
LITMUSRT: An Overview Real-Time Lunch 2008

LITMUSRT: An Overview
(based on a talk given at the Real-Time Linux Workshop 2007)

Björn B. Brandenburg
bbb@cs.unc.edu

The University of North Carolina at Chapel Hill

      

James H. Anderson
anderson@cs.unc.edu

Work supported by a grant from Intel Corp., by NSF grants CCR 0408996, 
CCR 0541056, and CCR 0615197, and by ARO grant W911NF-06-1-0425.

Aaron D. Block
block@cs.unc.edu

John M. Calandrino
jmc@cs.unc.edu

UmaMaheswari Devi
uma@cs.unc.edu

Hennadiy Leontyev
leontyev@cs.unc.edu



LITMUSRT: An Overview Real-Time Lunch 2008

LITMUS? What?

LInux Testbed for MUltiprocessor 
Scheduling 

in Real-Time Systems

LITMUSRT

=

A new Linux real-time extension developed at UNC.



LITMUSRT: An Overview Real-Time Lunch 2008

What Kind of Real-Time?

real-time:



LITMUSRT: An Overview Real-Time Lunch 2008

What Kind of Real-Time?

real-time:

low latency

predictability



LITMUSRT: An Overview Real-Time Lunch 2008

What Kind of Real-Time?

real-time:

low latency PREEMPT_RT
RTLinux
RTAI
L4Linux/DROPS
…
Plenty of other RTOSs

predictability



LITMUSRT: An Overview Real-Time Lunch 2008

What Kind of Real-Time?

real-time:

low latency

predictability

hard soft



LITMUSRT: An Overview Real-Time Lunch 2008

What Kind of Real-Time?

real-time:

low latency

predictability

hard soft
optimal

=
NO deadlines missed

(if system is at most fully utilized)



LITMUSRT: An Overview Real-Time Lunch 2008

What Kind of Real-Time?

real-time:

low latency

predictability

hard soft
optimal

=
NO deadlines missed

optimal
=

deadlines missed
by at most 

bounded amount
(if system is at most fully utilized)



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
The “Gap”

uniproc. partitioned global

static priority

by deadline

PFAIR



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
The “Gap”

uniproc. partitioned global

static priority

by deadline

PFAIR

Algorithm Family



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
The “Gap”

uniproc. partitioned global

static priority

by deadline

PFAIR

(Multi)processor Setting



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
The “Gap”

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
The “Gap”

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

Theory



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
The “Gap”

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

Theory

Implemented Systems

The Gap



LITMUSRT: An Overview Real-Time Lunch 2008

Real-Time on Multiprocessors?



LITMUSRT: An Overview Real-Time Lunch 2008

Real-Time on Multiprocessors?

Multicore is here to stay.



LITMUSRT: An Overview Real-Time Lunch 2008

Real-Time on Multiprocessors?

Multicore is here to stay.

COTS will be multiprocessors in many cases.
Real-Time Linux will be used on multicore 

platforms.



LITMUSRT: An Overview Real-Time Lunch 2008

Real-Time on Multiprocessors?

Multicore is here to stay.

Some real-time applications require a 
lot of computational power.

COTS will be multiprocessors in many cases.
Real-Time Linux will be used on multicore 

platforms.



LITMUSRT: An Overview Real-Time Lunch 2008

Real-Time on Multiprocessors?

Multicore is here to stay.

Some real-time applications require a 
lot of computational power.

COTS will be multiprocessors in many cases.
Real-Time Linux will be used on multicore 

platforms.

HDTV-quality multimedia.
Real-time business transactions.
More to come as our capabilities increase.



LITMUSRT: An Overview Real-Time Lunch 2008

Business Real-Time Computing

                  
Consistent, Fast Response Times

When critical business applications 
pause, companies lose money. When 
it comes to fulfilling on-line purchases, 
executing stock trades at the real time 
price, acting on price fluctuations or 
approving loan applications, 
completing only 85 percent of the 
requests in time is a failure.

One example: AZUL Systems, Inc.

AZUL’s appliances consist of up to 768 cores!

[From: http://www.azulsystems.com/products/compute_appliance.htm?p=p]



LITMUSRT: An Overview Real-Time Lunch 2008

Business Real-Time Computing

                  
Consistent, Fast Response Times

When critical business applications 
pause, companies lose money. When 
it comes to fulfilling on-line purchases, 
executing stock trades at the real time 
price, acting on price fluctuations or 
approving loan applications, 
completing only 85 percent of the 
requests in time is a failure.

One example: AZUL Systems, Inc.

AZUL’s appliances consist of up to 768 cores!

