
A Partial Overview of Real-Time Synchronization

Work supported by IBM and Intel Corps., NSF grants CNS 048996, CCF 0541056, and CNS 0615197, and ARO grant W911NF-06-1-0425.

Real-Time Lunch
Oct 1, 2008

Björn Brandenburg
(with many stolen slides)

The University of North Carolina at Chapel Hill

Real-Time
Synchronization

(on Uniprocessors)

Comp 737, Spring 2008 Shared Resources - Jim Anderson

Priority Inversions

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, there may be priority inversions.

Example:
priority inversion

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: PCP & SRP

4

Semaphore protocols based on two concepts

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67–99, 1991.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to real-time synchronization”, IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: PCP & SRP

4

Semaphore protocols based on two concepts

priority ceiling
(of a resource L)

=
max priority of any job

that requests L

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67–99, 1991.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to real-time synchronization”, IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: PCP & SRP

4

Semaphore protocols based on two concepts

priority ceiling
(of a resource L)

=
max priority of any job

that requests L

system ceiling
(on a processor P)

=
max priority ceiling of any

resource in use on P

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67–99, 1991.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to real-time synchronization”, IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: PCP & SRP

5

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67–99, 1991.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to real-time synchronization”, IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: PCP & SRP

5

PCP: Resource request only granted if
1) client priority exceeds system ceiling or
2) client raised system ceiling last.

A resource-holding job is subject to priority-inheritance.

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67–99, 1991.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to real-time synchronization”, IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: PCP & SRP

5

PCP: Resource request only granted if
1) client priority exceeds system ceiling or
2) client raised system ceiling last.

A resource-holding job is subject to priority-inheritance.

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67–99, 1991.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to real-time synchronization”, IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

SRP: A job may not execute unless
1) its priority exceeds the system ceiling or
2) the job executed previously.

Comp 737, Spring 2008 Shared Resources - Jim Anderson

With Priority-Inheritance

0 2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5 J5

J4

J2 J1

J1

J1 J1 J1

J1

J2

J5 J1

Comp 737, Spring 2008 Shared Resources - Jim Anderson

With PCP

0 2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5 J5

J1

J4 J4 J4

J1

J2

J5 J4J4 J2

Comp 737, Spring 2008 Shared Resources - Jim Anderson

With SRP

0 2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5

Real-Time
Synchronization

(on Multiprocessors)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Real-Time Resource Sharing

10

On multiprocessors,
there are two kinds of resources:

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Local
=

all clients on the
same processor

Real-Time Resource Sharing

10

On multiprocessors,
there are two kinds of resources:

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Local
=

all clients on the
same processor

Real-Time Resource Sharing

10

Global
=

clients on different
processors

On multiprocessors,
there are two kinds of resources:

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Local
=

all clients on the
same processor

Real-Time Resource Sharing

10

Global
=

clients on different
processors

On multiprocessors,
there are two kinds of resources:

For local resources,
uniprocessor

synchronization is
sufficient.

(under partitioning)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Local
=

all clients on the
same processor

Real-Time Resource Sharing

10

Global
=

clients on different
processors

On multiprocessors,
there are two kinds of resources:

For local resources,
uniprocessor

synchronization is
sufficient.

(under partitioning)

Global resources
pose more problems.

In this talk, we focus
on global resources.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Why are global resources harder to
handle?

11

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Why are global resources harder to
handle?

11

Remote blocking:

When processors are no longer independent,
worst-case analysis becomes pessimistic.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Why are global resources harder to
handle?

11

Remote blocking:

When processors are no longer independent,
worst-case analysis becomes pessimistic.

Priority-inheritance is meaningless
across processors:

The highest priority on processor 1
may rank low on processor 2.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Example: A Naive Approach

12

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o
c
e
s
s
o
r
 1

P
r
o
c
e
s
s
o
r
 2

t15

T3

T2

T1

1

1

1

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Example: A Naive Approach

12

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o
c
e
s
s
o
r
 1

P
r
o
c
e
s
s
o
r
 2

t15

T3

T2

T1

1

1

1

T2 acquires resource 1...

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Example: A Naive Approach

12

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o
c
e
s
s
o
r
 1

P
r
o
c
e
s
s
o
r
 2

t15

T3

T2

T1

1

1

1

T2 acquires resource 1...

