summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/nvgpu/os/linux/debug_kmem.c
blob: a0c7d47d06da7491ab38879347de8afbd7a9f79f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*
 * Copyright (C) 2017 NVIDIA Corporation.  All rights reserved.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/debugfs.h>
#include <linux/seq_file.h>

#include "os_linux.h"
#include "debug_kmem.h"
#include "kmem_priv.h"

/**
 * to_human_readable_bytes - Determine  suffix for passed size.
 *
 * @bytes - Number of bytes to generate a suffix for.
 * @hr_bytes [out] - The human readable number of bytes.
 * @hr_suffix [out] - The suffix for the HR number of bytes.
 *
 * Computes a human readable decomposition of the passed number of bytes. The
 * suffix for the bytes is passed back through the @hr_suffix pointer. The right
 * number of bytes is then passed back in @hr_bytes. This returns the following
 * ranges:
 *
 *   0 - 1023 B
 *   1 - 1023 KB
 *   1 - 1023 MB
 *   1 - 1023 GB
 *   1 - 1023 TB
 *   1 - ...  PB
 */
static void __to_human_readable_bytes(u64 bytes, u64 *hr_bytes,
				      const char **hr_suffix)
{
	static const char *suffixes[] =
		{ "B", "KB", "MB", "GB", "TB", "PB" };

	u64 suffix_ind = 0;

	while (suffix_ind < ARRAY_SIZE(suffixes) && bytes >= 1024) {
		bytes >>= 10;
		suffix_ind++;
	}

	/*
	 * Handle case where bytes > 1023PB.
	 */
	suffix_ind = suffix_ind < ARRAY_SIZE(suffixes) ?
		suffix_ind : ARRAY_SIZE(suffixes) - 1;

	*hr_bytes = bytes;
	*hr_suffix = suffixes[suffix_ind];
}

/**
 * print_hr_bytes - Print human readable bytes
 *
 * @s - A seq_file to print to. May be NULL.
 * @msg - A message to print before the bytes.
 * @bytes - Number of bytes.
 *
 * Print @msg followed by the human readable decomposition of the passed number
 * of bytes.
 *
 * If @s is NULL then this prints will be made to the kernel log.
 */
static void print_hr_bytes(struct seq_file *s, const char *msg, u64 bytes)
{
	u64 hr_bytes;
	const char *hr_suffix;

	__to_human_readable_bytes(bytes, &hr_bytes, &hr_suffix);
	__pstat(s, "%s%lld %s\n", msg, hr_bytes, hr_suffix);
}

/**
 * print_histogram - Build a histogram of the memory usage.
 *
 * @tracker The tracking to pull data from.
 * @s       A seq_file to dump info into.
 */
static void print_histogram(struct nvgpu_mem_alloc_tracker *tracker,
			    struct seq_file *s)
{
	int i;
	u64 pot_min, pot_max;
	u64 nr_buckets;
	unsigned int *buckets;
	unsigned int total_allocs;
	struct nvgpu_rbtree_node *node;
	static const char histogram_line[] =
		"++++++++++++++++++++++++++++++++++++++++";

	/*
	 * pot_min is essentially a round down to the nearest power of 2. This
	 * is the start of the histogram. pot_max is just a round up to the
	 * nearest power of two. Each histogram bucket is one power of two so
	 * the histogram buckets are exponential.
	 */
	pot_min = (u64)rounddown_pow_of_two(tracker->min_alloc);
	pot_max = (u64)roundup_pow_of_two(tracker->max_alloc);

	nr_buckets = __ffs(pot_max) - __ffs(pot_min);

	buckets = kzalloc(sizeof(*buckets) * nr_buckets, GFP_KERNEL);
	if (!buckets) {
		__pstat(s, "OOM: could not allocate bucket storage!?\n");
		return;
	}

	/*
	 * Iterate across all of the allocs and determine what bucket they
	 * should go in. Round the size down to the nearest power of two to
	 * find the right bucket.
	 */
	nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
	while (node) {
		int b;
		u64 bucket_min;
		struct nvgpu_mem_alloc *alloc =
			nvgpu_mem_alloc_from_rbtree_node(node);

		bucket_min = (u64)rounddown_pow_of_two(alloc->size);
		if (bucket_min < tracker->min_alloc)
			bucket_min = tracker->min_alloc;

		b = __ffs(bucket_min) - __ffs(pot_min);

		/*
		 * Handle the one case were there's an alloc exactly as big as
		 * the maximum bucket size of the largest bucket. Most of the
		 * buckets have an inclusive minimum and exclusive maximum. But
		 * the largest bucket needs to have an _inclusive_ maximum as
		 * well.
		 */
		if (b == (int)nr_buckets)
			b--;

		buckets[b]++;

		nvgpu_rbtree_enum_next(&node, node);
	}

	total_allocs = 0;
	for (i = 0; i < (int)nr_buckets; i++)
		total_allocs += buckets[i];