[From: http://www.azulsystems.com/products/compute_appliance.htm?p=p]

Predictability



LITMUSRT: An Overview Real-Time Lunch 2008

Business Real-Time Computing

                  
Consistent, Fast Response Times

When critical business applications 
pause, companies lose money. When 
it comes to fulfilling on-line purchases, 
executing stock trades at the real time 
price, acting on price fluctuations or 
approving loan applications, 
completing only 85 percent of the 
requests in time is a failure.

One example: AZUL Systems, Inc.

AZUL’s appliances consist of up to 768 cores!

[From: http://www.azulsystems.com/products/compute_appliance.htm?p=p]

Predictability
Low Latency



LITMUSRT: An Overview Real-Time Lunch 2008

Why is it a Testbed?



LITMUSRT: An Overview Real-Time Lunch 2008

Why is it a Testbed?

What is the “best” multiprocessor real-
time scheduling algorithm?



LITMUSRT: An Overview Real-Time Lunch 2008

Why is it a Testbed?

What is the “best” multiprocessor real-
time scheduling algorithm?

Most proposed algorithms have never 
been implemented in a real system.

Real-world performance in face of 
overheads is unclear.

First implementation = no proven way



LITMUSRT: An Overview Real-Time Lunch 2008

Goals of the LITMUSRT Project



LITMUSRT: An Overview Real-Time Lunch 2008

Goals of the LITMUSRT Project
Help to bridge the gap between theory and 

practice.



LITMUSRT: An Overview Real-Time Lunch 2008

Goals of the LITMUSRT Project
Help to bridge the gap between theory and 

practice.

Evaluate algorithm choices under real-
world conditions.



LITMUSRT: An Overview Real-Time Lunch 2008

Goals of the LITMUSRT Project
Help to bridge the gap between theory and 

practice.

Evaluate algorithm choices under real-
world conditions.

Prove that it’s feasible to implement 
advanced scheduling algorithms.



LITMUSRT: An Overview Real-Time Lunch 2008

Goals of the LITMUSRT Project
Help to bridge the gap between theory and 

practice.

Evaluate algorithm choices under real-
world conditions.

Prove that it’s feasible to implement 
advanced scheduling algorithms.

Provide inspiration to industry-grade real-
time Linux variants.



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Jobs

Time

A Job:



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Jobs

Time

Release Time

A Job:



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Jobs

Time

Release Time
Worst-Case

Execution Time

A Job:



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Jobs

Time

Release Time

Deadline

Worst-Case
Execution Time

A Job:



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Tasks

Tx,1 Time

Release Time

Deadline

Worst-Case
Execution Time

Task = sequence of recurrent jobs



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Tasks

Tx,1 Time

Task = sequence of recurrent jobs

Tx,2Tx:



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Tasks

Tx,1 Time

Task = sequence of recurrent jobs

Tx,2

Job:  T<task no>,<job no>

Tx:



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Tasks

Tx,1 Time

Task = sequence of recurrent jobs

Tx,2

relative deadline = 
min. inter-arrival separation / period

Job:  T<task no>,<job no>

Tx:



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Tasks

Tx,1 Time

Task = sequence of recurrent jobs

Tx,2

relative deadline = 
min. inter-arrival separation / period

Job:  T<task no>,<job no>

Tx:

Task   Tx = (WCET, period)
Utilization  ux = WCET / period



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Task System

T1:

T2:

Tn:

T1,2 T1,3T1,1

T2,1 T2,2 T2,3

Tn,1 Tn,2 Tn,3

Time



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Task System

T1:

T2:

Tn:

…
…

.

T1,2 T1,3T1,1

T2,1 T2,2 T2,3

Tn,1 Tn,2 Tn,3

Time



LITMUSRT: An Overview Real-Time Lunch 2008

Sporadic Task System

T1:

T2:

Tn:

…
…

.

T1,2 T1,3T1,1

T2,1 T2,2 T2,3

Tn,1 Tn,2 Tn,3

Time

Delay before next release



LITMUSRT: An Overview Real-Time Lunch 2008

Uniprocessor Real-Time Scheduling

Static
(all jobs have same prio.)

Dynamic
(jobs can differ in prio.)



LITMUSRT: An Overview Real-Time Lunch 2008

Uniprocessor Real-Time Scheduling

Static
(all jobs have same prio.)

Dynamic
(jobs can differ in prio.)

Rate Monotonic (RM)
Prioritize by decreasing period



LITMUSRT: An Overview Real-Time Lunch 2008

Uniprocessor Real-Time Scheduling

Static
(all jobs have same prio.)

Dynamic
(jobs can differ in prio.)

