A Partial Overview of Real-Time Synchronization

Real-Time Lunch
Oct 1, 2008

Bjérn Brandenburg
(with many stolen slides)

The University of North Carolina at Chapel Hill

Work supported by IBM and Intel Corps., NSF grants CNS 048996, CCF 0541056, and CNS 0615197, and ARO grant W911NF-06-1-0425.

Real-Time
Synchronization

(on Uniprocessors)

Priority Inversions

When tasks share resources, there may be priority inversions.

Example:

priority inversion

AN

Jim Anderson Comp 737, Spring 2008 Shared Resources -

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: PCP & SRP

Semaphore protocols based on two concepts

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to realtime synchronization”, IEEE
Transactions on Computers, 39(9):1175-1185, 1990.

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67-99, 1991.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: PCP & SRP

Semaphore protocols based on two concepts

priority ceiling
(of a resource L)
max priority of any job
that requests L

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to realtime synchronization”, IEEE
Transactions on Computers, 39(9):1175-1185, 1990.

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67-99, 1991.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: PCP & SRP

Semaphore protocols based on two concepts

priority ceiling system ceiling
(of a resource L) (on a processor P)
max priority of any job max priority ceiling of any
that requests L resource in use on P

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to realtime synchronization”, IEEE
Transactions on Computers, 39(9):1175-1185, 1990.

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67-99, 1991.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: PCP & SRP

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to realtime synchronization”, IEEE
Transactions on Computers, 39(9):1175-1185, 1990.

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67-99, 1991.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: PCP & SRP

-

PCP: Resource request only granted if
1) client priority exceeds system ceiling or
2) client raised system ceiling last.

A resource-holding job Is subject to priority-inheritance.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to realtime synchronization”, IEEE
Transactions on Computers, 39(9):1175-1185, 1990.

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67-99, 1991.

UNC Chapel Hill B. Brandenburg and J. Anderson

Quick Review: PCP & SRP

-~

PCP: Resource request only granted if
1) client priority exceeds system ceiling or
2) client raised system ceiling last.

A resource-holding job is subject to priority-inheritance.

-

SRP: A job may not execute unless
1) its priority exceeds the system ceiling or
2) the job executed previously.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to realtime synchronization”, IEEE
Transactions on Computers, 39(9):1175-1185, 1990.

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67-99, 1991.

With Priority-Inheritance

| BN

Comp 737, Spring 2008

With PCP

Jim Anderson Comp 737, Spring 2008 Shared Resources -

With SRP

Jim Anderson Comp 737, Spring 2008 Shared Resources -

Real-Time
Synchronization

(on Multiprocessors)

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Real-Time Resource Sharing

On multiprocessors,
there are two Kinds of resources:

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Real-Time Resource Sharing

On multiprocessors,
there are two Kinds of resources:

Local

all clients on the
same processor

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Real-Time Resource Sharing

On multiprocessors,
there are two Kinds of resources:

Local Global

all clients on the clients on different
same processor processors

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

For local resources, [NESOUICE Shal‘ing

uniprocessor
synchronization is tiprocessors,
sufficient.) kinds of resources:

(under partitioning)

Local Global

all clients on the clients on different
same processor processors

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

For local resources, €Sou
uniprocessor

synchronization is Jitiproc

sufficient. y kinds

Global resources
pose more problems.

In this talk, we focus
on global resources.

(under partitioning)

Local Global

all clients on the clients on different
same processor processors

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Why are global resources harder to
handie?

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Why are global resources harder to
handie?

Remote blocking:

When processors are no longer independent,
worst-case analysis becomes pessimistic.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Why are global resources harder to
handie?

Remote blocking:

When processors are no longer independent,
worst-case analysis becomes pessimistic.

Priority-inheritance is meaningless
acCross processors:

The highest priority on processor |
may rank low on processor 2.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Example: A Naive Approach

| 10SS320.14

.
ﬁ
=
o
d
2]
wn
=
ﬁ
N

5 6 7 8 9 10 11 12 13 14 15
UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, e | U SRT

Example: T2 acquires resource 1...

L

| 10SS320.14

.
q
=
o
d
2]
wn
=
ﬁ
N

5 6 7 8 9 10 11 12 13 14 15
UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, e | U SRT

Example: T2 acquires resource 1...

L

| 10SS320.14

... and blocks T3,

7 10SS320.4

5 6 7 8 9 10 11 12 13 14 15
UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Example: A Naive Approach

T1 A h\n_\ T4 preempts Ta...
13 h " ['

{ 10SS320.14

| r—am

0O 1 2 5 6 7 8 9 10 11 12 13 14 15
UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Example: A Naive Approach

T1 Ch\n_\ T4 preempts Ta...
12 h " ['

... which transitively blocks T3z for the entire

duration that T4 exectues.

