1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
|
/*
* Inter-VM Communication
*
* Copyright (C) 2014-2021, NVIDIA CORPORATION. All rights reserved.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*
*/
#include <linux/tegra-ivc.h>
#include <linux/tegra-ivc-instance.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/err.h>
#include <asm/compiler.h>
#ifdef CONFIG_SMP
static inline void ivc_rmb(void)
{
smp_rmb();
}
static inline void ivc_wmb(void)
{
smp_wmb();
}
static inline void ivc_mb(void)
{
smp_mb();
}
#else
static inline void ivc_rmb(void)
{
rmb();
}
static inline void ivc_wmb(void)
{
wmb();
}
static inline void ivc_mb(void)
{
mb();
}
#endif
/*
* IVC channel reset protocol.
*
* Each end uses its tx_channel.state to indicate its synchronization state.
*/
enum ivc_state {
/*
* This value is zero for backwards compatibility with services that
* assume channels to be initially zeroed. Such channels are in an
* initially valid state, but cannot be asynchronously reset, and must
* maintain a valid state at all times.
*
* The transmitting end can enter the established state from the sync or
* ack state when it observes the receiving endpoint in the ack or
* established state, indicating that has cleared the counters in our
* rx_channel.
*/
ivc_state_established = 0,
/*
* If an endpoint is observed in the sync state, the remote endpoint is
* allowed to clear the counters it owns asynchronously with respect to
* the current endpoint. Therefore, the current endpoint is no longer
* allowed to communicate.
*/
ivc_state_sync,
/*
* When the transmitting end observes the receiving end in the sync
* state, it can clear the w_count and r_count and transition to the ack
* state. If the remote endpoint observes us in the ack state, it can
* return to the established state once it has cleared its counters.
*/
ivc_state_ack
};
/*
* This structure is divided into two-cache aligned parts, the first is only
* written through the tx_channel pointer, while the second is only written
* through the rx_channel pointer. This delineates ownership of the cache lines,
* which is critical to performance and necessary in non-cache coherent
* implementations.
*/
struct ivc_channel_header {
union {
struct {
/* fields owned by the transmitting end */
uint32_t w_count;
uint32_t state;
};
uint8_t w_align[IVC_ALIGN];
};
union {
/* fields owned by the receiving end */
uint32_t r_count;
uint8_t r_align[IVC_ALIGN];
};
};
static inline void ivc_invalidate_counter(struct ivc *ivc,
dma_addr_t handle)
{
if (!ivc->peer_device)
return;
dma_sync_single_for_cpu(ivc->peer_device, handle, IVC_ALIGN,
DMA_FROM_DEVICE);
}
static inline void ivc_flush_counter(struct ivc *ivc, dma_addr_t handle)
{
if (!ivc->peer_device)
return;
dma_sync_single_for_device(ivc->peer_device, handle, IVC_ALIGN,
DMA_TO_DEVICE);
}
static inline int ivc_channel_empty(struct ivc *ivc,
struct ivc_channel_header *ch)
{
/*
* This function performs multiple checks on the same values with
* security implications, so create snapshots with ACCESS_ONCE() to
* ensure that these checks use the same values.
*/
uint32_t w_count = ACCESS_ONCE(ch->w_count);
uint32_t r_count = ACCESS_ONCE(ch->r_count);
/*
* Perform an over-full check to prevent denial of service attacks where
* a server could be easily fooled into believing that there's an
* extremely large number of frames ready, since receivers are not
* expected to check for full or over-full conditions.
*
* Although the channel isn't empty, this is an invalid case caused by
* a potentially malicious peer, so returning empty is safer, because it
* gives the impression that the channel has gone silent.
*/
if (w_count - r_count > ivc->nframes)
return 1;
return w_count == r_count;
}
static inline int ivc_channel_full(struct ivc *ivc,
struct ivc_channel_header *ch)
{
/*
* Invalid cases where the counters indicate that the queue is over
* capacity also appear full.