Manual + 
Time Demand Analysis
Prioritize somehow and check

Rate Monotonic (RM)
Prioritize by decreasing period



LITMUSRT: An Overview Real-Time Lunch 2008

Uniprocessor Real-Time Scheduling

Static
(all jobs have same prio.)

Dynamic
(jobs can differ in prio.)

Manual + 
Time Demand Analysis
Prioritize somehow and check

Rate Monotonic (RM)
Prioritize by decreasing period

Earliest Deadline First 
(EDF)

Prioritize by decreasing deadlines



LITMUSRT: An Overview Real-Time Lunch 2008

Uniprocessor Real-Time Scheduling

Static
(all jobs have same prio.)

Dynamic
(jobs can differ in prio.)

Manual + 
Time Demand Analysis
Prioritize somehow and check

Rate Monotonic (RM)
Prioritize by decreasing period

Least Laxity First (LLF)
Prioritize by decreasing laxity

Earliest Deadline First 
(EDF)

Prioritize by decreasing deadlines



LITMUSRT: An Overview Real-Time Lunch 2008

Uniprocessor Real-Time Scheduling

Static
(all jobs have same prio.)

Dynamic
(jobs can differ in prio.)

Manual + 
Time Demand Analysis
Prioritize somehow and check

Rate Monotonic (RM)
Prioritize by decreasing period

Least Laxity First (LLF)
Prioritize by decreasing laxity

Earliest Deadline First 
(EDF)

Prioritize by decreasing deadlinesNot further considered in 
this talk.



LITMUSRT: An Overview Real-Time Lunch 2008

Uniprocessor Real-Time Scheduling

Static
(all jobs have same prio.)

Dynamic
(jobs can differ in prio.)

Manual + 
Time Demand Analysis
Prioritize somehow and check

Rate Monotonic (RM)
Prioritize by decreasing period

Least Laxity First (LLF)
Prioritize by decreasing laxity

Earliest Deadline First 
(EDF)

Prioritize by decreasing deadlines
X

X

Only dynamic is (hard-)optimal!



LITMUSRT: An Overview Real-Time Lunch 2008

Multiprocessor Real-Time Scheduling

Two Fundamental Approaches



LITMUSRT: An Overview Real-Time Lunch 2008

Multiprocessor Real-Time Scheduling

Two Fundamental Approaches

Steps:
1. Assign tasks to processors (bin 

packing).
2. Schedule tasks on each processor 

using uniprocessor algorithms.

Partitioning



LITMUSRT: An Overview Real-Time Lunch 2008

Multiprocessor Real-Time Scheduling

Two Fundamental Approaches

Steps:
1. Assign tasks to processors (bin 

packing).
2. Schedule tasks on each processor 

using uniprocessor algorithms.

Partitioning Global Scheduling

Important Differences:
• One task queue.
• Tasks may migrate among the 

processors.



LITMUSRT: An Overview Real-Time Lunch 2008

Algorithm Families

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Algorithm Families

Partitioned Global

Static Priority
(e.g. RMS, POSIX)



LITMUSRT: An Overview Real-Time Lunch 2008

Algorithm Families

Partitioned Global

Earliest Deadline First
(EDF)

Static Priority
(e.g. RMS, POSIX)



LITMUSRT: An Overview Real-Time Lunch 2008

Algorithm Families

Partitioned Global

Earliest Deadline First
(EDF)

Static Priority
(e.g. RMS, POSIX)

Earliest Deadline First
(EDF)



LITMUSRT: An Overview Real-Time Lunch 2008

Algorithm Families

Partitioned Global

Earliest Deadline First
(EDF)

Static Priority
(e.g. RMS, POSIX)

Earliest Deadline First
(EDF)

Fair
(e.g. Prop. Share, PFAIR)



LITMUSRT: An Overview Real-Time Lunch 2008

Algorithm Families

Partitioned Global

Earliest Deadline First
(EDF)

Static Priority
(e.g. RMS, POSIX)

Earliest Deadline First
(EDF)

Fair
(e.g. Prop. Share, PFAIR)X

X X

Only PFAIR is (hard-)optimal!

X



LITMUSRT: An Overview Real-Time Lunch 2008

Partitioning is not Optimal

Partitioning suffers from bin-packing limitations.



LITMUSRT: An Overview Real-Time Lunch 2008

Partitioning is not Optimal

Example: Partitioning three tasks with parameters
(2,3) on two processors will overload one processor.

Processor 1 Processor 2

Task 1

Task 2 Task 3

Partitioning suffers from bin-packing limitations.



LITMUSRT: An Overview Real-Time Lunch 2008

Partitioning is not Optimal

Example: Partitioning three tasks with parameters
(2,3) on two processors will overload one processor.