13 i%

o 1.2 3 4 5 6 7 8 9 1011 12 13 14 15
UNC Chapel Hill B. Brandenburg and J. Anderson

7 10SS320.4

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Example: A Naive Approach

.
ﬁ
=
(@]
B
2]
w
=
ﬁ
—

If resource-holding jobs can be preempted by higher-
priority jobs, then remote jobs can be delayed by at least
one entire higher-priority job’s length!

5 6 7 8 9 10 11 12 13 14 15
UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: M-PCP

R. Rajkumar, “Realtime synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: M-PCP

Requests are ordered by task priority.

R. Rajkumar, “Realtime synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: M-PCP

‘ Requests are ordered by task priority. '

-

Resource-holding jobs have higher priority than
non-resource-holding jobs; resource-holding jolbs

can be preempted by other resource-holding jobs.

R. Rajkumar, “Realtime synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: M-PCP

‘ Requests are ordered by task priority. '

-

Resource-holding jobs have higher priority than
non-resource-holding jobs; resource-holding jobs
can be preempted by other resource-holding jobs.

All jobs execute on their assigned processors.

R. Rajkumar, “Realtime synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: M-PCP

‘ Requests are ordered by task priority. '

-

Resource-holding jobs have higher priority than
non-resource-holding jobs; resource-holding jobs
can be preempted by other resource-holding jobs.

All jobs execute on their assigned processors.

r

iy
MO S J[o]oe

R. Rajkumar, “Realtime synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: D-PCP

R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchronization protocols for multiprocessors”, Proceedings of the 9th
Real-Time Systems Symposium, pp.259-269, 1988.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: D-PCP

Requests are ordered by task priority.

R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchronization protocols for multiprocessors”, Proceedings of the 9th
Real-Time Systems Symposium, pp.259-269, 1988.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: D-PCP

Requests

N0oN-resource-

are ordered by task priority.

Resource-holding jobs have higher priority than

nolding jobs; resource-holding jobs

can be preempted by other resource-holding jobs.

R. Rajkumar, L. Sha, and J.P. Lehoczky,
Real-Time Systems Symposium, pp.259-269, 1988.

“Realtime synchronization protocols for multiprocessors”, Proceedings of the 9th

UNC Chapel Hill

B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: D-PCP

Requests

NOoN-resource-

are ordered by task priority.

Resource-holding jobs have higher priority than

nolding jobs; resource-holding jobs

can be preempted by other resource-holding jobs.

Resources are assigned to processors.
Jobs use RPC to invoke critical sections.

R. Rajkumar, L. Sha, and J.P. Lehoczky,
Real-Time Systems Symposium, pp.259-269, 1988.

“Realtime synchronization protocols for multiprocessors”, Proceedings of the 9th

UNC Chapel Hill

B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Quick Review: D-PCP

Requests

NOoN-resource-

R. Rajkumar, L. Sha, and J.P. Lehoczky,

are ordered by task priority.

Resource-holding jobs have higher priority than

nolding jobs; resource-holding jobs

can be preempted by other resource-holding jobs.

Resources are assigned to processors.
Jobs use RPC to invoke critical sections.

r

o
MO eS SIDPE

“Realtime synchronization protocols for multiprocessors”, Proceedings of the 9th

Real-Time Systems Symposium, pp.259-269, 1988.

UNC Chapel Hill

B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

The D-PCP and M-PCP
have high implementation overheads.
(in practice, they are used only rarely)

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

The D-PCP and M-PCP
have high implementation overheads.
(in practice, they are used only rarely)

Maybe the complexity is overkill in many cases!
Can’t we have something simpler?

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Flexible Multiprocessor Locking Protocol

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Flexible Multiprocessor Locking Protocol

= Originally proposed for global and partitioned
earliest-deadline-first (EDF) scheduling.

= generalizes most prior P-EDF schemes

= The FMLP supports both spin-based locks and
suspension-based locks.

= The FMLP supports arbitrary nesting of
resources.

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

Flexible Multiprocessor Locking Protocol

= Originally proposed for and partitioned
earliest-deadline-first (EDF) scheduling.

= generalizes most prior P-EDF schemes

= The FMLP supports both spin-based locks and
suspension-based locks.

= The FMLP supports of
resources.

In this work, we extended the FMLP to
partitioned static-priority scheduling.

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

, , We call resources
Flexible Multiproce protected by spin-based

locks “short.”

= Originally proposed f
earliest-deadline

= generalizes most prior P-EDF : émes
= The FMLP supports bo ' spin-based ks and

S
suspension-based IW

= The FMLP supports of
resources.

In this work, we extended the FMLP to
partitioned static-priority scheduling.

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

We call resources
We call resources protected by spin-based
protected by suspension- locks “short.”
based locks “long.”

prior P-EDF fmes
-~ ho €' spin-based

suspension-based

= The supports arbitrary nesting of
resources.

In this work, we extended the FMLP to
partitioned static-priority scheduling.