*/
return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count)
>= ivc->nframes;
}
static inline uint32_t ivc_channel_avail_count(struct ivc *ivc,
struct ivc_channel_header *ch)
{
/*
* This function isn't expected to be used in scenarios where an
* over-full situation can lead to denial of service attacks. See the
* comment in ivc_channel_empty() for an explanation about special
* over-full considerations.
*/
return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count);
}
static inline void ivc_advance_tx(struct ivc *ivc)
{
ACCESS_ONCE(ivc->tx_channel->w_count) =
ACCESS_ONCE(ivc->tx_channel->w_count) + 1;
if (ivc->w_pos == ivc->nframes - 1)
ivc->w_pos = 0;
else
ivc->w_pos++;
}
static inline void ivc_advance_rx(struct ivc *ivc)
{
ACCESS_ONCE(ivc->rx_channel->r_count) =
ACCESS_ONCE(ivc->rx_channel->r_count) + 1;
if (ivc->r_pos == ivc->nframes - 1)
ivc->r_pos = 0;
else
ivc->r_pos++;
}
static inline int ivc_check_read(struct ivc *ivc)
{
/*
* tx_channel->state is set locally, so it is not synchronized with
* state from the remote peer. The remote peer cannot reset its
* transmit counters until we've acknowledged its synchronization
* request, so no additional synchronization is required because an
* asynchronous transition of rx_channel->state to ivc_state_ack is not
* allowed.
*/
if (ivc->tx_channel->state != ivc_state_established)
return -ECONNRESET;
/*
* Avoid unnecessary invalidations when performing repeated accesses to
* an IVC channel by checking the old queue pointers first.
* Synchronization is only necessary when these pointers indicate empty
* or full.
*/
if (!ivc_channel_empty(ivc, ivc->rx_channel))
return 0;
ivc_invalidate_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, w_count));
return ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
}
static inline int ivc_check_write(struct ivc *ivc)
{
if (ivc->tx_channel->state != ivc_state_established)
return -ECONNRESET;
if (!ivc_channel_full(ivc, ivc->tx_channel))
return 0;
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
return ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
}
int tegra_ivc_can_read(struct ivc *ivc)
{
return ivc_check_read(ivc) == 0;
}
EXPORT_SYMBOL(tegra_ivc_can_read);
int tegra_ivc_can_write(struct ivc *ivc)
{
return ivc_check_write(ivc) == 0;
}
EXPORT_SYMBOL(tegra_ivc_can_write);
int tegra_ivc_tx_empty(struct ivc *ivc)
{
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
return ivc_channel_empty(ivc, ivc->tx_channel);
}
EXPORT_SYMBOL(tegra_ivc_tx_empty);
uint32_t tegra_ivc_tx_frames_available(struct ivc *ivc)
{
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
return ivc->nframes - (ACCESS_ONCE(ivc->tx_channel->w_count) -
ACCESS_ONCE(ivc->tx_channel->r_count));
}
EXPORT_SYMBOL(tegra_ivc_tx_frames_available);
static void *ivc_frame_pointer(struct ivc *ivc, struct ivc_channel_header *ch,
uint32_t frame)
{
BUG_ON(frame >= ivc->nframes);
return (void *)((uintptr_t)(ch + 1) + ivc->frame_size * frame);
}
static inline dma_addr_t ivc_frame_handle(struct ivc *ivc,
dma_addr_t channel_handle, uint32_t frame)
{
BUG_ON(!ivc->peer_device);
BUG_ON(frame >= ivc->nframes);
return channel_handle + sizeof(struct ivc_channel_header) +
ivc->frame_size * frame;
}
static inline void ivc_invalidate_frame(struct ivc *ivc,
dma_addr_t channel_handle, unsigned frame, int offset, int len)
{
if (!ivc->peer_device)
return;
dma_sync_single_for_cpu(ivc->peer_device,
ivc_frame_handle(ivc, channel_handle, frame) + offset,
len, DMA_FROM_DEVICE);
}
static inline void ivc_flush_frame(struct ivc *ivc, dma_addr_t channel_handle,
unsigned frame, int offset, int len)
{
if (!ivc->peer_device)
return;
dma_sync_single_for_device(ivc->peer_device,
ivc_frame_handle(ivc, channel_handle, frame) + offset,
len, DMA_TO_DEVICE);
}
static int ivc_read_frame(struct ivc *ivc, void *buf, void __user *user_buf,
size_t max_read)
{
const void *src;
int result;
BUG_ON(buf && user_buf);
if (max_read > ivc->frame_size)
return -E2BIG;
result = ivc_check_read(ivc);
if (result)
return result;
/*
* Order observation of w_pos potentially indicating new data before
* data read.