... and blocks T3.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Example: A Naive Approach

12

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o
c
e
s
s
o
r
 1

P
r
o
c
e
s
s
o
r
 2

t15

T3

T2

T1

1

1

1

T1 preempts T2...

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Example: A Naive Approach

12

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o
c
e
s
s
o
r
 1

P
r
o
c
e
s
s
o
r
 2

t15

T3

T2

T1

1

1

1

T1 preempts T2...

... which transitively blocks T3 for the entire
duration that T1 exectues.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Example: A Naive Approach

12

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o
c
e
s
s
o
r
 1

P
r
o
c
e
s
s
o
r
 2

t15

T3

T2

T1

1

1

1

If resource-holding jobs can be preempted by higher-
priority jobs, then remote jobs can be delayed by at least

one entire higher-priority job’s length!

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: M-PCP

13

R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: M-PCP

13

R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

Requests are ordered by task priority.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: M-PCP

13

R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

Requests are ordered by task priority.

Resource-holding jobs have higher priority than
non-resource-holding jobs; resource-holding jobs

can be preempted by other resource-holding jobs.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: M-PCP

13

R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

Requests are ordered by task priority.

Resource-holding jobs have higher priority than
non-resource-holding jobs; resource-holding jobs

can be preempted by other resource-holding jobs.

All jobs execute on their assigned processors.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: M-PCP

13

R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors”, Proceedings of the 10th
International Conference on Distributed Computing Systems, pp.116-123, 1990.

Requests are ordered by task priority.

Resource-holding jobs have higher priority than
non-resource-holding jobs; resource-holding jobs

can be preempted by other resource-holding jobs.

All jobs execute on their assigned processors.

Doesn’t support nesting!

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: D-PCP

14

R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchronization protocols for multiprocessors”, Proceedings of the 9th
Real-Time Systems Symposium, pp.259-269, 1988.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: D-PCP

14

R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchronization protocols for multiprocessors”, Proceedings of the 9th
Real-Time Systems Symposium, pp.259-269, 1988.

Requests are ordered by task priority.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: D-PCP

14

R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchronization protocols for multiprocessors”, Proceedings of the 9th
Real-Time Systems Symposium, pp.259-269, 1988.

Requests are ordered by task priority.

Resource-holding jobs have higher priority than
non-resource-holding jobs; resource-holding jobs

can be preempted by other resource-holding jobs.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: D-PCP

14

R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchronization protocols for multiprocessors”, Proceedings of the 9th
Real-Time Systems Symposium, pp.259-269, 1988.

Requests are ordered by task priority.

Resource-holding jobs have higher priority than
non-resource-holding jobs; resource-holding jobs

can be preempted by other resource-holding jobs.

Resources are assigned to processors.
Jobs use RPC to invoke critical sections.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Quick Review: D-PCP

14

R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchronization protocols for multiprocessors”, Proceedings of the 9th
Real-Time Systems Symposium, pp.259-269, 1988.

Requests are ordered by task priority.

Resource-holding jobs have higher priority than
non-resource-holding jobs; resource-holding jobs

can be preempted by other resource-holding jobs.

Resources are assigned to processors.
Jobs use RPC to invoke critical sections.

Doesn’t support nesting!

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 15

The D-PCP and M-PCP
have high implementation overheads.

(in practice, they are used only rarely)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 15

The D-PCP and M-PCP
have high implementation overheads.

(in practice, they are used only rarely)

Maybe the complexity is overkill in many cases?
Can’t we have something simpler?

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 16

Flexible Multiprocessor Locking Protocol

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 16

Flexible Multiprocessor Locking Protocol

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

➡ Originally proposed for global and partitioned
earliest-deadline-first (EDF) scheduling.

➡ generalizes most prior P-EDF schemes

➡ The FMLP supports both spin-based locks and
suspension-based locks.

➡ The FMLP supports arbitrary nesting of
resources.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 16

Flexible Multiprocessor Locking Protocol

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

➡ Originally proposed for global and partitioned
earliest-deadline-first (EDF) scheduling.

➡ generalizes most prior P-EDF schemes

➡ The FMLP supports both spin-based locks and
suspension-based locks.

➡ The FMLP supports arbitrary nesting of
resources.