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP — Design

“Design a protocol for the common case.
Use the most-simple solution possible.”

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP — Design

“Design a protocol for the common case.
Use the most-simple solution possible.”

Rationale

|. Complex designs are hard to analyze.

2. Complex designs are hard to implement (and thus
tend to have higher overheads).

3. It’'s easier to refine an existing simple protocol
then it is to “speed up” a complex protocol.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP — The Common Case

“Most critical sections are short (1-5Us).
Nesting is somewhat rare.”

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third
International Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP — The Common Case

“Most critical sections are short (1-5Us).
Nesting is somewhat rare.”

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third
International Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

~
Choices

|. Use FIFO everywhere. No priority queues.

2. Use non-preemptive execution where possible to
simplify analysis.

3. Use a very simple deadlock avoidance mechanism.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP — Short Resources
(Queue Lock)

Satisfied Complete

l !

| I I
| Blocked in ! |

FIFO queue, Ciritical section
job spins

Non-preemptive Execution

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP — Short Resources

This makes analysis easy. LOCk)

fied Complete

!

FIFO queue,) Critical section
A 7

< Non-preemptive Execution >

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP — Long Resources
(Semaphore)

Issued Satisfied Complete

! l !

I I | |
Blocked, job IAcquir'ed, ICriticalI
suspend waiting section
| |
I
Non-preemptive
Execution

UNC Chapel Hill B. Brandenburg and J. Anderson

] NnNA/ARN RN N NRNA/ARD AADA/AND I r=Ad1 I =T I . K n I | 11T A A1 100RT

Because the job released the CPU it may be
blocked when it returns.

Bounding this as tightly as possible is crucial to
performance: The FMLP uses priority-boosting.

Issued Satisfied Complete

l !

—
Blocked, jo’(Acquired, "\ Yyitical
suspend \waitin})ction

|

Non-preemptive
Execution

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP — Deadlock Avoidance

We use a very simple mechanism to avoid
deadlock:

|. Assign short/long resources to groups

2. Two resources are in the same group if
requests for them may be nested

3. Associate a group lock with each group

4. Before accessing a resource, must
first acquire its group lock.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP Deadlock Avoidance

.
A “classic’”’ deadlock scenario:

jJob A Job B Time

Acquire resource Y Acquire resource X l
Blocked trying to acquire X Blocked trying to acquire Y

Deadlock!

4. Before accessing a resource, must
first acquire its group lock.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

.
Group locks solve this problem

Job A Job B
Acquire group lock “XY”

Access Y

Access X

Release group lock “XY”

Acquire group lock “XY”
Access X
Access Y

Release group lock “XY”

4. Before accessing a resource, must
first acquire its group lock.

UNC Chapel Hill B. Brandenburg and J. Anderson

Group locks solve this problem

Job A Job B
Acquire group lock “XY”

Access Y

Access X

Release group lock “XY”

Acquire group lock “XY”
Access X
Access Y

Release group lock “XY”

Embarrassingly simple. But:

- Prior multiprocessor work doesn’t support nesting at all.

- Obtaining provably better mechanisms is non-trivial.

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

| 10SS3004

V Ti0ssadoig
3
®

10 11 12 13 14 15

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

| 10SS320.4J

V Tiossadoig
3
(g”)

10 11 12 13 14 15

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP (long)

H\

| 10SS920.14

V T i0ssadoid
3
®

10 11 12 13 14 15

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP (short)

| 10SS920.44

V Tiossadoid
3
®

10 11 12 13 14 15

UNC Chapel Hill B. Brandenburg and J. Anderson

Some Results

M-PCP vs. D-PCP vs. FMLP-L vs. FMLP-S

Some Results

M-PCP vs. D-PCP vs. FMLP-L vs. FMLP-S

Does the FMLP’s simplicity
sacrifice performance!?

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Methodology |feather
race

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Methodology |feather
race

|. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Methodology featfzrace

Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

2. Generated lots of random task sets.

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Methodology feaﬂlrace

Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

2. Generated lots of random task sets.

3. Executed task sets on LITMUSRT: traced overheads with
Feather-Trace.

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Methodology featqrace

. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT
. Generated lots of random task sets.

. Executed task sets on LITMUSR!: traced overheads with
Feather-Trace.

. Distilled overhead formulas from trace data.

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Methodology featflrace

. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

. Generated lots of random task sets.

. Executed task sets on LITMUSR!: traced overheads with
Feather-Trace.

. Distilled overhead formulas from trace data.

. Accounted for overheads in schedulability analysis and
blocking term calculations.

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Methodology feat’}race

. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

. Generated lots of random task sets.

. Executed task sets on LITMUSRT: traced overheads with
Feather-Trace.

. Distilled overhead formulas from trace data.

. Accounted for overheads in schedulability analysis and
blocking term calculations.

. Generated over 13 million random task sets (in total) and
tested whether they remained schedulable with blocking

terms/overheads.