	__pstat(s, "Alloc histogram:\n");

	/*
	 * Actually compute the histogram lines.
	 */
	for (i = 0; i < (int)nr_buckets; i++) {
		char this_line[sizeof(histogram_line) + 1];
		u64 line_length;
		u64 hr_bytes;
		const char *hr_suffix;

		memset(this_line, 0, sizeof(this_line));

		/*
		 * Compute the normalized line length. Cant use floating point
		 * so we will just multiply everything by 1000 and use fixed
		 * point.
		 */
		line_length = (1000 * buckets[i]) / total_allocs;
		line_length *= sizeof(histogram_line);
		line_length /= 1000;

		memset(this_line, '+', line_length);

		__to_human_readable_bytes(1 << (__ffs(pot_min) + i),
					  &hr_bytes, &hr_suffix);
		__pstat(s, "  [%-4lld %-4lld] %-2s %5u | %s\n",
			hr_bytes, hr_bytes << 1,
			hr_suffix, buckets[i], this_line);
	}
}

/**
 * nvgpu_kmem_print_stats - Print kmem tracking stats.
 *
 * @tracker The tracking to pull data from.
 * @s       A seq_file to dump info into.
 *
 * Print stats from a tracker. If @s is non-null then seq_printf() will be
 * used with @s. Otherwise the stats are pr_info()ed.
 */
void nvgpu_kmem_print_stats(struct nvgpu_mem_alloc_tracker *tracker,
			    struct seq_file *s)
{
	nvgpu_lock_tracker(tracker);

	__pstat(s, "Mem tracker: %s\n\n", tracker->name);

	__pstat(s, "Basic Stats:\n");
	__pstat(s,        "  Number of allocs        %lld\n",
		tracker->nr_allocs);
	__pstat(s,        "  Number of frees         %lld\n",
		tracker->nr_frees);
	print_hr_bytes(s, "  Smallest alloc          ", tracker->min_alloc);
	print_hr_bytes(s, "  Largest alloc           ", tracker->max_alloc);
	print_hr_bytes(s, "  Bytes allocated         ", tracker->bytes_alloced);
	print_hr_bytes(s, "  Bytes freed             ", tracker->bytes_freed);
	print_hr_bytes(s, "  Bytes allocated (real)  ",
		       tracker->bytes_alloced_real);
	print_hr_bytes(s, "  Bytes freed (real)      ",
		       tracker->bytes_freed_real);
	__pstat(s, "\n");

	print_histogram(tracker, s);

	nvgpu_unlock_tracker(tracker);
}

static int __kmem_tracking_show(struct seq_file *s, void *unused)
{
	struct nvgpu_mem_alloc_tracker *tracker = s->private;

	nvgpu_kmem_print_stats(tracker, s);

	return 0;
}

static int __kmem_tracking_open(struct inode *inode, struct file *file)
{
	return single_open(file, __kmem_tracking_show, inode->i_private);
}

static const struct file_operations __kmem_tracking_fops = {
	.open = __kmem_tracking_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int __kmem_traces_dump_tracker(struct gk20a *g,
				      struct nvgpu_mem_alloc_tracker *tracker,
				      struct seq_file *s)
{
	struct nvgpu_rbtree_node *node;

	nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
	while (node) {
		struct nvgpu_mem_alloc *alloc =
			nvgpu_mem_alloc_from_rbtree_node(node);

		kmem_print_mem_alloc(g, alloc, s);

		nvgpu_rbtree_enum_next(&node, node);
	}

	return 0;
}

static int __kmem_traces_show(struct seq_file *s, void *unused)
{
	struct gk20a *g = s->private;

	nvgpu_lock_tracker(g->vmallocs);
	seq_puts(s, "Oustanding vmallocs:\n");
	__kmem_traces_dump_tracker(g, g->vmallocs, s);
	seq_puts(s, "\n");
	nvgpu_unlock_tracker(g->vmallocs);

	nvgpu_lock_tracker(g->kmallocs);
	seq_puts(s, "Oustanding kmallocs:\n");
	__kmem_traces_dump_tracker(g, g->kmallocs, s);
	nvgpu_unlock_tracker(g->kmallocs);

	return 0;
}

static int __kmem_traces_open(struct inode *inode, struct file *file)
{
	return single_open(file, __kmem_traces_show, inode->i_private);
}

static const struct file_operations __kmem_traces_fops = {
	.open = __kmem_traces_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

void nvgpu_kmem_debugfs_init(struct gk20a *g)
{
	struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
	struct dentry *node;

	l->debugfs_kmem = debugfs_create_dir("kmem_tracking", l->debugfs);
	if (IS_ERR_OR_NULL(l->debugfs_kmem))
		return;

	node = debugfs_create_file(g->vmallocs->name, S_IRUGO,
				   l->debugfs_kmem,
				   g->vmallocs, &__kmem_tracking_fops);
	node = debugfs_create_file(g->kmallocs->name, S_IRUGO,
				   l->debugfs_kmem,
				   g->kmallocs, &__kmem_tracking_fops);
	node = debugfs_create_file("traces", S_IRUGO,
				   l->debugfs_kmem,
				   g, &__kmem_traces_fops);
}