fast Response Times

When critical business applications pause,
companies lose money. When it comes to
fulfilling on-line purchases, executing stock trades at
the real time price, acting on price fluctuations or
approving loan applications, completing only 85
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute_appliance.htm?p=p

AZUL builds special-purpose transaction processing
appliances. They consist of up to 864 cores.

Predictability

http://www.azulsystems.com/products/compute_appliance.htm?p=p
http://www.azulsystems.com/products/compute_appliance.htm?p=p

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

One example: AZUL Systems, Inc.

12

 !!!!!!!!!!!!!!!! “Consistent, Fast Response Times

When critical business applications pause,
companies lose money. When it comes to
fulfilling on-line purchases, executing stock trades at
the real time price, acting on price fluctuations or
approving loan applications, completing only 85
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute_appliance.htm?p=p

AZUL builds special-purpose transaction processing
appliances. They consist of up to 864 cores.

Low latency

Predictability

http://www.azulsystems.com/products/compute_appliance.htm?p=p
http://www.azulsystems.com/products/compute_appliance.htm?p=p

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

One example: AZUL Systems, Inc.

13

 !!!!!!!!!!!!!!!! “Consistent, Fast Response Times

When critical business applications pause,
companies lose money. When it comes to
fulfilling on-line purchases, executing stock trades at
the real time price, acting on price fluctuations or
approving loan applications, completing only 85
percent of the requests in time is a failure.”

Source: http://www.azulsystems.com/products/compute_appliance.htm?p=p

AZUL builds special-purpose transaction processing
appliances. They consist of up to 864 cores.

Correctness depends on temporal correctness

=

A big multicore real-time system!

http://www.azulsystems.com/products/compute_appliance.htm?p=p
http://www.azulsystems.com/products/compute_appliance.htm?p=p

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg 14

“Amazon found every 100ms of latency
cost them 1% in sales.

Google found an extra .5 seconds in
search page generation time dropped
traffic by 20%.

A broker could lose $4 million in revenues
per millisecond if their electronic trading
platform is 5 milliseconds behind the
competition.”

Source: http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it and http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

“Amazon found every 100ms of latency
cost them 1% in sales.

Google found an extra .5 seconds in
search page generation time dropped
traffic by 20%.

A broker could lose $4 million in revenues
per millisecond if their electronic trading
platform is 5 milliseconds behind the
competition.”

15

Source: http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it and http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346

“If a broker is
100 milliseconds slower than the fastest broker,

it may as well shut down
its [trading system] and become a floor broker.”

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346
http://www.tabbgroup.com/PublicationDetail.aspx?PublicationID=346

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Outline

16

1. Introduction

2. Real-Time Scheduling

3. Real-Time Synchronization

4. Research Agenda

5. Summary

Bjoern Brandenburg

Bjoern Brandenburg

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

17

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

18

Sporadic Task

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

19

Sporadic Task Sequence of Jobs

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

20

 Release r(T j
1)

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

21

 Release r(T j
1)

 Deadline d(T j
1)

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

22

 Release r(T j
1)

 Deadline d(T j
1)

 Period p(T1)

 implicit deadlines: p(T1)r(T j
1) + = d(T j

1)

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

23

 Release r(T j
1)

 Deadline d(T j
1)

 Period p(T1)

 implicit deadlines: p(T1)r(T j
1) + = d(T j

1)

 job separation: p(T1)r(T j
1) + ≤ r(T j+1

1)

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

24

 Period p(T1)

 Worst-Case Execution Time e(T1)

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

Sporadic Task Model

25

 Period p(T1)

 Worst-Case Execution Time e(T1)

 utilization:
p(T1)
e(T1) = u(T1)

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Tardiness

26

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1 T 2

1

What happens when a job does not complete on time?

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Tardiness

27

What happens when a job does not complete on time?

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1

T 2
1

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1

T 2
1

Tardiness

28

What happens when a job does not complete on time?

A delayed job...

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1

T 2
1

Tardiness

29

What happens when a job does not complete on time?

... finishes late; delays next job. A delayed job...

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1

T 2
1

Tardiness

30

What happens when a job does not complete on time?

Tasks are sequential:

next job cannot be scheduled until prior job completes.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1

T 2
1

Tardiness

31

What happens when a job does not complete on time?

Tardiness

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1

T 2
1

Tardiness

32

What happens when a job does not complete on time?

Tardiness

hard real-time (HRT)

all jobs finish on time
= zero tardiness

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

1 2 3 54 6 7 8 109 11 12 13 140

T1 T 1
1

T 2
1

Tardiness

33

What happens when a job does not complete on time?

Tardiness

hard real-time (HRT)

all jobs finish on time
= zero tardiness

soft real-time (SRT)

maximum tardiness is
bounded

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Uniprocessor Scheduling

34

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Uniprocessor Scheduling

35

Earliest Deadline First (EDF)
=

Execute pending jobs
in order of non-decreasing deadline;

break ties arbitrarily.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Static Priority (SP)
=

Assign unique priorities to tasks;
execute pending jobs

in order of decreasing task priority.