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill B. Brandenburg and J. Anderson

Methodology |fea H}r 19

. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

. Generated lots of random task sets.

. Executgd_f_:_dugfc an | ITMI IQRT. > -YalWa - a¥-V>Ta Wlth

Feather
. Distille

. Accour
block|

Our platform:
4-way 2.7 GHz Intel Xeon SMP

512K L2 cache per processor s and
2 Gb RAM

. Generatéd over ANIITON random taskK S€ 1 total) and
tested whether they remained schedulable with blocking
terms/overheads.

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

O
o

O
»

o
N

>,
=
O
©
=
L®]
)
C
O
%

O
N

-

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2] D-PCP...a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

schedulability

ratio of random task sets that
were schedulable

b

>
=
Q
©
=
©
O
C
O
7

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2] D-PCP...a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

O
o

O
»

o
N

>,
=
O
©
=
L®]
)
C
O
%

O
N

-

FMLP (short)

0.1 all locks are spin-locks

MLP (short)-

TRAL D /Il~-

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

O
o

O
»

O
N

>
=
Q
©
=
©
O
C
O
7

O
N

o

01 015 02 0.25 FMLP (Iong)

MLP Iong ‘ﬁl all locks are semaphores

UNC Chapel Hill B. Branden:

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

2
oo

O
»

o
N

M-PCP & D-PCP

>
=
Q
©
=
©
O
C
O
7

O
N

(@ll resources global)

-

0.1 0.15 0.2 025 0.3 > 0.4
utilization ¢

FMLP (short) ——[1] -PCP.ox|
FMLP (long) ---»--[2] D-PCP...a..[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

O
o

O
»

o
N

>,
=
O
©
=
L®]
)
C
O
%

O
N

-

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2] D-PCP...a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

-

~hedulability vs. Utilization
K=9 E3 period=10-100

- —

—h

-

N ¢

max. number of
requests per job

O
o

O
»

o
N

>
=
Q
©
=
©
O
C
O
7

O
N

-

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2] D-PCP...a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedul~>-"""~-- vg, Utilization

K=9 L=C ﬁeriod=10-100‘

| Py

period

(uniform distribution,

per-job utilization in [0.001,0.1])

0

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2] D-PCP...a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Sc) —-ulability vs. Utilization

K= €=3 eriod=10-100

O
o

L

max. critical section length

O
»

o
N

>
=
Q
©
=
©
O
C
O
7

O
N

-

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2] D-PCP...a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

—h

utilization cap (ucap)
(the fraction of the four-processor
system allocated before
accounting for overheads)

: /
0.1 015 0.2 % . . 04 045 0.5
utilization cap

FMLP (short) ——I11 M-PCP--x--[3]
FMLP (long) ---s-[D-PCP ..a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

O
o

O
»

o
N

>
=
Q
©
=
©
O
C
O
7

O
N

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

O
o

0.6

o
N

>,
=
O
©
=
L®]
)
C
O
%

O
N

N [2,3,4]

Be6.0ga006aaa 85080 e iEessseses

-

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

:

- .*-x-*.&.x

ol]
\ . 1
‘, -
" * *. [
¢ A 3
‘, L
2, * ‘
3
O 8 " ‘
’ *
[] . ¢
‘.
. .
f' *
‘, *

’ * ‘

-) §

(1) FMLP (short)

O
»

o
N

>,
=
O
©
=
L®]
)
C
O
%

O
N

‘\
‘\
. X
% . A3
., =, . N
- . X, [2,3,4]

— ., .
&880 666058580 e -0

-

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
K=9 L=3 period=10-100

1 LIS ..
ol]
|]
., .
L)
‘e

e [1]
sx‘ a

: (1) FMLP (short)

\Y
Ay
X,

O
»

, = (2) FMLP (long)
"‘x, \‘x‘

1 . \"‘
- .y " 2,3,4]

— ., .
&880 666058580 e -0

o
N

>,
=
O
©
=
L®]
)
C
O
%

O
N

-

015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2] D-PCP...a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
=4 (3) M-PCP 00
.

} [1]

O
o

(1) FMLP (short)

0.6

, = (2) FMLP (long)
"‘x, \‘x‘

1 . \"‘
- .y " 2,3,4]

’lE” *'O N
0 &8 g gaaaaa6a 588 e e

o
N

>,
=
O
©
=
L®]
)
C
O
%

O
N

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2] D-PCP...a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Utilization
=4 (3) M-PCP 00
.

} [1]

O
o

(1) FMLP (short)

O
»

o
N

, = (2) FMLP (long)
x
'il!.,’.*. ‘x“x [2,3,4]

.

