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LITMUS? What?

LInux Testbed for MUltiprocessor 
Scheduling 

in Real-Time Systems

LITMUSRT

=

A new Linux real-time extension developed at UNC.
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What Kind of Real-Time?

real-time:

low latency PREEMPT_RT
RTLinux
RTAI
L4Linux/DROPS
…
Plenty of other RTOSs

predictability
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What Kind of Real-Time?

real-time:

low latency

predictability

hard soft
optimal

=
NO deadlines missed

optimal
=

deadlines missed
by at most 

bounded amount
(if system is at most fully utilized)
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Optimality of real-time scheduling algorithms:
The “Gap”

uniproc. partitioned global

static priority

by deadline

PFAIR

(Multi)processor Setting
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Optimality of real-time scheduling algorithms:
The “Gap”

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

Theory

Implemented Systems

The Gap
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Real-Time on Multiprocessors?

Multicore is here to stay.

Some real-time applications require a 
lot of computational power.

COTS will be multiprocessors in many cases.
Real-Time Linux will be used on multicore 

platforms.

HDTV-quality multimedia.
Real-time business transactions.
More to come as our capabilities increase.
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Business Real-Time Computing

                  
Consistent, Fast Response Times

When critical business applications 
pause, companies lose money. When 
it comes to fulfilling on-line purchases, 
executing stock trades at the real time 
price, acting on price fluctuations or 
approving loan applications, 
completing only 85 percent of the 
requests in time is a failure.

One example: AZUL Systems, Inc.

AZUL’s appliances consist of up to 768 cores!

[From: http://www.azulsystems.com/products/compute_appliance.htm?p=p]
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Business Real-Time Computing

                  
Consistent, Fast Response Times

When critical business applications 
pause, companies lose money. When 
it comes to fulfilling on-line purchases, 
executing stock trades at the real time 
price, acting on price fluctuations or 
approving loan applications, 
completing only 85 percent of the 
requests in time is a failure.

One example: AZUL Systems, Inc.

AZUL’s appliances consist of up to 768 cores!

[From: http://www.azulsystems.com/products/compute_appliance.htm?p=p]

Predictability
Low Latency
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Why is it a Testbed?

What is the “best” multiprocessor real-
time scheduling algorithm?

Most proposed algorithms have never 
been implemented in a real system.

Real-world performance in face of 
overheads is unclear.

First implementation = no proven way
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Goals of the LITMUSRT Project
Help to bridge the gap between theory and 

practice.

Evaluate algorithm choices under real-
world conditions.

Prove that it’s feasible to implement 
advanced scheduling algorithms.

Provide inspiration to industry-grade real-
time Linux variants.
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Sporadic Tasks

Tx,1 Time

Task = sequence of recurrent jobs

Tx,2

relative deadline = 
min. inter-arrival separation / period

Job:  T<task no>,<job no>

Tx:

Task   Tx = (WCET, period)
Utilization  ux = WCET / period
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Sporadic Task System

T1:

T2:

Tn:

T1,2 T1,3T1,1

T2,1 T2,2 T2,3

Tn,1 Tn,2 Tn,3

Time
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Sporadic Task System

T1:

T2:

Tn:

…
…

.

T1,2 T1,3T1,1

T2,1 T2,2 T2,3

Tn,1 Tn,2 Tn,3

Time
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Sporadic Task System

T1:

T2:

Tn:

…
…

.

T1,2 T1,3T1,1

T2,1 T2,2 T2,3

Tn,1 Tn,2 Tn,3

Time

Delay before next release
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Uniprocessor Real-Time Scheduling

Static
(all jobs have same prio.)

Dynamic
(jobs can differ in prio.)

Manual + 
Time Demand Analysis
Prioritize somehow and check

Rate Monotonic (RM)
Prioritize by decreasing period

Least Laxity First (LLF)
Prioritize by decreasing laxity

Earliest Deadline First 
(EDF)

Prioritize by decreasing deadlinesNot further considered in 
this talk.
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Uniprocessor Real-Time Scheduling

Static
(all jobs have same prio.)