In this work, we extended the FMLP to
partitioned static-priority scheduling.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 16

Flexible Multiprocessor Locking Protocol

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

➡ Originally proposed for global and partitioned
earliest-deadline-first (EDF) scheduling.

➡ generalizes most prior P-EDF schemes

➡ The FMLP supports both spin-based locks and
suspension-based locks.

➡ The FMLP supports arbitrary nesting of
resources.

In this work, we extended the FMLP to
partitioned static-priority scheduling.

We call resources
protected by spin-based

locks “short.”

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 16

Flexible Multiprocessor Locking Protocol

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

➡ Originally proposed for global and partitioned
earliest-deadline-first (EDF) scheduling.

➡ generalizes most prior P-EDF schemes

➡ The FMLP supports both spin-based locks and
suspension-based locks.

➡ The FMLP supports arbitrary nesting of
resources.

In this work, we extended the FMLP to
partitioned static-priority scheduling.

We call resources
protected by spin-based

locks “short.”
We call resources

protected by suspension-
based locks “long.”

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP – Design

17

“Design a protocol for the common case.
Use the most-simple solution possible.”

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP – Design

17

“Design a protocol for the common case.
Use the most-simple solution possible.”

Rationale

1. Complex designs are hard to analyze.

2. Complex designs are hard to implement (and thus
tend to have higher overheads).

3. It’s easier to refine an existing simple protocol
then it is to “speed up” a complex protocol.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP – The Common Case

18

“Most critical sections are short (1-5μs).
Nesting is somewhat rare.”

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third
International Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP – The Common Case

18

“Most critical sections are short (1-5μs).
Nesting is somewhat rare.”

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third
International Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

Choices

1. Use FIFO everywhere. No priority queues.

2. Use non-preemptive execution where possible to
simplify analysis.

3. Use a very simple deadlock avoidance mechanism.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 19

FMLP – Short Resources
(Queue Lock)

Blocked in
FIFO queue,

 job spins
Critical section

Non-preemptive Execution

Issued Satisfied Complete

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 19

FMLP – Short Resources
(Queue Lock)

Blocked in
FIFO queue,

 job spins
Critical section

Non-preemptive Execution

Issued Satisfied Complete

This makes analysis easy.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 20

FMLP – Long Resources
(Semaphore)

Blocked, job
suspend

Critical
section

Non-preemptive
Execution

Issued Satisfied Complete

Acquired,
waiting

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson 20

FMLP – Long Resources
(Semaphore)

Blocked, job
suspend

Critical
section

Non-preemptive
Execution

Issued Satisfied Complete

Acquired,
waiting

Because the job released the CPU it may be
blocked when it returns.

Bounding this as tightly as possible is crucial to
performance: The FMLP uses priority-boosting.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP – Deadlock Avoidance

We use a very simple mechanism to avoid
deadlock:

1. Assign short/long resources to groups

2. Two resources are in the same group if
requests for them may be nested

3. Associate a group lock with each group

4. Before accessing a resource, must
first acquire its group lock.

21

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP Deadlock Avoidance

We use a very simple mechanism to avoid
deadlock:

1. Assign short/long resources to groups

2. Two resources are in the same group if
requests for them may be nested

3. Associate a group lock with each group

4. Before accessing a resource, must
first acquire its group lock.

22

A “classic” deadlock scenario:

Job A Job B
Acquire resource X
Blocked trying to acquire Y

Deadlock!

Acquire resource Y
Blocked trying to acquire X

Time

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

We use a very simple mechanism to avoid
deadlock:

1. Assign short/long resources to groups

2. Two resources are in the same group if
requests for them may be nested

3. Associate a group lock with each group

4. Before accessing a resource, must
first acquire its group lock.

FMLP Deadlock Avoidance

23

Group locks solve this problem
Job A Job B
Acquire group lock “XY”
Access Y
Access X
Release group lock “XY”

Time

Acquire group lock “XY”
Access X
Access Y
Release group lock “XY”

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

We use a very simple mechanism to avoid
deadlock:

1. Assign short/long resources to groups

2. Two resources are in the same group if
requests for them may be nested

3. Associate a group lock with each group

4. Before accessing a resource, must
first acquire its group lock.

FMLP Deadlock Avoidance

23

Group locks solve this problem
Job A Job B
Acquire group lock “XY”
Access Y
Access X
Release group lock “XY”

Time

Acquire group lock “XY”
Access X
Access Y
Release group lock “XY”

Embarrassingly simple. But:

 - Prior multiprocessor work doesn’t support nesting at all.