(4) D - PC P "ﬂl'ﬂ"ﬂ"ﬂ“EI--EI--EI---EI---EI---Ei--Ei--E--EI-fﬁ-‘ﬁ-'-ﬁﬁﬂ-l:i-'*“-l--l-l--l-l-

>,
=
O
©
=
L®]
)
C
O
%

O
N

.
"
x *

01 015 02 025 03 035 04 045 0.5
utilization cap

FMLP (short) ——[1] M-PCP....x..[3]
FMLP (long) ---»---[2] D-PCP...a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Critical Section Length
ucap=0.3 K=9 period=10-100

—h

O
o)

O
»

o
N

>,
=
Q
©
S
®,
D
c
O
%

2 4 6 8 10 12 14 16
L (in us)
FMLP (short)——[1] M-PCP -.x...[3]

FMLP (long) -—-«--[2] D-PCP ..a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Critical Section Length
ucap=0.3 K=9 period=10-100

—h

O
o)

O
»

How does critical section
length affect schedulability?

o
N

>,
=
Q
©
S
®,
D
c
O
%

D 4 12 14 16

L
FMLP (Short)——sy.: PCP ---[3]

FMLP (long) -—-«--[2] D-PCP ..a--[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Critical Section Length
ucap=0.3 K=9 period=10-100

[1]

O
o)

2T, K - 9 ¢ =¥ D =3C= 3¢ =3¢ =)= %
96 =X “¢ = ¢~ ¥ =% . > N LN
XX K g X N e T x X
* \y, Sx—x__x

[2

O
»

o
N

>,
=
Q
©
S
®,
D
c
O
%

12 14

FMLP (short)——[1] ' M-PCP ...x-.[3]
FMLP (long) -—-«--[2] D-PCP ..a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT
Schedulability vs. Critical Sed (1) FMLP (short) '
ucap=0.3 K=9 period=10-100

[1]

X %
*T LK - 96 =3¢ = % P =X~ 3¢ -3¢ - X
%=X - b S STV . .
X x_*-x x-*—x.*‘x"x ‘X.*‘x—xy_x‘ xs x

WX

[2

O
o)

O
»

>,
=
Q
©
S
®,
D
c
O
%

’ ¢ M ‘”-“. '“' ., s
™ T W 1&-x--ilt"""-x-*-%g-au-x-x-x""~ : ™ -
*‘ "

-8 08880488488 6888668q886ga868 68866868 686408a868888

2 4 6 8 10 12 14 16
L (in us)
FMLP (short)——[1] M-PCP -.x...[3]

FMLP (long) -—-«--[2] D-PCP ..a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT
Schedulability vs. Critical Sed (1) FMLP (short) '
ucap=0.3 K=9 period=10-100

[1]

—h

X %
AN N - % 5¢- % M =)= 3¢ 3¢ =¥~ X
¥ 9% =X %= . RS N AACN _
ok Rl LR Ot e Xy X *“x—-x‘ X, X

e

(2) FMLP (long)

O
o)

O
»

>,
=
Q
©
S
®,
D
c
O
%

3]
"4

-8 08880488488 6888668q886ga868 68866868 686408a868888

P . '“' = N ’n‘
gy BN 2 g M e ~*_*.g.-ﬁ-*.*.%.n_‘.’.*.*‘x.

2 4 6 8 10 12 14 16
L (in us)
FMLP (short)——[1] M-PCP -.x...[3]

FMLP (long) -—-«--[2] D-PCP ..a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT
Schedulability vs. Critical Sed (1) FMLP (short) '
ucap=0.3 K=9 period=10-100

[1]

—h

X %
AR & - 96 =3¢ = ¥n P == 3¢ 3¢ =M~ X
¥ 9% =X %= . RS N AACN _
M= 3¢ =X &*_&x,x--x "we‘" %, X X, X

(3) M-PCP > e
(2) FMLP (long)

£ . 3]

" " . “ ----- " o -“- . e PRl
02 alialiatl e L Rl S W e e g LR R ik TR g 3

O
o)

-
N

>,
=
Q
©
S
®,
D
c
O
%

z

O § ea8eaa60qa66866saa68668g606ga86860e6 6868686886608

0 2 4 6 8 10 12 14 16
L (in us)
FMLP (short)——[1] M-PCP -.x...[3]

FMLP (long) -—-«--[2] D-PCP ..a-[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT
Schedulability vs. Critical Sed (1) FMLP (short) '
ucap=0.3 K=9 period=10-100

[1]

O
o)

A " ~x~ —*-x-“' *-x-) = x
%=X 9 =X- b S STV *. AN
x-* x‘ "-*—&,: =¢x--x X. ‘x‘*hx_x‘ xs x

(3) M-PCP > e
(2) FMLP (long)

v , 3]

'"'”“.”'”-”'*‘* ". ‘”'“'”‘*-‘.. o e LS B
" Rak S B R AS T pepesrpe X .