Dynamic
(jobs can differ in prio.)

Manual + 
Time Demand Analysis
Prioritize somehow and check

Rate Monotonic (RM)
Prioritize by decreasing period

Least Laxity First (LLF)
Prioritize by decreasing laxity

Earliest Deadline First 
(EDF)

Prioritize by decreasing deadlines
X

X

Only dynamic is (hard-)optimal!
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Multiprocessor Real-Time Scheduling

Two Fundamental Approaches

Steps:
1. Assign tasks to processors (bin 

packing).
2. Schedule tasks on each processor 

using uniprocessor algorithms.

Partitioning Global Scheduling

Important Differences:
• One task queue.
• Tasks may migrate among the 

processors.
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Algorithm Families

Partitioned Global

Earliest Deadline First
(EDF)

Static Priority
(e.g. RMS, POSIX)

Earliest Deadline First
(EDF)

Fair
(e.g. Prop. Share, PFAIR)X

X X

Only PFAIR is (hard-)optimal!

X
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Task 1

Task 2 Task 3

Partitioning suffers from bin-packing limitations.
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Partitioning is not Optimal

Example: Partitioning three tasks with parameters
(2,3) on two processors will overload one processor.

Processor 1 Processor 2

Task 1 Task 2

Task 3

0

1

Partitioning suffers from bin-packing limitations.
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Global EDF

Previous example scheduled under global EDF…

0 10 20 30

T1 = (2,3)

5 15 25

Deadline missed (tardy) by at most one quatum.

T2 = (2,3)

T3 = (2,3)

CPU 2

CPU 1
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CPU 2

CPU 1

T1 = (2,3)

T2 = (2,3)

T3 = (2,3)

PFAIR (PD2)

Previous example scheduled under PFAIR…

0 10 20 305 15 25

How does Pfair do it?  T = (2,3) is scheduled
by breaking each of its jobs into two quantum-length
subtasks that must be scheduled within a window
of length two:

Subtasks are prioritized on an EDF-basis and
using two tie-breaking rules.
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Optimality of real-time scheduling algorithms:
Real-Time Scheduling Algorithms

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

Optimal but high 
migration overheads.
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Optimality of real-time scheduling algorithms:
Real-Time Scheduling Algorithms

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

Less migrations but
only soft-optimal!
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Optimality of real-time scheduling algorithms:
Real-Time Scheduling Algorithms

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

No migrations but
not optimal at all!

Question: 

Given real overheads, what algorithm 
performs best in a given scenario?
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LITMUSRT

Core

Hooks into the 
Linux Scheduler

P-EDF

G-EDF

PFAIR

…

sched.
interface
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The LITMUSRT Core

Linux 2.6.24

LITMUSRT Core = Infrastructure & Components

scheduler_tick() schedule() try_to_wake_up()

rt_domain_tBinomial 
Heaps

- heap_add()
- heap_union()

- Ready queue
- Release queue
- add(), take(), etc.

Orders
- earlier_deadline()
- earlier_release()
- shorter_period()

Tracing Facilities… Synchronized Quanta…
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Debug messages.
Plain text.

TRACE()

LITMUSRT

Core

Scheduler events.
e.g. job completions
Binary stream.
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Feather-Trace

  sched_trace

Three Tracing Facilities

Debug messages.
Plain text.

TRACE()

LITMUSRT

Core

Scheduler events.
e.g. job completions
Binary stream.

Fine-grained overhead
measurements.
Binary stream.

B. Brandenburg and J. Anderson, " Feather-Trace: A Light-Weight Event Tracing Toolkit ", Proc. of the Third International Workshop on Operating 
Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007. 
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Why not use printk() for debugging?

Can’t use printk() while holding a run 
queue lock!

Our solution: TRACE() debugging macros.
Use custom polling char device driver.

printk()

spin_lock(&rq->lock) release_console_sem()

try_to_wake_up(klogd)
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Some algorithms (esp. PFAIR) require  
synchronized quanta.