*/
ivc_rmb();
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0, max_read);
src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
/*
* When compiled with optimizations, different versions of this
* function should be inlined into tegra_ivc_read_frame() or
* tegra_ivc_read_frame_user(). This should ensure that the user
* version does not add overhead to the kernel version.
*/
if (buf) {
memcpy(buf, src, max_read);
} else if (user_buf) {
if (copy_to_user(user_buf, src, max_read))
return -EFAULT;
} else
BUG();
ivc_advance_rx(ivc);
ivc_flush_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, r_count));
/*
* Ensure our write to r_pos occurs before our read from w_pos.
*/
ivc_mb();
/*
* Notify only upon transition from full to non-full.
* The available count can only asynchronously increase, so the
* worst possible side-effect will be a spurious notification.
*/
ivc_invalidate_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, w_count));
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1)
ivc->notify(ivc);
return (int)max_read;
}
int tegra_ivc_read(struct ivc *ivc, void *buf, size_t max_read)
{
return ivc_read_frame(ivc, buf, NULL, max_read);
}
EXPORT_SYMBOL(tegra_ivc_read);
int tegra_ivc_read_user(struct ivc *ivc, void __user *buf, size_t max_read)
{
return ivc_read_frame(ivc, NULL, buf, max_read);
}
EXPORT_SYMBOL(tegra_ivc_read_user);
/* peek in the next rx buffer at offset off, the count bytes */
int tegra_ivc_read_peek(struct ivc *ivc, void *buf, size_t off, size_t count)
{
const void *src;
int result;
if (off > ivc->frame_size || off + count > ivc->frame_size)
return -E2BIG;
result = ivc_check_read(ivc);
if (result)
return result;
/*
* Order observation of w_pos potentially indicating new data before
* data read.
*/
ivc_rmb();
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, off, count);
src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
memcpy(buf, (void *)((uintptr_t)src + off), count);
/* note, no interrupt is generated */
return (int)count;
}
EXPORT_SYMBOL(tegra_ivc_read_peek);
/* directly peek at the next frame rx'ed */
void *tegra_ivc_read_get_next_frame(struct ivc *ivc)
{
int result = ivc_check_read(ivc);
if (result)
return ERR_PTR(result);
/*
* Order observation of w_pos potentially indicating new data before
* data read.
*/
ivc_rmb();
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0,
ivc->frame_size);
return ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
}
EXPORT_SYMBOL(tegra_ivc_read_get_next_frame);
int tegra_ivc_read_advance(struct ivc *ivc)
{
/*
* No read barriers or synchronization here: the caller is expected to
* have already observed the channel non-empty. This check is just to
* catch programming errors.
*/
int result = ivc_check_read(ivc);
if (result)
return result;
ivc_advance_rx(ivc);
ivc_flush_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, r_count));
/*
* Ensure our write to r_pos occurs before our read from w_pos.
*/
ivc_mb();
/*
* Notify only upon transition from full to non-full.
* The available count can only asynchronously increase, so the
* worst possible side-effect will be a spurious notification.
*/
ivc_invalidate_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, w_count));
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1)
ivc->notify(ivc);
return 0;
}
EXPORT_SYMBOL(tegra_ivc_read_advance);
static int ivc_write_frame(struct ivc *ivc, const void *buf,
const void __user *user_buf, size_t size)
{
void *p;
int result;
BUG_ON(buf && user_buf);
if (size > ivc->frame_size)
return -E2BIG;
result = ivc_check_write(ivc);
if (result)
return result;
p = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
/*
* When compiled with optimizations, different versions of this
* function should be inlined into tegra_ivc_write_frame() or
* tegra_ivc_write_frame_user(). This should ensure that the user
* version does not add overhead to the kernel version.