>,
=
Q
©
S
®,
D
c
O
%

O
N

4 6 3 10 12 14 16

L (in us)
‘(4) D-PCP lort)_._[1] M-PCP - [3]
ng)---»--[2] D-PCP ..a..[4]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Critical Section Frequency
ucap=0.3 L=9 period=10-100

O
00

O
»

O
™

>,
=
Q
O
S
e
O
C
O
7

O
N

FMLP (short) ——[1]
FMLP (long) ---=--[2]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Critical Section Frequency
ucap=0.3 L=9 period=10-100

s

O
00

O
»

How does the number of
critical sections affect
schedulability?

O
™

>,
=
Q
O
S
e
O
C
O
7

O
N

FMLP (short) ——[1]
FMLP (long) ---=--[2]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Critical Section Frequency
ucap=0.3 L=9 period=10-100

O
00

O
»

O
™

>,
=
Q
O
S
e
O
C
O
7

O
N

FMLP (short) ——[1]
FMLP (long) ---=--[2]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Critical Secti| (1) FMLP (short)
ucap=0.3 L=9 period=10-100

O
00

O
»

O
™

>,
=
Q
O
S
e
O
C
O
7

O
N

o

1 2 3

FMLP (short) ——[1]
FMLP (long) ---=--[2]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedulability vs. Critical Secti| (1) FMLP (short)
ucap=0.3 L=9 period=10-100

O
00

O
»

O
™

>,
=
Q
O
S
e
O
C
O
7

O
N

o

1 2 3

FMLP (short) ——[1]
FMLP (long) ---=--[2]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedul (3) M-PCP itical Secti{ (1) FMLP (short) '
ucap 10-100

O
00

O
»

O
™

>,
=
Q
O
S
e
O
C
O
7

O
N

o

1 2 3

FMLP (short) ——[1]
FMLP (long) ---=--[2]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

Schedul[(3) M-PCP "tical Secti{ (1) FMLP (short) '
ucap 10-100

O
00

O
»

O
™

>,
=
Q
O
S
e
O
C
O
7

O
N

(4) D-PCP

o

1 2 3 4

FMLP (short) ——[1]
FMLP (long) ---=--[2]

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP vs. D-PCP & M-PCP

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP vs. D-PCP & M-PCP

s

Non-preemptive FIFO spinlocks are usually the
best synchronization choice
(from a schedulability point of view).

UNC Chapel Hill B. Brandenburg and J. Anderson

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

FMLP vs. D-PCP & M-PCP

-

Non-preemptive FIFO spinlocks are usually the
best synchronization choice
(from a schedulability point of view).

Even with semaphores, the FMLP
usually achieves higher schedulability.

UNC Chapel Hill B. Brandenburg and J. Anderson

FMLP vs. D-PCP & M-PCP

-

Non-preemptive FIFO spinlocks are usually the
best synchronization choice
(from a schedulability point of view).

Even with semaphores, the FMLP
usually achieves wedul: ¢

Simplicity wins

The FMLP outperforms
the “classic” D-PCP and M-PCP most of the time.

Non-blocking
Synchronization

(on Uniprocessors)

Nonblocking Algorithms

BTwo variants:

¢ L.ock-free:

» Perform operations “optimistically”.
» Retry operations that are interfered with.
* Wait-free:
* No waiting of any kind:
—No busy-waiting.
—No blocking synchronization constructs.
—No unbounded retries.

B Prior research at UNC has shown how to account for lock-free
and wait-free overheads 1n scheduling analysis.

BEirst, some background ...

Jim Anderson Comp 737, Spring 2008 Shared Resources -

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Lock-Free

read shared
object

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Lock-Free

read shared prepare
object update

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Lock-Free

read shared prepare attempt
object update update

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Lock-Free

read shared prepare attempt >
object update update
OK

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Lock-Free

FAILED

read shared prepare attempt
object update update

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Lock-Free

RETRY LOOP
FAILED

read shared prepare attempt >

object update update
OK

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Lock-Free Example

type Qtype =record v: valtype; next: pointer to Qtype end
shared var Tail: pointer to Qtype;
local var old, new: pointer to Qtype

procedure Enqueue (input: valtype)
new := (input, NIL);
repeat old := Tail
until CAS2(&Tail, &(old->next), old, NIL, new, new)

| =

new]ﬁ ——| old ‘E new |
- - =

i T

Jim Anderson Comp 737, Spring 2008 Shared Resources -

old |£
=

L

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:

read shared
object

Wait-Free

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Wait-Free

read shared prepare
e B

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Wait-Free

read shared prepare
object update

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Wait-Free

read shared repare

object update

(very high-level view)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Non-Blocking Synchronization:
Wait-Free

read shared repare
_) Prep

object update

lock-free: cheap, but must bound retry-loops.

wait-free: expensive, but no retries, no blocking!

(very high-level view)
UNC Chapel Hill Brandenburg et al.

“current”
copy

Wait-Free Algorithms

pointer to
shared
object

Jim Anderson

(Herlihy’s Helping Scheme)

Algorithm:

process p’s
1 copy

“announce” operation;

retry until done:
create local copy of the object;

process q’s
copy

apply all announced operations
on local copy;

attempt to make local copy the
“current” copy using a
strong synchronization

process r’s
" copy

primitive

“announce” array

Can only retry once!