Supporting Scheduling 

CPU 1

CPU 2

unsynchronized quanta

CPU 1

CPU 2

synchronized quanta

t1

t1

t1

t1

timer ticks are offset from
each other across CPUs 

timer ticks occur at same 
time across CPUs 

Vanilla Linux is not guaranteed to have synchronized quanta!
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Calandrino and Anderson, "Quantum Support for Multiprocessor Pfair Scheduling in Linux“, OSPERT’06 

Synchronizing Quanta

CPU 1

CPU 2
t1

t1

We used to use a barrier to synchronize 
quanta at boot time (2007.x series).

t5

t5

Initially quanta 
are 

unsynchronized. 
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Synchronizing Quanta

CPU 1

CPU 2
t1

t1

We used to use a barrier to synchronize 
quanta at boot time (2007.x series).

t5

t5

Disable APIC timer, 
perform barrier, 
re-enable timer.
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quanta at boot time (2007.x series).
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Calandrino and Anderson, "Quantum Support for Multiprocessor Pfair Scheduling in Linux“, OSPERT’06 

Synchronizing Quanta

CPU 1

CPU 2
t1

t1

We used to use a barrier to synchronize 
quanta at boot time (2007.x series).

t5

t5

Quanta are 
synchronized 
within 10µs.

In the 2008.x series, we only need 
to recompute timer offsets.
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Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

P-EDF G-EDF

S-PD2/PD2

G-NP-EDF

PSN-EDF

FC-G-EDF

GSN-EDF

Partitioned Global

EDF-HSB
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Scheduling Policy Plugins

 LITMUSRT 2008.1 contains four plugins

S-PD2/PD2

PSN-EDF GSN-EDF

Partitioned Global

C-EDF
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RT Tasks are 
just normal 
Linux tasks. 
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Evaluation of Scheduling Algorithms

Hard    vs.    Soft
Deadlines

Avg. U
tilization

H
igh  vs. LowPartitioning

Global

Result: For each tested scheme, scenarios 
exist in which it is a viable choice.

When (if ever) should you use partitioning (global)?

These results call into question the belief 
that global approaches are not practically 
viable!
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July 2007. 

A flexible locking protocol for EDF-scheduled multiprocessors:
A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, " A Flexible Real-Time Locking Protocol for 
Multiprocessors ", Proc. of the 13th IEEE International Conference on Embedded and Real-Time 
Computing Systems and Applications, pp. 47-57, August 2007. 

Semaphores considered harmful:
B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, " Real-Time Synchronization 
on Multiprocessors: To Block or Not to Block, to Suspend or Spin? ", Proc. of the 14th IEEE Real-Time 
and Embedded Technology and Applications Symposium, pp. 342-353, April 2008.



LITMUSRT: An Overview Real-Time Lunch 2008

The Next Steps



LITMUSRT: An Overview Real-Time Lunch 2008

The Next Steps

 Port to Linux 2.6.27.



LITMUSRT: An Overview Real-Time Lunch 2008

The Next Steps

 Port to Linux 2.6.27.

Port to ARM11 MPCore.
 



LITMUSRT: An Overview Real-Time Lunch 2008

The Next Steps

 Port to Linux 2.6.27.

Port to ARM11 MPCore.
 

Polish, fix bugs, improve performance…
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Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

Many real-time plugins 
included.

(validate experiments, test 
userspace schemes, obtain 

overheads for your platform)

Real-time policy can be 
switched at run-time.

(don’t reboot during experiments)

Writing plugins is easy.

(get your idea implemented quickly, 
you don’t need to understand the 

whole kernel)

Runs on x86-32, sparc64.

(x86-64 in the works, there is 
almost no platform dependent 
code, a research in Singapore 

ported it to ARM)

Real-time 
synchronization.

(working code for np-Q-locks, PCP, 
SRP, D-PCP, M-PCP, FMLP)

It’s just Linux.

(all your existing scripts still work, 
your real-time tasks can do 

everything a normal task can do)