Uniprocessor Scheduling

36

Earliest Deadline First (EDF)
=

Execute pending jobs
in order of non-decreasing deadline;

break ties arbitrarily.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Static Priority (SP)
=

Assign unique priorities to tasks;
execute pending jobs

in order of decreasing task priority.

Uniprocessor Scheduling

37

Earliest Deadline First (EDF)
=

Execute pending jobs
in order of non-decreasing deadline;

break ties arbitrarily.

EDF is optimal:

all deadlines met

if system not over-utilized

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Static Priority (SP)
=

Assign unique priorities to tasks;
execute pending jobs

in order of decreasing task priority.

Uniprocessor Scheduling

38

Earliest Deadline First (EDF)
=

Execute pending jobs
in order of non-decreasing deadline;

break ties arbitrarily.

EDF is optimal:

all deadlines met

if system not over-utilized

SP is not optimal:

meeting all deadlines may require

cap on utilization (idle time)

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multiprocessor Scheduling

39

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multiprocessor Scheduling

40

Partitioning
=

use uniprocessor algorithm
on each processor

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multiprocessor Scheduling

41

Partitioning
=

use uniprocessor algorithm
on each processor

Global
=

one global run queue;
served by all processors

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Multiprocessor Scheduling

42

Partitioning
=

use uniprocessor algorithm
on each processor

Global
=

one global run queue;
served by all processors

Clustered
=

globally schedule
clusters of processors

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Partitioning

43

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Partitioning

44

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

One run queue per

processor.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Partitioning

45

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

Tasks are assigned

statically to processors.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

Partitioning

46

Good cache affinity.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

Partitioning

47

Low queue contention:

processors access mostly local queues.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

Partitioning

48

But: partitioning requires a bin-packing problem to be solved...

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Partitioning

49

Example:" three identical tasks
" " " " " period " = 3
" " " " " wcet " " = 2
" " " " util. " = 2/3

" " " " " two unit processors

2/3 2/3 2/3

0.5

0.0

1.0

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Partitioning

49

Example:" three identical tasks
" " " " " period " = 3
" " " " " wcet " " = 2
" " " " util. " = 2/3

" " " " " two unit processors

2/3 2/3
2/30.5

0.0

1.0

Bin packing

Even though there is sufficient total capacity,

the last task cannot be placed.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Partitioning

49

Example:" three identical tasks
" " " " " period " = 3
" " " " " wcet " " = 2
" " " " util. " = 2/3

" " " " " two unit processors

2/3 2/3
2/30.5

0.0

1.0

Bin packing

Even though there is sufficient total capacity,

the last task cannot be placed.

With partitioned

scheduling, up to m/2

utilization may be wasted.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Global Scheduling

50

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Global Scheduling

51

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4 One global run queue:

frequent migrations possible

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Global Scheduling

52

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4Weak cache affinity:

consistency traffic and

memory bus contention

possible

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Global Scheduling

53

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4 Significant queue

contention

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Global Scheduling

54

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Queue length:

higher overheads

due to larger N

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Global Scheduling

55

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

But: no bin-packing required!

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Global Scheduling

56

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

But: no bin-packing required!

All multiprocessor real-time scheduling algorithms
that have been proven optimal are global.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Clustered Scheduling

57

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Clustered Scheduling

58

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Group cores by shared caches

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Clustered Scheduling

59

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Statically assign tasks to clusters.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Clustered Scheduling

60

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

“Globally” schedule clusters.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Clustered Scheduling

61

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Less contention, better affinity

than pure global scheduling.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Clustered Scheduling

62

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Easier bin-packing problem:

fewer and larger bins.

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Relevant Scheduling Algorithms

63

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

global clustered partitioned

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Relevant Scheduling Algorithms

64

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

global clustered partitioned

G-EDF C-EDF P-EDF

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Relevant Scheduling Algorithms

65

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

global clustered partitioned

G-EDF C-EDF P-EDF

PFAIR C-PFAIR

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Relevant Scheduling Algorithms

66

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

global clustered partitioned

G-EDF C-EDF P-EDF

PFAIR C-PFAIR P-SP

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Relevant Scheduling Algorithms

67

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

global clustered partitioned

G-EDF C-EDF P-EDF

PFAIR C-PFAIR P-SP

Theory: use global

only global algorithms do not require utilization caps

UNC Chapel Hill

Operating System Infrastructure for Multiprocessor Real-Time Systems

B. Brandenburg

Relevant Scheduling Algorithms

68

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

Q
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

Q
3

T c
3

Q
2

T b
2

Q
4

T d
4

global clustered partitioned

G-EDF C-EDF P-EDF

PFAIR C-PFAIR P-SP

Theory: use global

only global algorithms do not require utilization caps

Real-Time Operating Systems:

everything but P-SP scheduling is “impractical”