 - Obtaining provably better mechanisms is non-trivial.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

M-PCP

24

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o
c
e
s
s
o
r
 1

P
r
o
c
e
s
s
o
r
 2

15
time

T3

T2

T1

1

2

T4

1

1

1

2

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

D-PCP

25

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o
c
e
s
s
o
r
 1

P
r
o
c
e
s
s
o
r
 2

15
time

T3

T2

T1

1

2

T4

1

1

1

2

A1
2

A1
4

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP (long)

26

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o
c
e
s
s
o
r
 1

P
r
o
c
e
s
s
o
r
 2

15
time

T3

T2

T1

1

2

T4

1

1

1

2

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP (short)

27

1 2 3 54 6 7 8 109 11 12 13 140

P
r
o

c
e
s
s
o

r
 1

P
r
o

c
e
s
s
o

r
 2

15
time

T3

T2

T1

1

2

T4

1

1

1

2

Some Results
M-PCP vs. D-PCP vs. FMLP-L vs. FMLP-S

Some Results
M-PCP vs. D-PCP vs. FMLP-L vs. FMLP-S

Does the FMLP’s simplicity
sacrifice performance?

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Methodology

29

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Methodology

29

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

1. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Methodology

29

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

1. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

2. Generated lots of random task sets.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Methodology

29

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

1. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

2. Generated lots of random task sets.

3. Executed task sets on LITMUSRT; traced overheads with
Feather-Trace.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Methodology

29

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

1. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

2. Generated lots of random task sets.

3. Executed task sets on LITMUSRT; traced overheads with
Feather-Trace.

4. Distilled overhead formulas from trace data.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Methodology

29

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

1. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

2. Generated lots of random task sets.

3. Executed task sets on LITMUSRT; traced overheads with
Feather-Trace.

4. Distilled overhead formulas from trace data.

5. Accounted for overheads in schedulability analysis and
blocking term calculations.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Methodology

29

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

1. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

2. Generated lots of random task sets.

3. Executed task sets on LITMUSRT; traced overheads with
Feather-Trace.

4. Distilled overhead formulas from trace data.

5. Accounted for overheads in schedulability analysis and
blocking term calculations.

6. Generated over 13 million random task sets (in total) and
tested whether they remained schedulable with blocking
terms/overheads.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Methodology

29

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

1. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

2. Generated lots of random task sets.

3. Executed task sets on LITMUSRT; traced overheads with
Feather-Trace.

4. Distilled overhead formulas from trace data.

5. Accounted for overheads in schedulability analysis and
blocking term calculations.

6. Generated over 13 million random task sets (in total) and
tested whether they remained schedulable with blocking
terms/overheads.

Our platform:
4-way 2.7 GHz Intel Xeon SMP
512K L2 cache per processor
2 Gb RAM

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

30

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

30

schedulability
=

ratio of random task sets that
were schedulable

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

30

FMLP (short)
=

all locks are spin-locks

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

30

FMLP (long)
=

all locks are semaphores

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

30

M-PCP & D-PCP

(all resources global)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

31

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

31

K
=

max. number of
requests per job

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

31

period

(uniform distribution,
per-job utilization in [0.001,0.1])

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

31

L
=

max. critical section length

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

31

utilization cap (ucap)
 =

(the fraction of the four-processor
system allocated before

accounting for overheads)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

32

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

32

 (1) FMLP (short)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

32

 (1) FMLP (short)

 (2) FMLP (long)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

32

 (1) FMLP (short)

 (2) FMLP (long)

 (3) M-PCP

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

sc
h
e
d
u
la

b
ili

ty

utilization cap

K=9 L=3 period=10-100 alpha=0.5 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[3]
[4][2]

[2,3,4]

Schedulability vs. Utilization

32

 (1) FMLP (short)

 (2) FMLP (long)

 (3) M-PCP

 (4) D-PCP

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Schedulability vs. Critical Section Length

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

sc
h

e
d

u
la

b
ili

ty

L (in us)

ucap=0.3 K=9 period=10-100 alpha=1 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[2]

[3]

[4]

[2]
[3]
[4]

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Schedulability vs. Critical Section Length

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

sc
h

e
d

u
la

b
ili

ty

L (in us)

ucap=0.3 K=9 period=10-100 alpha=1 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[2]

[3]

[4]

[2]
[3]
[4]

How does critical section
length affect schedulability?