Processor 1 Processor 2

Task 1 Task 2

Task 3

0

1

Partitioning suffers from bin-packing limitations.



LITMUSRT: An Overview Real-Time Lunch 2008

Global EDF

Previous example scheduled under global EDF…

0 10 20 30

T1 = (2,3)

5 15 25

T2 = (2,3)

T3 = (2,3)

CPU 2

CPU 1



LITMUSRT: An Overview Real-Time Lunch 2008

Global EDF

Previous example scheduled under global EDF…

0 10 20 30

T1 = (2,3)

5 15 25

Deadline missed (tardy) by at most one quatum.

T2 = (2,3)

T3 = (2,3)

CPU 2

CPU 1



LITMUSRT: An Overview Real-Time Lunch 2008

CPU 2

CPU 1

T1 = (2,3)

T2 = (2,3)

T3 = (2,3)

PFAIR (PD2)

Previous example scheduled under PFAIR…

0 10 20 305 15 25



LITMUSRT: An Overview Real-Time Lunch 2008

CPU 2

CPU 1

T1 = (2,3)

T2 = (2,3)

T3 = (2,3)

PFAIR (PD2)

Previous example scheduled under PFAIR…

0 10 20 305 15 25



LITMUSRT: An Overview Real-Time Lunch 2008

CPU 2

CPU 1

T1 = (2,3)

T2 = (2,3)

T3 = (2,3)

PFAIR (PD2)

Previous example scheduled under PFAIR…

0 10 20 305 15 25

How does Pfair do it?  T = (2,3) is scheduled
by breaking each of its jobs into two quantum-length
subtasks that must be scheduled within a window
of length two:

Subtasks are prioritized on an EDF-basis and
using two tie-breaking rules.



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
Real-Time Scheduling Algorithms

uniproc. partitioned global

static priority

by deadline

PFAIR



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
Real-Time Scheduling Algorithms

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
Real-Time Scheduling Algorithms

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

Optimal but high 
migration overheads.



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
Real-Time Scheduling Algorithms

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

Less migrations but
only soft-optimal!



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
Real-Time Scheduling Algorithms

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

No migrations but
not optimal at all!



LITMUSRT: An Overview Real-Time Lunch 2008

Optimality of real-time scheduling algorithms:
Real-Time Scheduling Algorithms

uniproc. partitioned global

static priority

by deadline

PFAIR

Hard:  NO

Soft:  YES

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  NO

Hard:  YES

Soft:  YES

Hard:  (YES)

Soft:  (YES)

Hard:  YES

Soft:  YES

Hard:  (NO)

Soft:  (NO)

Hard:  NO

Soft:  NO

Hard:  NO

Soft:  YES

No migrations but
not optimal at all!

Question: 

Given real overheads, what algorithm 
performs best in a given scenario?



LITMUSRT: An Overview Real-Time Lunch 2008

The Design of LITMUSRT



LITMUSRT: An Overview Real-Time Lunch 2008

 Linux 2.6.24

The Design of LITMUSRT



LITMUSRT: An Overview Real-Time Lunch 2008

 Linux 2.6.24

The Design of LITMUSRT

LITMUSRT

Core

Hooks into the 
Linux Scheduler



LITMUSRT: An Overview Real-Time Lunch 2008

Policy
Plugins

 Linux 2.6.24

The Design of LITMUSRT

LITMUSRT

Core

Hooks into the 
Linux Scheduler

P-EDF

G-EDF

PFAIR

…

sched.
interface



LITMUSRT: An Overview Real-Time Lunch 2008

RT
Apps

Policy
Plugins

 Linux 2.6.24

The Design of LITMUSRT

LITMUSRT

Core

Hooks into the 
Linux Scheduler

P-EDF

G-EDF

PFAIR

…

std. sys.
calls

RT sys.
calls

…

sched.
interface

RT

RT

RT

RT

RT



 Linux 2.6.24

LITMUSRT: An Overview Real-Time Lunch 2008

RT
Apps

Policy
Plugins

The Design of LITMUSRT

LITMUSRT

Core

Hooks into the 
Linux Scheduler

P-EDF

G-EDF

PFAIR

…

std. sys.
calls

RT sys.
calls

…

sched.
interface

RT

RT

RT

RT

RT



 Linux 2.6.24

LITMUSRT: An Overview Real-Time Lunch 2008

RT
Apps

Policy
Plugins

The Design of LITMUSRT

LITMUSRT

Core

Hooks into the 
Linux Scheduler

P-EDF

G-EDF

PFAIR

…

std. sys.
calls

RT sys.
calls

…

sched.
interface

RT

RT

RT

RT

RT



LITMUSRT: An Overview Real-Time Lunch 2008

The LITMUSRT Core

Linux 2.6.24

LITMUSRT Core = Infrastructure & Components



LITMUSRT: An Overview Real-Time Lunch 2008

The LITMUSRT Core

Linux 2.6.24

LITMUSRT Core = Infrastructure & Components

Binomial 
Heaps

- heap_add()
- heap_union()