*/
if (buf) {
memcpy(p, buf, size);
} else if (user_buf) {
if (copy_from_user(p, user_buf, size))
return -EFAULT;
} else
BUG();
memset(p + size, 0, ivc->frame_size - size);
ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, size);
/*
* Ensure that updated data is visible before the w_pos counter
* indicates that it is ready.
*/
ivc_wmb();
ivc_advance_tx(ivc);
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Ensure our write to w_pos occurs before our read from r_pos.
*/
ivc_mb();
/*
* Notify only upon transition from empty to non-empty.
* The available count can only asynchronously decrease, so the
* worst possible side-effect will be a spurious notification.
*/
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
ivc->notify(ivc);
return (int)size;
}
int tegra_ivc_write(struct ivc *ivc, const void *buf, size_t size)
{
return ivc_write_frame(ivc, buf, NULL, size);
}
EXPORT_SYMBOL(tegra_ivc_write);
int tegra_ivc_write_user(struct ivc *ivc, const void __user *user_buf,
size_t size)
{
return ivc_write_frame(ivc, NULL, user_buf, size);
}
EXPORT_SYMBOL(tegra_ivc_write_user);
/* poke in the next tx buffer at offset off, the count bytes */
int tegra_ivc_write_poke(struct ivc *ivc, const void *buf, size_t off,
size_t count)
{
void *dest;
int result;
if (off > ivc->frame_size || off + count > ivc->frame_size)
return -E2BIG;
result = ivc_check_write(ivc);
if (result)
return result;
dest = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
memcpy(dest + off, buf, count);
return (int)count;
}
EXPORT_SYMBOL(tegra_ivc_write_poke);
/* directly poke at the next frame to be tx'ed */
void *tegra_ivc_write_get_next_frame(struct ivc *ivc)
{
int result = ivc_check_write(ivc);
if (result) {
printk_ratelimited("%s :ivc_check_write failed, error %d\n",
__func__, result);
return ERR_PTR(result);
}
return ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
}
EXPORT_SYMBOL(tegra_ivc_write_get_next_frame);
/* advance the tx buffer */
int tegra_ivc_write_advance(struct ivc *ivc)
{
int result = ivc_check_write(ivc);
if (result) {
printk_ratelimited("%s: ivc_check_write failed , error %d\n",
__func__, result);
return result;
}
ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, ivc->frame_size);
/*
* Order any possible stores to the frame before update of w_pos.
*/
ivc_wmb();
ivc_advance_tx(ivc);
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Ensure our write to w_pos occurs before our read from r_pos.
*/
ivc_mb();
/*
* Notify only upon transition from empty to non-empty.
* The available count can only asynchronously decrease, so the
* worst possible side-effect will be a spurious notification.
*/
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
ivc->notify(ivc);
return 0;
}
EXPORT_SYMBOL(tegra_ivc_write_advance);
void tegra_ivc_channel_reset(struct ivc *ivc)
{
ivc->tx_channel->state = ivc_state_sync;
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
ivc->notify(ivc);
}
EXPORT_SYMBOL(tegra_ivc_channel_reset);
/*
* ===============================================================
* IVC State Transition Table - see tegra_ivc_channel_notified()
* ===============================================================
*
* local remote action
* ----- ------ -----------------------------------
* SYNC EST <none>
* SYNC ACK reset counters; move to EST; notify
* SYNC SYNC reset counters; move to ACK; notify
* ACK EST move to EST; notify
* ACK ACK move to EST; notify
* ACK SYNC reset counters; move to ACK; notify
* EST EST <none>
* EST ACK <none>
* EST SYNC reset counters; move to ACK; notify
*
* ===============================================================
*/
int tegra_ivc_channel_notified(struct ivc *ivc)
{
enum ivc_state peer_state;
/* Copy the receiver's state out of shared memory. */
ivc_invalidate_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, w_count));
peer_state = ACCESS_ONCE(ivc->rx_channel->state);
if (peer_state == ivc_state_sync) {
/*
* Order observation of ivc_state_sync before stores clearing
* tx_channel.
