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Priority Inversions
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When tasks share resources, there may be priority inversions.

Example:
priority inversion
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PCP: Resource request only granted if 
1) client priority exceeds system ceiling or
2) client raised system ceiling last.

A resource-holding job is subject to priority-inheritance.

T. Baker, "A stack-based resource allocation policy for realtime processes", Real-Time Systems, (3)1:67–99, 1991.
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SRP: A job may not execute unless
1) its priority exceeds the system ceiling or
2) the job executed previously.
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Local
=

all clients on the 
same processor

Real-Time Resource Sharing

10

Global
=

clients on different 
processors

On multiprocessors, 
there are two kinds of resources:

For local resources, 
uniprocessor

synchronization is 
sufficient.

(under partitioning)

Global resources 
pose more problems.

In this talk, we focus 
on global resources.
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Why are global resources harder to 
handle?
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Remote blocking:

When processors are no longer independent, 
worst-case analysis becomes pessimistic.

Priority-inheritance is meaningless 
across processors: 

The highest priority on processor 1
may rank low on processor 2.
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If resource-holding jobs can be preempted by higher-
priority jobs, then remote jobs can be delayed by at least 

one entire higher-priority job’s length!
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R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors”, Proceedings of the  10th 
International Conference on Distributed Computing Systems, pp.116-123, 1990.
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have high implementation overheads.
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The D-PCP and M-PCP
have high implementation overheads.

(in practice, they are used only rarely)

Maybe the complexity is overkill in many cases?
Can’t we have something simpler?
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Flexible Multiprocessor Locking Protocol

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of 
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.
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➡ The FMLP supports arbitrary nesting of 
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Flexible Multiprocessor Locking Protocol

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, "A Flexible Real-Time Locking Protocol for Multiprocessors", Proceedings of 
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 47-57, August 2007.

➡ Originally proposed for global and partitioned 
earliest-deadline-first (EDF) scheduling.

➡ generalizes most prior P-EDF schemes

➡ The FMLP supports both spin-based locks and 
suspension-based locks.

➡ The FMLP supports arbitrary nesting of 
resources.

In this work, we extended the FMLP to
partitioned static-priority scheduling.

We call resources 
protected by spin-based 

locks “short.”
We call resources 

protected by suspension-
based locks “long.”
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17

“Design a protocol for the common case.
Use the most-simple solution possible.”

Rationale

1. Complex designs are hard to analyze.

2. Complex designs are hard to implement (and thus 
tend to have higher overheads).

3. It’s easier to refine an existing simple protocol 
then it is to “speed up” a complex protocol.
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“Most critical sections are short (1-5μs).
Nesting is somewhat rare.”

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third 
International Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.
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FMLP – The Common Case

18

“Most critical sections are short (1-5μs).
Nesting is somewhat rare.”

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third 
International Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

Choices

1. Use FIFO everywhere. No priority queues.

2. Use non-preemptive execution where possible to 
simplify analysis.

3. Use a very simple deadlock avoidance mechanism.
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FMLP – Short Resources
(Queue Lock)

Blocked in 
FIFO queue,

 job spins
Critical section

Non-preemptive Execution

Issued Satisfied Complete
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FMLP – Short Resources
(Queue Lock)

Blocked in 
FIFO queue,

 job spins
Critical section

Non-preemptive Execution

Issued Satisfied Complete

This makes analysis easy.
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FMLP – Long Resources
(Semaphore)

Blocked, job 
suspend

Critical 
section

Non-preemptive
Execution

Issued Satisfied Complete

Acquired, 
waiting
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FMLP – Long Resources
(Semaphore)

Blocked, job 
suspend

Critical 
section

Non-preemptive
Execution

Issued Satisfied Complete

Acquired, 
waiting

Because the job released the CPU it may be 
blocked when it returns. 

Bounding this as tightly as possible is crucial to 
performance: The FMLP uses priority-boosting.
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FMLP – Deadlock Avoidance 

We use a very simple mechanism to avoid 
deadlock:

1. Assign short/long resources to groups

2. Two resources are in the same group if 
requests for them may be nested

3. Associate a group lock with each group

4. Before accessing a resource, must 
first acquire its group lock.

21
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FMLP Deadlock Avoidance 

We use a very simple mechanism to avoid 
deadlock:

1. Assign short/long resources to groups

2. Two resources are in the same group if 
requests for them may be nested

3. Associate a group lock with each group

4. Before accessing a resource, must 
first acquire its group lock.

22

A “classic” deadlock scenario:

Job A Job B
Acquire resource X
Blocked trying to acquire Y

Deadlock!