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Schedulability vs. Critical Section Length

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

sc
h

e
d

u
la

b
ili

ty

L (in us)

ucap=0.3 K=9 period=10-100 alpha=1 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[2]

[3]

[4]

[2]
[3]
[4]

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Schedulability vs. Critical Section Length

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

sc
h

e
d

u
la

b
ili

ty

L (in us)

ucap=0.3 K=9 period=10-100 alpha=1 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[2]

[3]

[4]

[2]
[3]
[4]

 (1) FMLP (short)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Schedulability vs. Critical Section Length

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

sc
h

e
d

u
la

b
ili

ty

L (in us)

ucap=0.3 K=9 period=10-100 alpha=1 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[2]

[3]

[4]

[2]
[3]
[4]

 (1) FMLP (short)

 (2) FMLP (long)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Schedulability vs. Critical Section Length

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

sc
h

e
d

u
la

b
ili

ty

L (in us)

ucap=0.3 K=9 period=10-100 alpha=1 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[2]

[3]

[4]

[2]
[3]
[4]

 (1) FMLP (short)

 (2) FMLP (long)

 (3) M-PCP

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Schedulability vs. Critical Section Length

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

sc
h

e
d

u
la

b
ili

ty

L (in us)

ucap=0.3 K=9 period=10-100 alpha=1 cpus=4

FMLP (short)
FMLP (long)

M-PCP
D-PCP

[1]

[1]

[2]

[3]

[4]

[2]
[3]
[4]

 (1) FMLP (short)

 (2) FMLP (long)

 (3) M-PCP

 (4) D-PCP

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Schedulability vs. Critical Section Frequency

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

sc
h
e
d
u
la

b
ili

ty

K

ucap=0.3 L=9 period=10-100 alpha=0.5 cpus=4

FMLP (short) [1]

[1]

[3]

[3]

[4]

[4]

[2]

[2]

FMLP (long)
M-PCP
D-PCP

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

Schedulability vs. Critical Section Frequency

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

sc
h
e
d
u
la

b
ili

ty

K

ucap=0.3 L=9 period=10-100 alpha=0.5 cpus=4

FMLP (short) [1]

[1]

[3]

[3]

[4]

[4]

[2]

[2]

FMLP (long)
M-PCP
D-PCP

How does the number of
critical sections affect

schedulability?

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

sc
h
e
d
u
la

b
ili

ty

K

ucap=0.3 L=9 period=10-100 alpha=0.5 cpus=4

FMLP (short) [1]

[1]

[3]

[3]

[4]

[4]

[2]

[2]

FMLP (long)
M-PCP
D-PCP

Schedulability vs. Critical Section Frequency

36

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

sc
h
e
d
u
la

b
ili

ty

K

ucap=0.3 L=9 period=10-100 alpha=0.5 cpus=4

FMLP (short) [1]

[1]

[3]

[3]

[4]

[4]

[2]

[2]

FMLP (long)
M-PCP
D-PCP

Schedulability vs. Critical Section Frequency

36

 (1) FMLP (short)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

sc
h
e
d
u
la

b
ili

ty

K

ucap=0.3 L=9 period=10-100 alpha=0.5 cpus=4

FMLP (short) [1]

[1]

[3]

[3]

[4]

[4]

[2]

[2]

FMLP (long)
M-PCP
D-PCP

Schedulability vs. Critical Section Frequency

36

 (1) FMLP (short)

 (2) FMLP (long)

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

sc
h
e
d
u
la

b
ili

ty

K

ucap=0.3 L=9 period=10-100 alpha=0.5 cpus=4

FMLP (short) [1]

[1]

[3]

[3]

[4]

[4]

[2]

[2]

FMLP (long)
M-PCP
D-PCP

Schedulability vs. Critical Section Frequency

36

 (1) FMLP (short)