*/
ivc_rmb();
/*
* Reset tx_channel counters. The remote end is in the SYNC
* state and won't make progress until we change our state,
* so the counters are not in use at this time.
*/
ivc->tx_channel->w_count = 0;
ivc->rx_channel->r_count = 0;
ivc->w_pos = 0;
ivc->r_pos = 0;
/*
* Ensure that counters appear cleared before new state can be
* observed.
*/
ivc_wmb();
/*
* Move to ACK state. We have just cleared our counters, so it
* is now safe for the remote end to start using these values.
*/
ivc->tx_channel->state = ivc_state_ack;
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else if (ivc->tx_channel->state == ivc_state_sync &&
peer_state == ivc_state_ack) {
/*
* Order observation of ivc_state_sync before stores clearing
* tx_channel.
*/
ivc_rmb();
/*
* Reset tx_channel counters. The remote end is in the ACK
* state and won't make progress until we change our state,
* so the counters are not in use at this time.
*/
ivc->tx_channel->w_count = 0;
ivc->rx_channel->r_count = 0;
ivc->w_pos = 0;
ivc->r_pos = 0;
/*
* Ensure that counters appear cleared before new state can be
* observed.
*/
ivc_wmb();
/*
* Move to ESTABLISHED state. We know that the remote end has
* already cleared its counters, so it is safe to start
* writing/reading on this channel.
*/
ivc->tx_channel->state = ivc_state_established;
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else if (ivc->tx_channel->state == ivc_state_ack) {
/*
* At this point, we have observed the peer to be in either
* the ACK or ESTABLISHED state. Next, order observation of
* peer state before storing to tx_channel.
*/
ivc_rmb();
/*
* Move to ESTABLISHED state. We know that we have previously
* cleared our counters, and we know that the remote end has
* cleared its counters, so it is safe to start writing/reading
* on this channel.
*/
ivc->tx_channel->state = ivc_state_established;
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else {
/*
* There is no need to handle any further action. Either the
* channel is already fully established, or we are waiting for
* the remote end to catch up with our current state. Refer
* to the diagram in "IVC State Transition Table" above.
*/
}
return ivc->tx_channel->state == ivc_state_established ? 0 : -EAGAIN;
}
EXPORT_SYMBOL(tegra_ivc_channel_notified);
/*
* Temporary routine for re-synchronizing the channel across a reboot.
*/
int tegra_ivc_channel_sync(struct ivc *ivc)
{
if ((ivc == NULL) || (ivc->nframes == 0)) {
return -EINVAL;
} else {
ivc->w_pos = ivc->tx_channel->w_count % ivc->nframes;
ivc->r_pos = ivc->rx_channel->r_count % ivc->nframes;
}
return 0;
}
EXPORT_SYMBOL(tegra_ivc_channel_sync);
size_t tegra_ivc_align(size_t size)
{
return (size + (IVC_ALIGN - 1)) & ~(IVC_ALIGN - 1);
}
EXPORT_SYMBOL(tegra_ivc_align);
unsigned tegra_ivc_total_queue_size(unsigned queue_size)
{
if (queue_size & (IVC_ALIGN - 1)) {
pr_err("%s: queue_size (%u) must be %u-byte aligned\n",
__func__, queue_size, IVC_ALIGN);
return 0;
}
return queue_size + sizeof(struct ivc_channel_header);
}
EXPORT_SYMBOL(tegra_ivc_total_queue_size);
static int check_ivc_params(uintptr_t queue_base1, uintptr_t queue_base2,
unsigned nframes, unsigned frame_size)
{
BUG_ON(offsetof(struct ivc_channel_header, w_count) & (IVC_ALIGN - 1));
BUG_ON(offsetof(struct ivc_channel_header, r_count) & (IVC_ALIGN - 1));
BUG_ON(sizeof(struct ivc_channel_header) & (IVC_ALIGN - 1));
if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) {
pr_err("nframes * frame_size overflows\n");
return -EINVAL;
}
/*
* The headers must at least be aligned enough for counters
* to be accessed atomically.