Acquire resource Y
Blocked trying to acquire X

Time
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We use a very simple mechanism to avoid 
deadlock:

1. Assign short/long resources to groups

2. Two resources are in the same group if 
requests for them may be nested

3. Associate a group lock with each group

4. Before accessing a resource, must 
first acquire its group lock.

FMLP Deadlock Avoidance 

23

Group locks solve this problem 
Job A Job B
Acquire group lock “XY”
Access Y
Access X
Release group lock “XY”

Time

Acquire group lock “XY”
Access X
Access Y
Release group lock “XY”
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We use a very simple mechanism to avoid 
deadlock:

1. Assign short/long resources to groups

2. Two resources are in the same group if 
requests for them may be nested

3. Associate a group lock with each group

4. Before accessing a resource, must 
first acquire its group lock.

FMLP Deadlock Avoidance 

23

Group locks solve this problem 
Job A Job B
Acquire group lock “XY”
Access Y
Access X
Release group lock “XY”

Time

Acquire group lock “XY”
Access X
Access Y
Release group lock “XY”

Embarrassingly simple. But: 

 - Prior multiprocessor work doesn’t support nesting at all.

 - Obtaining provably better mechanisms is non-trivial.
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FMLP (long)
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FMLP (short)
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Some Results
M-PCP vs. D-PCP vs. FMLP-L vs. FMLP-S

Does the FMLP’s simplicity
sacrifice performance?
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Methodology

29

B. Brandenburg and J. Anderson, "Feather-Trace: A Light-Weight Event Tracing Toolkit", Proceedings of the Third International 
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007.

1. Implemented PCP, SRP, D-PCP, M-PCP, FMLP in LITMUSRT

2. Generated lots of random task sets.

3. Executed task sets on LITMUSRT; traced overheads with 
Feather-Trace.

4. Distilled overhead formulas from trace data.

5. Accounted for overheads in schedulability analysis and 
blocking term calculations.

6. Generated over 13 million random task sets (in total) and 
tested whether they remained schedulable with blocking 
terms/overheads.

Our platform:
4-way 2.7 GHz Intel Xeon SMP
512K L2 cache per processor
2 Gb RAM
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were schedulable
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all locks are spin-locks
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M-PCP & D-PCP
 

(all resources global)
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max. number of 
requests per job
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period

(uniform distribution,
per-job utilization in [0.001,0.1])
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L
= 

max. critical section length
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utilization cap (ucap)
 =

(the fraction of the four-processor 
system allocated before 

accounting for overheads)
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How does critical section 
length affect schedulability?
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Non-preemptive FIFO spinlocks are usually the 
best synchronization choice

(from a schedulability point of view).

Even with semaphores, the FMLP 
usually achieves higher schedulability.

Simplicity wins

The FMLP outperforms 
the “classic” D-PCP and M-PCP most of the time.



Non-blocking
Synchronization

(on Uniprocessors)
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Nonblocking Algorithms
Two variants:
Lock-free:

• Perform operations “optimistically”.
• Retry operations that are interfered with.

Wait-free:
• No waiting of any kind:

– No busy-waiting.
– No blocking synchronization constructs.
– No unbounded retries.

Prior research at UNC has shown how to account for lock-free 
and wait-free overheads in scheduling analysis.

First, some background … 
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type  Qtype = record v: valtype; next:  pointer to Qtype end
shared var  Tail:  pointer to Qtype;
local var  old, new: pointer to Qtype

procedure Enqueue (input: valtype)
     new := (input,  NIL);
    repeat    old := Tail
    until  CAS2(&Tail, &(old->next), old, NIL, new, new) 

Lock-Free Example

Tail

old new

Tail

old new
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prepare 
update

read shared 
object

clever 
“magic”

OK

(very high-level view)

lock-free: cheap, but must bound retry-loops.

wait-free: expensive, but no retries, no blocking!
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Wait-Free Algorithms
(Herlihy’s Helping Scheme)

process q’s
copy

pointer to
shared 
object

process  p’s
copy

process  r’s
copy

“current”
    copy

“announce” array

Can only retry once!
Disadvantage: Copying overhead.