LITMUSRT: An Overview Real-Time Lunch 2008

The LITMUSRT Core

Linux 2.6.24

LITMUSRT Core = Infrastructure & Components

Binomial 
Heaps

- heap_add()
- heap_union()

Orders
- earlier_deadline()
- earlier_release()
- shorter_period()



LITMUSRT: An Overview Real-Time Lunch 2008

The LITMUSRT Core

Linux 2.6.24

LITMUSRT Core = Infrastructure & Components

rt_domain_tBinomial 
Heaps

- heap_add()
- heap_union()

- Ready queue
- Release queue
- add(), take(), etc.

Orders
- earlier_deadline()
- earlier_release()
- shorter_period()



LITMUSRT: An Overview Real-Time Lunch 2008

The LITMUSRT Core

Linux 2.6.24

LITMUSRT Core = Infrastructure & Components

rt_domain_tBinomial 
Heaps

- heap_add()
- heap_union()

- Ready queue
- Release queue
- add(), take(), etc.

Orders
- earlier_deadline()
- earlier_release()
- shorter_period()

Tracing Facilities… Synchronized Quanta…



LITMUSRT: An Overview Real-Time Lunch 2008

The LITMUSRT Core

Linux 2.6.24

LITMUSRT Core = Infrastructure & Components

scheduler_tick() schedule() try_to_wake_up()

rt_domain_tBinomial 
Heaps

- heap_add()
- heap_union()

- Ready queue
- Release queue
- add(), take(), etc.

Orders
- earlier_deadline()
- earlier_release()
- shorter_period()

Tracing Facilities… Synchronized Quanta…



LITMUSRT: An Overview Real-Time Lunch 2008

Three Tracing Facilities

LITMUSRT

Core



LITMUSRT: An Overview Real-Time Lunch 2008

Three Tracing Facilities

Debug messages.
Plain text.

TRACE()

LITMUSRT

Core



LITMUSRT: An Overview Real-Time Lunch 2008

  sched_trace

Three Tracing Facilities

Debug messages.
Plain text.

TRACE()

LITMUSRT

Core

Scheduler events.
e.g. job completions
Binary stream.



LITMUSRT: An Overview Real-Time Lunch 2008

Feather-Trace

  sched_trace

Three Tracing Facilities

Debug messages.
Plain text.

TRACE()

LITMUSRT

Core

Scheduler events.
e.g. job completions
Binary stream.

Fine-grained overhead
measurements.
Binary stream.

B. Brandenburg and J. Anderson, " Feather-Trace: A Light-Weight Event Tracing Toolkit ", Proc. of the Third International Workshop on Operating 
Systems Platforms for Embedded Real-Time Applications, pp. 20-27, July 2007. 



LITMUSRT: An Overview Real-Time Lunch 2008

Why not use printk() for debugging?



LITMUSRT: An Overview Real-Time Lunch 2008

Why not use printk() for debugging?

printk()

spin_lock(&rq->lock) release_console_sem()

try_to_wake_up(klogd)



LITMUSRT: An Overview Real-Time Lunch 2008

Why not use printk() for debugging?

Can’t use printk() while holding a run 
queue lock!

printk()

spin_lock(&rq->lock) release_console_sem()

try_to_wake_up(klogd)



LITMUSRT: An Overview Real-Time Lunch 2008

Why not use printk() for debugging?

Can’t use printk() while holding a run 
queue lock!

printk()

spin_lock(&rq->lock) release_console_sem()

try_to_wake_up(klogd)



LITMUSRT: An Overview Real-Time Lunch 2008

Why not use printk() for debugging?

Can’t use printk() while holding a run 
queue lock!

printk()

spin_lock(&rq->lock) release_console_sem()

try_to_wake_up(klogd)



LITMUSRT: An Overview Real-Time Lunch 2008

Why not use printk() for debugging?

Can’t use printk() while holding a run 
queue lock!

printk()

spin_lock(&rq->lock) release_console_sem()

try_to_wake_up(klogd)



LITMUSRT: An Overview Real-Time Lunch 2008

Why not use printk() for debugging?

Can’t use printk() while holding a run 
queue lock!

printk()

spin_lock(&rq->lock) release_console_sem()

try_to_wake_up(klogd)



LITMUSRT: An Overview Real-Time Lunch 2008

Why not use printk() for debugging?