Disadvantage: Copying overhead.

Comp 737, Spring 2008 Shared Resources -

Using Wait-Free Algorithms 1in Real-
Time Systems

B On uniprocesors, helping-based algorithms are not
very attractive.

¢ Only high-priority tasks help lower-priority tasks.

—Similar to priority inversion.

¢ Such algorithms can have high overhead due to copying
and having to use costly synchronization primitives.

—Some wait-free algorithms avoid these problems and are useful.
—Example: “Collision avoiding” read/write buffers.

BOn the other hand, on multiprocessors, wait-free
algorithms may be the best choice.

Jim Anderson Comp 737, Spring 2008 Shared Resources -

Using Lock-Free Objects on Real-Time
Uniprocessors

B Advantages of L.ock-free Objects:
+No priority 1nversions.

¢ Lower overhead than helping-based wait-free
objects.

¢(Overhead 1s charged to low-priority tasks.

HBut:
¢ Access times are potentially unbounded.

Jim Anderson Comp 737, Spring 2008 Shared Resources -

Scheduling with Lock-Free Objects

On a uniprocessor. lock-free retries really aren’t unbounded.
9

A task fails to update a shared object only 1f
preempted during its object call.

High r
Low I r

. Failed retry-loop . Successful retry-loop

Can compute a bound on retries by counting preemptions.

Jim Anderson Comp 737, Spring 2008 Shared Resources -

Lock-Free on
Multiprocessors

® same basic approach:
bound worst-case nhumber of retries
® but:

® partitioning: tasks of all priorities on
other CPUS can interfere

® global: all tasks can interfere

(see Uma’s thesis for an overview and references)

RTAS’08:
Spinning vs. Suspending
vs. Lock-Free vs.Wait-Free

FMLP under G-EDF and P-EDF
Lock-Free and Wait-Free in userspace

Implemented in LITMUSRT

Obtained various overheads and retry-loop
costs for several data structures.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Real-Time Synchronization

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Real-Time Synchronization

Y N\

Blocking Non-Blocking

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Real-Time Synchronization

Y\

Blocking Non-Blocking

Y N X N

sSuspend Spin Lock-Free Wait-Free

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Real-Time Synchronization

Y\

Blocking Non-Blocking

Y N X N

sSuspend Spin Lock-Free Wait-Free

Which performs best in terms of schedulability?

UNC Chapel Hill Brandenburg et al.

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC TU Dresden, July 29, 2008

Spinning vs. Suspending

(under G-EDF and P-EDF)

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin2", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, April 2008.

UNC Chapel Hill Real-Time Systems Group

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC TU Dresden, July 29, 2008

Spinning vs. Suspending

(under G-EDF and P-EDF)

Question:

When, if ever, is suspending

preferable to spinning?

(from the point of view of schedulability)

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin2", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, April 2008.

UNC Chapel Hill Real-Time Systems Group

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Spinning vs. Suspending: Hard Real-Time

Schedulability Hard Uniform [0.001 0.1] m=4
X T X

2,
,/
2,
2,
2,
2,
2,
‘ "
‘e
* “““

N
o

(92)
e
O
(7))
o
O
O
L
&
7p)
-
@
o
C
)
O
| -
O
al

short P-EDF (1) —+—
short G-EDF (2) =9
long G-EDF (3) =¥

[| \ [|
Rl el

8 10 12
Max. critical section length (in us)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Spinning vs. Suspending: Hard Real-Time
Schedulability Hard Uniform [0.1 0.4] m=4

o0
o

~
o

(90)
e
O
(92)
e
O
O
L
)
7))
e
@
e
C
D
&)
| -
O
al

short P-EDF
short G-EDF

_long P-EDF
| | M

Max. critical section length (in us)
UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Spinning vs. Suspending: Soft Real-Time
Schedulability Soft Uniform [0.001 0.1] m=4

40

(92)
el
O
(7))
Pl
O
o
L
&)
w
-
@
fd
C
O
@)
| -
O
al

short P-EDF
short G-EDF
long G-EDF
I—long EI-EDF . -1 . |
| | =l =l | M-

8 10
Max. critical section length (in us)

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Spinning vs. Suspending: Soft Real-Time

Schedulability Soft Uniform [0.1 0.4] m=4

e e - A - K
(1,2,3)

short G-EDF
short P-EDF
long G-EDF
long P-EDF

40

(72)]
fd
)
(72]
fd
©
o
L
O
/)]
(V.
@
e
C
)
&
S
O
al

| o | |
| -

6

Max. critical section length (in us)

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Spinning vs. Suspending: Soft Real-Time

Tardiness G-EDF Soft Uniform [0.1 0.4] m=4

o)
N
o)
o
-

)
=.
=
/p)
7p)
)

=

O
| —-—
©

e
X
©

=

Avg

4 6 10
Max. critical section length (in us)

UNC Chapel Hill Brandenburg et al.