“announce” operation;
retry until done:
      create local copy of the object;
      apply all announced operations
            on local copy;
      attempt to make local copy the
            “current” copy using a
            strong synchronization
            primitive

Algorithm:
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Using Wait-Free Algorithms in Real-
Time Systems 

On uniprocesors, helping-based algorithms are not 
very attractive.
Only high-priority tasks help lower-priority tasks.

– Similar to priority inversion.

Such algorithms can have high overhead due to copying 
and having to use costly synchronization primitives.

– Some wait-free algorithms avoid these problems and are useful.
– Example: “Collision avoiding” read/write buffers.

On the other hand, on multiprocessors, wait-free 
algorithms may be the best choice.
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Using Lock-Free Objects on Real-Time 
Uniprocessors

Advantages of Lock-free Objects:
No priority inversions.
Lower overhead than helping-based wait-free 

objects.
Overhead is charged to low-priority tasks.

But:
Access times are potentially unbounded.
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Scheduling with Lock-Free Objects

On a uniprocessor, lock-free retries really aren’t unbounded.

A task fails to update a shared object only if
preempted during its object call.

Low

High

Failed retry-loop Successful retry-loop

Can compute a bound on retries by counting preemptions.



Lock-Free on 
Multiprocessors

• same basic approach:

 bound worst-case number of retries

• but:

• partitioning: tasks of all priorities on 
other CPUS can interfere

• global: all tasks can interfere

(see Uma’s thesis for an overview and references)



RTAS’08:
Spinning vs. Suspending

vs. Lock-Free vs. Wait-Free

• FMLP under G-EDF and P-EDF

• Lock-Free and Wait-Free in userspace

• Implemented in LITMUSRT

• Obtained various overheads and retry-loop 
costs for several data structures.
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Blocking Non-Blocking

Suspend Spin Lock-Free Wait-Free

Which performs best in terms of schedulability?
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B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block 
or Not to Block, to Suspend or Spin?", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications 
Symposium, pp. 342-353, April 2008.

(under G-EDF and P-EDF)

Question: 

When, if ever, is suspending 
preferable to spinning?

(from the point of view of schedulability)
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B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block 
or Not to Block, to Suspend or Spin?", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications 
Symposium, pp. 342-353, April 2008.

(under G-EDF and P-EDF)

P-EDF G-EDF

Spinning
(short) Good Good

Suspending
(long)

Generally extremely 
poor

Only for moderate 
task counts; 

tardiness is higher
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Why is suspending so much worse?
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suspension 
= 

We don’t know what happened 
while the job was gone.

Maybe competing 
requests?

Maybe 
preemption/
migration?

Maybe non-
preemptive 

section?

pessimistic analysis
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Would suspending become competitive? 
Well, we don’t know.

But: This also depends on how “bad” spinning is. 

Experiment:  
Measure utilization lost to spinning.
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…suspending might win if

there is significant contention, 

and 

the system as a whole spends about 

60% of its time in critical sections.

(conjecture based on empirical evidence)
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B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, "Real-Time Synchronization on Multiprocessors: To Block 
or Not to Block, to Suspend or Spin?", Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications 
Symposium, pp. 342-353, April 2008.

(under G-EDF and P-EDF)

Question: 

Are lock-free and wait-free 
algorithms viable?

If so, when are they preferable to 
spinning (if ever)?

(from the point of view of schedulability)
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Three Approaches – Three Algorithms
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Buffer Queue Heap

Lock-
Based

array-based queue-lock [T. Anderson 90]

Lock-Free [Tsigas et al. 99] [Michael et al.  96]
[Anderson and 

Moir 99]

Wait-Free [Anderson and 
Holman 00]

[Anderson and Moir 99]

Three Approaches – Three Algorithms
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(under G-EDF and P-EDF)

Buffer Queue Heap

Spin-Based
Good, but

outperformed by 
special-purpose

algorithms

Good
Good

(no copy overhead)

Lock-Free Good Good
Retry bounds too 

pessimistic

Wait-Free Good Good
Good

(for tested sizes)