Can’t use printk() while holding a run 
queue lock!

Our solution: TRACE() debugging macros.

printk()

spin_lock(&rq->lock) release_console_sem()

try_to_wake_up(klogd)



LITMUSRT: An Overview Real-Time Lunch 2008

Why not use printk() for debugging?

Can’t use printk() while holding a run 
queue lock!

Our solution: TRACE() debugging macros.
Use custom polling char device driver.

printk()

spin_lock(&rq->lock) release_console_sem()

try_to_wake_up(klogd)



LITMUSRT: An Overview Real-Time Lunch 2008

Some algorithms (esp. PFAIR) require  
synchronized quanta.

Supporting Scheduling 



LITMUSRT: An Overview Real-Time Lunch 2008

Some algorithms (esp. PFAIR) require  
synchronized quanta.

Supporting Scheduling 

CPU 1

CPU 2

unsynchronized quanta
t1

t1

timer ticks are offset from
each other across CPUs 



LITMUSRT: An Overview Real-Time Lunch 2008

Some algorithms (esp. PFAIR) require  
synchronized quanta.

Supporting Scheduling 

CPU 1

CPU 2

unsynchronized quanta

CPU 1

CPU 2

synchronized quanta

t1

t1

t1

t1

timer ticks are offset from
each other across CPUs 

timer ticks occur at same 
time across CPUs 

Vanilla Linux is not guaranteed to have synchronized quanta!



LITMUSRT: An Overview Real-Time Lunch 2008

Calandrino and Anderson, "Quantum Support for Multiprocessor Pfair Scheduling in Linux“, OSPERT’06 

Synchronizing Quanta

CPU 1

CPU 2
t1

t1

We used to use a barrier to synchronize 
quanta at boot time (2007.x series).

t5

t5



LITMUSRT: An Overview Real-Time Lunch 2008

Calandrino and Anderson, "Quantum Support for Multiprocessor Pfair Scheduling in Linux“, OSPERT’06 

Synchronizing Quanta

CPU 1

CPU 2
t1

t1

We used to use a barrier to synchronize 
quanta at boot time (2007.x series).

t5

t5

Initially quanta 
are 

unsynchronized. 



LITMUSRT: An Overview Real-Time Lunch 2008

Calandrino and Anderson, "Quantum Support for Multiprocessor Pfair Scheduling in Linux“, OSPERT’06 

Synchronizing Quanta

CPU 1

CPU 2
t1

t1

We used to use a barrier to synchronize 
quanta at boot time (2007.x series).

t5

t5

Disable APIC timer, 
perform barrier, 
re-enable timer.



LITMUSRT: An Overview Real-Time Lunch 2008

Calandrino and Anderson, "Quantum Support for Multiprocessor Pfair Scheduling in Linux“, OSPERT’06 

Synchronizing Quanta

CPU 1

CPU 2
t1

t1

We used to use a barrier to synchronize 
quanta at boot time (2007.x series).

t5

t5

Quanta are 
synchronized 
within 10µs.



LITMUSRT: An Overview Real-Time Lunch 2008

Calandrino and Anderson, "Quantum Support for Multiprocessor Pfair Scheduling in Linux“, OSPERT’06 

Synchronizing Quanta

CPU 1

CPU 2
t1

t1

We used to use a barrier to synchronize 
quanta at boot time (2007.x series).

t5

t5

Quanta are 
synchronized 
within 10µs.

In the 2008.x series, we only need 
to recompute timer offsets.



LITMUSRT: An Overview Real-Time Lunch 2008

RT
Apps

Policy
Plugins

 Linux 2.6.24

The Design of LITMUSRT

LITMUSRT

Core

Hooks into the 
Linux Scheduler

P-EDF

G-EDF

PFAIR

…

std. sys
calls

RT sys
calls

…

sched.
interface

RT

RT

RT

RT

RT



LITMUSRT: An Overview Real-Time Lunch 2008

RT
Apps

Policy
Plugins

 Linux 2.6.24

The Design of LITMUSRT

LITMUSRT

Core

Hooks into the 
Linux Scheduler

P-EDF

G-EDF

PFAIR

…

std. sys
calls

RT sys
calls

…

sched.
interface

RT

RT

RT

RT

RT



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

P-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

P-EDF G-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

P-EDF G-EDF

G-NP-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

P-EDF G-EDF

G-NP-EDF FC-G-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

P-EDF G-EDF

G-NP-EDF

PSN-EDF

FC-G-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

P-EDF G-EDF

G-NP-EDF

PSN-EDF

FC-G-EDF

GSN-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

P-EDF G-EDF

S-PD2/PD2

G-NP-EDF

PSN-EDF

FC-G-EDF

GSN-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2007.3 contains eight plugins