*/
if (queue_base1 & (IVC_ALIGN - 1)) {
pr_err("ivc channel start not aligned: %lx\n", queue_base1);
return -EINVAL;
}
if (queue_base2 & (IVC_ALIGN - 1)) {
pr_err("ivc channel start not aligned: %lx\n", queue_base2);
return -EINVAL;
}
if (frame_size & (IVC_ALIGN - 1)) {
pr_err("frame size not adequately aligned: %u\n", frame_size);
return -EINVAL;
}
if (queue_base1 < queue_base2) {
if (queue_base1 + frame_size * nframes > queue_base2) {
pr_err("queue regions overlap: %lx + %x, %x\n",
queue_base1, frame_size,
frame_size * nframes);
return -EINVAL;
}
} else {
if (queue_base2 + frame_size * nframes > queue_base1) {
pr_err("queue regions overlap: %lx + %x, %x\n",
queue_base2, frame_size,
frame_size * nframes);
return -EINVAL;
}
}
return 0;
}
static int tegra_ivc_init_body(struct ivc *ivc, uintptr_t rx_base,
dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle,
unsigned nframes, unsigned frame_size,
struct device *peer_device, void (*notify)(struct ivc *))
{
size_t queue_size;
int result = check_ivc_params(rx_base, tx_base, nframes, frame_size);
if (result)
return result;
BUG_ON(!ivc);
BUG_ON(!notify);
queue_size = tegra_ivc_total_queue_size(nframes * frame_size);
/*
* All sizes that can be returned by communication functions should
* fit in an int.
*/
if (frame_size > INT_MAX)
return -E2BIG;
ivc->rx_channel = (struct ivc_channel_header *)rx_base;
ivc->tx_channel = (struct ivc_channel_header *)tx_base;
if (peer_device) {
if (rx_handle != DMA_ERROR_CODE) {
ivc->rx_handle = rx_handle;
ivc->tx_handle = tx_handle;
} else {
ivc->rx_handle = dma_map_single(peer_device,
ivc->rx_channel, queue_size, DMA_BIDIRECTIONAL);
if (ivc->rx_handle == DMA_ERROR_CODE)
return -ENOMEM;
ivc->tx_handle = dma_map_single(peer_device,
ivc->tx_channel, queue_size, DMA_BIDIRECTIONAL);
if (ivc->tx_handle == DMA_ERROR_CODE) {
dma_unmap_single(peer_device, ivc->rx_handle,
queue_size, DMA_BIDIRECTIONAL);
return -ENOMEM;
}
}
}
ivc->notify = notify;
ivc->frame_size = frame_size;
ivc->nframes = nframes;
ivc->peer_device = peer_device;
/*
* These values aren't necessarily correct until the channel has been
* reset.
*/
ivc->w_pos = 0;
ivc->r_pos = 0;
return 0;
}
int tegra_ivc_init(struct ivc *ivc, uintptr_t rx_base, uintptr_t tx_base,
unsigned nframes, unsigned frame_size,
struct device *peer_device, void (*notify)(struct ivc *))
{
return tegra_ivc_init_body(ivc, rx_base, DMA_ERROR_CODE, tx_base,
DMA_ERROR_CODE, nframes, frame_size, peer_device, notify);
}
EXPORT_SYMBOL(tegra_ivc_init);
int tegra_ivc_init_with_dma_handle(struct ivc *ivc, uintptr_t rx_base,
dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle,
unsigned nframes, unsigned frame_size,
struct device *peer_device, void (*notify)(struct ivc *))
{
return tegra_ivc_init_body(ivc, rx_base, rx_handle, tx_base,
tx_handle, nframes, frame_size, peer_device, notify);
}
EXPORT_SYMBOL(tegra_ivc_init_with_dma_handle);
|