 (2) FMLP (long)

 (3) M-PCP

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

sc
h
e
d
u
la

b
ili

ty

K

ucap=0.3 L=9 period=10-100 alpha=0.5 cpus=4

FMLP (short) [1]

[1]

[3]

[3]

[4]

[4]

[2]

[2]

FMLP (long)
M-PCP
D-PCP

Schedulability vs. Critical Section Frequency

36

 (1) FMLP (short)

 (2) FMLP (long)

 (3) M-PCP

 (4) D-PCP

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP vs. D-PCP & M-PCP

37

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP vs. D-PCP & M-PCP

37

Non-preemptive FIFO spinlocks are usually the
best synchronization choice

(from a schedulability point of view).

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP vs. D-PCP & M-PCP

37

Non-preemptive FIFO spinlocks are usually the
best synchronization choice

(from a schedulability point of view).

Even with semaphores, the FMLP
usually achieves higher schedulability.

UNC Chapel Hill

An Implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP Real-Time Synchronization Protocols in LITMUSRT

B. Brandenburg and J. Anderson

FMLP vs. D-PCP & M-PCP

37

Non-preemptive FIFO spinlocks are usually the
best synchronization choice

(from a schedulability point of view).

Even with semaphores, the FMLP
usually achieves higher schedulability.

Simplicity wins

The FMLP outperforms
the “classic” D-PCP and M-PCP most of the time.

Non-blocking
Synchronization

(on Uniprocessors)

Comp 737, Spring 2008 Shared Resources - Jim Anderson

Nonblocking Algorithms
Two variants:
Lock-free:

• Perform operations “optimistically”.
• Retry operations that are interfered with.

Wait-free:
• No waiting of any kind:

– No busy-waiting.
– No blocking synchronization constructs.
– No unbounded retries.

Prior research at UNC has shown how to account for lock-free
and wait-free overheads in scheduling analysis.

First, some background …

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Lock-Free

40

read shared
object

(very high-level view)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Lock-Free

40

prepare
update

read shared
object

(very high-level view)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Lock-Free

40

prepare
update

read shared
object

attempt
update

(very high-level view)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Lock-Free

40

prepare
update

read shared
object

attempt
update

OK

(very high-level view)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Lock-Free

40

prepare
update

read shared
object

attempt
update

OK

FAILED

(very high-level view)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Lock-Free

40

prepare
update

read shared
object

attempt
update

OK

FAILED

RETRY LOOP

(very high-level view)

Comp 737, Spring 2008 Shared Resources - Jim Anderson

type Qtype = record v: valtype; next: pointer to Qtype end
shared var Tail: pointer to Qtype;
local var old, new: pointer to Qtype

procedure Enqueue (input: valtype)
 new := (input, NIL);
 repeat old := Tail
 until CAS2(&Tail, &(old->next), old, NIL, new, new)

Lock-Free Example

Tail

old new

Tail

old new

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Wait-Free

42

read shared
object

(very high-level view)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Wait-Free

42

prepare
update

read shared
object

(very high-level view)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Wait-Free

42

prepare
update

read shared
object

clever
“magic”

(very high-level view)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Wait-Free

42

prepare
update

read shared
object

clever
“magic”

OK

(very high-level view)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Non-Blocking Synchronization:
Wait-Free

42

prepare
update

read shared
object

clever
“magic”

OK

(very high-level view)

lock-free: cheap, but must bound retry-loops.

wait-free: expensive, but no retries, no blocking!

Comp 737, Spring 2008 Shared Resources - Jim Anderson

Wait-Free Algorithms
(Herlihy’s Helping Scheme)

process q’s
copy

pointer to
shared
object

process p’s
copy

process r’s
copy

“current”
 copy

“announce” array

Can only retry once!
Disadvantage: Copying overhead.

“announce” operation;
retry until done:
 create local copy of the object;
 apply all announced operations
 on local copy;
 attempt to make local copy the
 “current” copy using a
 strong synchronization
 primitive

Algorithm:

Comp 737, Spring 2008 Shared Resources - Jim Anderson

Using Wait-Free Algorithms in Real-
Time Systems

On uniprocesors, helping-based algorithms are not
very attractive.
Only high-priority tasks help lower-priority tasks.