P-EDF G-EDF

S-PD2/PD2

G-NP-EDF

PSN-EDF

FC-G-EDF

GSN-EDF

Partitioned Global

EDF-HSB



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2008.1 contains four plugins

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2008.1 contains four plugins

PSN-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2008.1 contains four plugins

PSN-EDF GSN-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2008.1 contains four plugins

S-PD2/PD2

PSN-EDF GSN-EDF

Partitioned Global



LITMUSRT: An Overview Real-Time Lunch 2008

Scheduling Policy Plugins

 LITMUSRT 2008.1 contains four plugins

S-PD2/PD2

PSN-EDF GSN-EDF

Partitioned Global

C-EDF



LITMUSRT: An Overview Real-Time Lunch 2008

RT
Apps

Policy
Plugins

 Linux 2.6.20

The Design of LITMUSRT

LITMUSRT

Core

Hooks into the 
Linux Scheduler

P-EDF

G-EDF

PFAIR

…

std. sys
calls

RT sys
calls

…

sched.
interface RT

RT

RT

RT

RT



LITMUSRT: An Overview Real-Time Lunch 2008

RT
Apps

Policy
Plugins

 Linux 2.6.20

The Design of LITMUSRT

LITMUSRT

Core

Hooks into the 
Linux Scheduler

P-EDF

G-EDF

PFAIR

…

std. sys
calls

RT sys
calls

…

sched.
interface RT

RT

RT

RT

RT



LITMUSRT: An Overview Real-Time Lunch 2008

Userspace API
L
I
T
M
U
S
 

C
O
R
E

L
I
N
U
X

RT
Task



LITMUSRT: An Overview Real-Time Lunch 2008

Userspace API
L
I
T
M
U
S
 

C
O
R
E

L
I
N
U
X

RT
Task

libc
RT Tasks are 
just normal 
Linux tasks. 



LITMUSRT: An Overview Real-Time Lunch 2008

Userspace API
L
I
T
M
U
S
 

C
O
R
E

L
I
N
U
X

RT
Task

liblitmus

libc



LITMUSRT: An Overview Real-Time Lunch 2008

Evaluation of Scheduling Algorithms

Hard    vs.    Soft
Deadlines

Avg. U
tilization

H
igh  vs. Low

When (if ever) should you use partitioning (global)?



LITMUSRT: An Overview Real-Time Lunch 2008

Evaluation of Scheduling Algorithms

Hard    vs.    Soft
Deadlines

Avg. U
tilization

H
igh  vs. LowPartitioning

When (if ever) should you use partitioning (global)?



LITMUSRT: An Overview Real-Time Lunch 2008

Evaluation of Scheduling Algorithms

Hard    vs.    Soft
Deadlines

Avg. U
tilization

H
igh  vs. LowPartitioning

Global

When (if ever) should you use partitioning (global)?



LITMUSRT: An Overview Real-Time Lunch 2008

Evaluation of Scheduling Algorithms

Hard    vs.    Soft
Deadlines

Avg. U
tilization

H
igh  vs. LowPartitioning

Global

Result: For each tested scheme, scenarios 
exist in which it is a viable choice.

When (if ever) should you use partitioning (global)?



LITMUSRT: An Overview Real-Time Lunch 2008

Evaluation of Scheduling Algorithms

Hard    vs.    Soft
Deadlines

Avg. U
tilization

H
igh  vs. LowPartitioning

Global

Result: For each tested scheme, scenarios 
exist in which it is a viable choice.

When (if ever) should you use partitioning (global)?

These results call into question the belief 
that global approaches are not practically 
viable!



LITMUSRT: An Overview Real-Time Lunch 2008

Some Results



LITMUSRT: An Overview Real-Time Lunch 2008

Some Results
Slack scheduling can improve the response time of best-effort jobs 
significantly: 
B. Brandenburg and J. Anderson, " Integrating Hard/Soft Real-Time Tasks and Best-Effort Jobs 
on Multiprocessors ", Proc. of the 19th Euromicro Conference on Real-Time Systems, pp. 61-70, 
July 2007. 



LITMUSRT: An Overview Real-Time Lunch 2008

Some Results
Slack scheduling can improve the response time of best-effort jobs 
significantly: 
B. Brandenburg and J. Anderson, " Integrating Hard/Soft Real-Time Tasks and Best-Effort Jobs 
on Multiprocessors ", Proc. of the 19th Euromicro Conference on Real-Time Systems, pp. 61-70, 
July 2007. 