Spinning vs. Suspending

(under G-EDF and P-EDF)

P-EDF

Spinning

(short) Good Good

Only for moderate
task counts;
tardiness is higher

Suspending Generally extremely
(long) poor

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin2", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, April 2008.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Why is suspending so much worse!

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Why is suspending so much worse!

suspension

We don’t know what happened
while the job was gone.

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Why is suspending so much worse!

suspension

We don’t know what happened
while the job was gone.

4

Maybe competing
requests!?

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Why is suspending so much worse!

suspension

We don’t know what happened
while the job was gone.

v

Maybe competing Maybe non-

requests!? preemptive
section?

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Why is suspending so much worse!

suspension

We don’t know what happened
while the job was gone.

Y N,

Maybe competing Maybe non-

requests!? preemptive
section?

preemption/
migration?

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Why is suspending so much worse!

suspension

We don’t know what happened
while the job was gone.

Y Y N,

Maybe competing Maybe non-
requests!? preemptive

\ seci;i:)n? /

pessimistic analysis

UNC Chapel Hill Brandenburg et al.

preemption/
migration?

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

What if we had
better analysis’

Would suspending become competitive?

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

What if we had
better analysis’

Would suspending become competitive?
Well, we don’t know.

But: This also depends on how “bad” spinning is.

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

What if we had
better analysis!

Would suspending become competitive?
Well, we don’t know.

But: This also depends on how “bad” spinning is.

Experiment:
Measure utilization lost to spinning.

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Utilization Loss due to Spinning

V)

N
o1

N

—
)

—h

- | ONQg resource

-—=4 short resources, 8 tasks contending
-2 Short resources, 16 tasks contending

-1 ghort resource, 32 tasks contending

01 02 03 04 05 06 07 08 09 1
critical section length (relative to job execution time)

O
o

hn
e
2,
e
C
>
O
| -
o
'
O
@
O
o
e
o
e
©
'®
>
©
C
O
e
©
N
E
>

-

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

So, if we had much
better analysis...

(conjecture based on empirical evidence)

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢

So, if we had much
better analysis...

(conjecture based on empirical evidence)

...suspending might win if

there is significant contention,
and

the system as a whole spends about

60% of its time in critical sections.

UNC Chapel Hill Brandenburg et al.

RTAS'08

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC TU Dresden, July 29, 2008

Spinning vs. Lock-Free vs.Wait-Free
(under G-EDF and P-EDF)
Question:

Are lock-free and wait-free
algorithms viable?

If so, when are they preferable to
spinning (if ever)?

(from the point of view of schedulability)

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin2", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, April 2008.

UNC Chapel Hill Real-Time Systems Group

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Blocking vs. Non-Blocking

Three Approaches — Three Algorithms

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢ RTAS'08

Blocking vs. Non-Blocking

Three Approaches — Three Algorithms

Buffer Queue Heap

Lock-

array-based queue-lock [T. Anderson 90]
Based

[Anderson and

Locle=Free | [Tsigasetal.99] | [Michael etal. 96] Moir 99]

Wait-Free [ﬁsli:ﬁnog?d [Anderson and Moir 99]

UNC Chapel Hill Brandenburg et al.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢

Blocking vs. Non-Blocking: Soft Real-Time

Schedulability Soft Heap Uniform [0.001, 0.1] m=4

(@)
o

40

>
=
Q
©
-
S
@
L
O
n

RTAS'08

short-GEDF
short-PEDF
LF-GEDF
LF-PEDF
WF-GEDF
WF-PEDF

UNC Chapel Hill

4 6
Max. Number of accesses K

Brandenburg et al.

8

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?¢

Blocking vs. Non-Blocking: Soft Real-Time
Tardiness Soft G-EDF Heap Uniform [0.001, 0.1] m=4

RTAS'08

T
\)
I““‘
aus®®
EEEEEENNNNEEEEEEEER
Milee
¥ I““‘
LLLT T Y {1\
[l \)
""".""x‘““
5
5
5
8
5
<
5

0
7
)
=
O
S
S
X
©
=
)
>
<

N
o
o
o

y — %
EEEEEEEEEEEEEEEEEEEE
“““‘

A Ak xK A
4 6

Max. Number of accesses K
UNC Chapel Hill Brandenburg et al.

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

TU Dresden, July 29, 2008

Spinning vs. Lock-Free vs.Wait-Free
(under G-EDF and P-EDF)

Buffer

Queue

Good, but
Spin- Based outperformed by

special-purpose
algorithms

Lock-Free

Wait-Free

Heap

Retry bounds too
pessimistic

Good

Good
(for tested sizes)

Symposium, pp. 342-353, April 2008.

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin2", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications

UNC Chapel Hill Real-Time Systems Group