– Similar to priority inversion.

Such algorithms can have high overhead due to copying
and having to use costly synchronization primitives.

– Some wait-free algorithms avoid these problems and are useful.
– Example: “Collision avoiding” read/write buffers.

On the other hand, on multiprocessors, wait-free
algorithms may be the best choice.

Comp 737, Spring 2008 Shared Resources - Jim Anderson

Using Lock-Free Objects on Real-Time
Uniprocessors

Advantages of Lock-free Objects:
No priority inversions.
Lower overhead than helping-based wait-free

objects.
Overhead is charged to low-priority tasks.

But:
Access times are potentially unbounded.

Comp 737, Spring 2008 Shared Resources - Jim Anderson

Scheduling with Lock-Free Objects

On a uniprocessor, lock-free retries really aren’t unbounded.

A task fails to update a shared object only if
preempted during its object call.

Low

High

Failed retry-loop Successful retry-loop

Can compute a bound on retries by counting preemptions.

Lock-Free on
Multiprocessors

• same basic approach:

 bound worst-case number of retries

• but:

• partitioning: tasks of all priorities on
other CPUS can interfere

• global: all tasks can interfere

(see Uma’s thesis for an overview and references)

RTAS’08:
Spinning vs. Suspending

vs. Lock-Free vs. Wait-Free

• FMLP under G-EDF and P-EDF

• Lock-Free and Wait-Free in userspace

• Implemented in LITMUSRT

• Obtained various overheads and retry-loop
costs for several data structures.

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Real-Time Synchronization

49

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Real-Time Synchronization

49

Blocking Non-Blocking

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Real-Time Synchronization

49

Blocking Non-Blocking

Suspend Spin Lock-Free Wait-Free

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Real-Time Synchronization

49

Blocking Non-Blocking

Suspend Spin Lock-Free Wait-Free

Which performs best in terms of schedulability?

UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

Spinning vs. Suspending

50

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin?", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, April 2008.

(under G-EDF and P-EDF)

UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

Spinning vs. Suspending

50

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin?", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, April 2008.

(under G-EDF and P-EDF)

Question:

When, if ever, is suspending
preferable to spinning?

(from the point of view of schedulability)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Spinning vs. Suspending: Hard Real-Time

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

Pe
rc

en
t o

f s
ch

ed
. t

se
ts

Max. critical section length (in µs)

Schedulability Hard Uniform [0.001 0.1] m=4

(1,2)

(3)

(4)
short P-EDF (1)
short G-EDF (2)
long G-EDF (3)
long P-EDF (4)

51

Light-Weight
Tasks

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Spinning vs. Suspending: Hard Real-Time

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

Pe
rc

en
t o

f s
ch

ed
. t

se
ts

Max. critical section length (in µs)

Schedulability Hard Uniform [0.1 0.4] m=4

(1,2)

(3)

(4)
short P-EDF (1)
short G-EDF (2)
long G-EDF (3)
long P-EDF (4)

52

Medium-Weight
Tasks

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Spinning vs. Suspending: Soft Real-Time

53

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

Pe
rc

en
t o

f s
ch

ed
. t

se
ts

Max. critical section length (in µs)

Schedulability Soft Uniform [0.001 0.1] m=4

(1,2)

(3)

(4)
short P-EDF (1)
short G-EDF (2)
long G-EDF (3)
long P-EDF (4)

Light-Weight
Tasks

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Spinning vs. Suspending: Soft Real-Time

54

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

Pe
rc

en
t o

f s
ch

ed
. t

se
ts

Max. critical section length (in µs)

Schedulability Soft Uniform [0.1 0.4] m=4

(1,2,3)

(4)

short G-EDF (1)
short P-EDF (2)
long G-EDF (3)
long P-EDF (4)

Medium-Weight
Tasks

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Spinning vs. Suspending: Soft Real-Time

55

 51000

 51500

 52000

 52500

 53000

 53500

 54000

 0 2 4 6 8 10 12 14

Av
g.

 M
ax

 ta
rd

in
es

s
(in

 µ
s)

Max. critical section length (in µs)

Tardiness G-EDF Soft Uniform [0.1 0.4] m=4

(1)

(2)

long (1)
short (2)

Medium-Weight
Tasks

UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

Spinning vs. Suspending

56

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin?", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, April 2008.