A flexible locking protocol for EDF-scheduled multiprocessors:
A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, " A Flexible Real-Time Locking Protocol for 
Multiprocessors ", Proc. of the 13th IEEE International Conference on Embedded and Real-Time 
Computing Systems and Applications, pp. 47-57, August 2007. 



LITMUSRT: An Overview Real-Time Lunch 2008

Some Results
Slack scheduling can improve the response time of best-effort jobs 
significantly: 
B. Brandenburg and J. Anderson, " Integrating Hard/Soft Real-Time Tasks and Best-Effort Jobs 
on Multiprocessors ", Proc. of the 19th Euromicro Conference on Real-Time Systems, pp. 61-70, 
July 2007. 

A flexible locking protocol for EDF-scheduled multiprocessors:
A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, " A Flexible Real-Time Locking Protocol for 
Multiprocessors ", Proc. of the 13th IEEE International Conference on Embedded and Real-Time 
Computing Systems and Applications, pp. 47-57, August 2007. 

Semaphores considered harmful:
B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson, " Real-Time Synchronization 
on Multiprocessors: To Block or Not to Block, to Suspend or Spin? ", Proc. of the 14th IEEE Real-Time 
and Embedded Technology and Applications Symposium, pp. 342-353, April 2008.



LITMUSRT: An Overview Real-Time Lunch 2008

The Next Steps



LITMUSRT: An Overview Real-Time Lunch 2008

The Next Steps

 Port to Linux 2.6.27.



LITMUSRT: An Overview Real-Time Lunch 2008

The Next Steps

 Port to Linux 2.6.27.

Port to ARM11 MPCore.
 



LITMUSRT: An Overview Real-Time Lunch 2008

The Next Steps

 Port to Linux 2.6.27.

Port to ARM11 MPCore.
 

Polish, fix bugs, improve performance…



UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

LITMUSRT – Features

34

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems



UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

LITMUSRT – Features

34

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

Many real-time plugins 
included.

(validate experiments, test 
userspace schemes, obtain 

overheads for your platform)



UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

LITMUSRT – Features

34

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

Many real-time plugins 
included.

(validate experiments, test 
userspace schemes, obtain 

overheads for your platform)

Real-time policy can be 
switched at run-time.

(don’t reboot during experiments)



UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

LITMUSRT – Features

34

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

Many real-time plugins 
included.

(validate experiments, test 
userspace schemes, obtain 

overheads for your platform)

Real-time policy can be 
switched at run-time.

(don’t reboot during experiments)

Writing plugins is easy.

(get your idea implemented quickly, 
you don’t need to understand the 

whole kernel)



UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

LITMUSRT – Features

34

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

Many real-time plugins 
included.

(validate experiments, test 
userspace schemes, obtain 

overheads for your platform)

Real-time policy can be 
switched at run-time.

(don’t reboot during experiments)

Writing plugins is easy.

(get your idea implemented quickly, 
you don’t need to understand the 

whole kernel)

Runs on x86-32, sparc64.

(x86-64 in the works, there is 
almost no platform dependent 
code, a research in Singapore 

ported it to ARM)



UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

LITMUSRT – Features

34

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

Many real-time plugins 
included.

(validate experiments, test 
userspace schemes, obtain 

overheads for your platform)

Real-time policy can be 
switched at run-time.

(don’t reboot during experiments)

Writing plugins is easy.

(get your idea implemented quickly, 
you don’t need to understand the 

whole kernel)

Runs on x86-32, sparc64.

(x86-64 in the works, there is 
almost no platform dependent 
code, a research in Singapore 

ported it to ARM)

Real-time 
synchronization.

(working code for np-Q-locks, PCP, 
SRP, D-PCP, M-PCP, FMLP)



UNC Chapel Hill

Real-Time on Multicore: An Overview of Real-Time Computing Research at UNC

Real-Time Systems Group

TU Dresden, July 29, 2008

LITMUSRT – Features

34

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

Many real-time plugins 
included.

(validate experiments, test 
userspace schemes, obtain 

overheads for your platform)

Real-time policy can be 
switched at run-time.

(don’t reboot during experiments)

Writing plugins is easy.

(get your idea implemented quickly, 
you don’t need to understand the 

whole kernel)

Runs on x86-32, sparc64.

(x86-64 in the works, there is 
almost no platform dependent 
code, a research in Singapore 

ported it to ARM)

Real-time 
synchronization.

(working code for np-Q-locks, PCP, 
SRP, D-PCP, M-PCP, FMLP)

It’s just Linux.

(all your existing scripts still work, 
your real-time tasks can do 

everything a normal task can do)