(under G-EDF and P-EDF)

P-EDF G-EDF

Spinning
(short) Good Good

Suspending
(long)

Generally extremely
poor

Only for moderate
task counts;

tardiness is higher

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Why is suspending so much worse?

57

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Why is suspending so much worse?

57

suspension
=

We don’t know what happened
while the job was gone.

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Why is suspending so much worse?

57

suspension
=

We don’t know what happened
while the job was gone.

Maybe competing
requests?

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Why is suspending so much worse?

57

suspension
=

We don’t know what happened
while the job was gone.

Maybe competing
requests?

Maybe non-
preemptive

section?

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Why is suspending so much worse?

57

suspension
=

We don’t know what happened
while the job was gone.

Maybe competing
requests?

Maybe
preemption/
migration?

Maybe non-
preemptive

section?

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Why is suspending so much worse?

57

suspension
=

We don’t know what happened
while the job was gone.

Maybe competing
requests?

Maybe
preemption/
migration?

Maybe non-
preemptive

section?

pessimistic analysis

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

What if we had
better analysis?

58

Would suspending become competitive?

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

What if we had
better analysis?

58

Would suspending become competitive?
Well, we don’t know.

But: This also depends on how “bad” spinning is.

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

What if we had
better analysis?

58

Would suspending become competitive?
Well, we don’t know.

But: This also depends on how “bad” spinning is.

Experiment:
Measure utilization lost to spinning.

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

0 10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.5

1

1.5

2

2.5

3

critical section length (relative to job execution time)

uti
liz

ati
on

 av
ail

ab
le

to
ba

ck
gr

ou
nd

 jo
bs

Long resource
4 short resources, 8 tasks contending
2 short resources, 16 tasks contending
1 short resource, 32 tasks contending

0.1

59

Utilization Loss due to Spinning

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

So, if we had much
better analysis…

60

(conjecture based on empirical evidence)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

So, if we had much
better analysis…

60

…suspending might win if

there is significant contention,

and

the system as a whole spends about

60% of its time in critical sections.

(conjecture based on empirical evidence)

UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

Spinning vs. Lock-Free vs. Wait-Free

61

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin?", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, April 2008.

(under G-EDF and P-EDF)

Question:

Are lock-free and wait-free
algorithms viable?

If so, when are they preferable to
spinning (if ever)?

(from the point of view of schedulability)

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Blocking vs. Non-Blocking

62

Three Approaches – Three Algorithms

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Blocking vs. Non-Blocking

62

Buffer Queue Heap

Lock-
Based

array-based queue-lock [T. Anderson 90]

Lock-Free [Tsigas et al. 99] [Michael et al. 96]
[Anderson and

Moir 99]

Wait-Free [Anderson and
Holman 00]

[Anderson and Moir 99]

Three Approaches – Three Algorithms

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Blocking vs. Non-Blocking: Soft Real-Time

63

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

S
ch

e
d
u
la

b
ili

ty

Max. Number of accesses K

Schedulability Soft Heap Uniform [0.001, 0.1] m=4 (1,2,5,6)

(3)

short-GEDF (1)
short-PEDF (2)

LF-GEDF (3)
LF-PEDF (4)

WF-GEDF (5)
WF-PEDF (6)

(4)

Light-Weight
Tasks

UNC Chapel Hill

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or Spin?

Brandenburg et al.

RTAS’08

Blocking vs. Non-Blocking: Soft Real-Time

64

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 2 4 6 8 10

Av
g.

 M
ax

 ta
rd

in
es

s
(in

 µ
s)

Max. Number of accesses K

Tardiness Soft G-EDF Heap Uniform [0.001, 0.1] m=4

(1)

(2)
(3)

LF (1)
WF(2)

short (3)

Light-Weight
Tasks

UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

Spinning vs. Lock-Free vs. Wait-Free

65

B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block
or Not to Block, to Suspend or Spin?", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, April 2008.

(under G-EDF and P-EDF)

Buffer Queue Heap

Spin-Based
Good, but

outperformed by
special-purpose

algorithms

Good
Good

(no copy overhead)

Lock-Free Good Good
Retry bounds too

pessimistic

Wait-Free Good Good
Good

(for tested sizes)

