summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/nvgpu/gm20b/clk_gm20b.c
blob: 6f7d04dd9cadae4b2a17f266bf9f9af7b2f7c2a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
/*
 * GM20B Clocks
 *
 * Copyright (c) 2014, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/clk.h>
#include <linux/delay.h>	/* for mdelay */
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/clk/tegra.h>
#include <linux/tegra-fuse.h>

#include "gk20a/gk20a.h"
#include "hw_trim_gm20b.h"
#include "hw_timer_gm20b.h"
#include "hw_therm_gm20b.h"
#include "clk_gm20b.h"

#define ALLOW_NON_CALIBRATED_NA_MODE	1

#define gk20a_dbg_clk(fmt, arg...) \
	gk20a_dbg(gpu_dbg_clk, fmt, ##arg)

#define DFS_DET_RANGE	6	/* -2^6 ... 2^6-1 */
#define SDM_DIN_RANGE	12	/* -2^12 ... 2^12-1 */
#define DFS_EXT_CAL_EN	BIT(9)
#define DFS_EXT_STROBE	BIT(16)

#define BOOT_GPU_UV	1000000	/* gpu rail boot voltage 1.0V */
#define ADC_SLOPE_UV	10000	/* default ADC detection slope 10mV */

static struct pll_parms gpc_pll_params = {
	128000,  2600000,	/* freq */
	1300000, 2600000,	/* vco */
	12000,   38400,		/* u */
	1, 255,			/* M */
	8, 255,			/* N */
	1, 31,			/* PL */
	-58700, 86789,		/* DFS_COEFF */
};

#ifdef CONFIG_DEBUG_FS
static int clk_gm20b_debugfs_init(struct gk20a *g);
#endif

#define DUMP_REG(addr_func) \
do {									\
	addr = trim_sys_##addr_func##_r();				\
	data = gk20a_readl(g, addr);					\
	pr_info(#addr_func "[0x%x] = 0x%x\n", addr, data);		\
} while (0)

static void dump_gpc_pll(struct gk20a *g, struct pll *gpll, u32 last_cfg)
{
	u32 addr, data;

	pr_info("**** GPCPLL DUMP ****");
	pr_info("gpcpll s/w M=%u N=%u P=%u\n", gpll->M, gpll->N, gpll->PL);
	pr_info("gpcpll_cfg_last = 0x%x\n", last_cfg);
	DUMP_REG(gpcpll_cfg);
	DUMP_REG(gpcpll_coeff);
	DUMP_REG(sel_vco);
	pr_info("\n");
}

/* 1:1 match between post divider settings and divisor value */
static inline u32 pl_to_div(u32 pl)
{
	return pl;
}

static inline u32 div_to_pl(u32 div)
{
	return div;
}

#define PLDIV_GLITCHLESS 1

#if PLDIV_GLITCHLESS
/*
 * Post divider tarnsition is glitchless only if there is common "1" in binary
 * representation of old and new settings.
 */
static u32 get_interim_pldiv(u32 old_pl, u32 new_pl)
{
	u32 pl;

	if (old_pl & new_pl)
		return 0;

	pl = old_pl | BIT(ffs(new_pl) - 1);	/* pl never 0 */
	new_pl |= BIT(ffs(old_pl) - 1);

	return min(pl, new_pl);
}
#endif

/* Calculate and update M/N/PL as well as pll->freq
    ref_clk_f = clk_in_f;
    u_f = ref_clk_f / M;
    vco_f = u_f * N = ref_clk_f * N / M;
    PLL output = gpc2clk = target clock frequency = vco_f / pl_to_pdiv(PL);
    gpcclk = gpc2clk / 2; */
static int clk_config_pll(struct clk_gk20a *clk, struct pll *pll,
	struct pll_parms *pll_params, u32 *target_freq, bool best_fit)
{
	u32 min_vco_f, max_vco_f;
	u32 best_M, best_N;
	u32 low_PL, high_PL, best_PL;
	u32 m, n, n2;
	u32 target_vco_f, vco_f;
	u32 ref_clk_f, target_clk_f, u_f;
	u32 delta, lwv, best_delta = ~0;
	u32 pl;

	BUG_ON(target_freq == NULL);

	gk20a_dbg_fn("request target freq %d MHz", *target_freq);

	ref_clk_f = pll->clk_in;
	target_clk_f = *target_freq;
	max_vco_f = pll_params->max_vco;
	min_vco_f = pll_params->min_vco;
	best_M = pll_params->max_M;
	best_N = pll_params->min_N;
	best_PL = pll_params->min_PL;

	target_vco_f = target_clk_f + target_clk_f / 50;
	if (max_vco_f < target_vco_f)
		max_vco_f = target_vco_f;

	/* Set PL search boundaries. */
	high_PL = div_to_pl((max_vco_f + target_vco_f - 1) / target_vco_f);
	high_PL = min(high_PL, pll_params->max_PL);
	high_PL = max(high_PL, pll_params->min_PL);

	low_PL = div_to_pl(min_vco_f / target_vco_f);
	low_PL = min(low_PL, pll_params->max_PL);
	low_PL = max(low_PL, pll_params->min_PL);

	gk20a_dbg_info("low_PL %d(div%d), high_PL %d(div%d)",
			low_PL, pl_to_div(low_PL), high_PL, pl_to_div(high_PL));

	for (pl = low_PL; pl <= high_PL; pl++) {
		target_vco_f = target_clk_f * pl_to_div(pl);

		for (m = pll_params->min_M; m <= pll_params->max_M; m++) {
			u_f = ref_clk_f / m;

			if (u_f < pll_params->min_u)
				break;
			if (u_f > pll_params->max_u)
				continue;

			n = (target_vco_f * m) / ref_clk_f;
			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;

			if (n > pll_params->max_N)
				break;

			for (; n <= n2; n++) {
				if (n < pll_params->min_N)
					continue;
				if (n > pll_params->max_N)
					break;

				vco_f = ref_clk_f * n / m;

				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
					lwv = (vco_f + (pl_to_div(pl) / 2))
						/ pl_to_div(pl);
					delta = abs(lwv - target_clk_f);

					if (delta < best_delta) {
						best_delta = delta;
						best_M = m;
						best_N = n;
						best_PL = pl;

						if (best_delta == 0 ||
						    /* 0.45% for non best fit */
						    (!best_fit && (vco_f / best_delta > 218))) {
							goto found_match;
						}

						gk20a_dbg_info("delta %d @ M %d, N %d, PL %d",
							delta, m, n, pl);
					}
				}
			}
		}
	}

found_match:
	BUG_ON(best_delta == ~0);

	if (best_fit && best_delta != 0)
		gk20a_dbg_clk("no best match for target @ %dMHz on gpc_pll",
			target_clk_f);

	pll->M = best_M;
	pll->N = best_N;
	pll->PL = best_PL;

	/* save current frequency */
	pll->freq = ref_clk_f * pll->N / (pll->M * pl_to_div(pll->PL));

	*target_freq = pll->freq;

	gk20a_dbg_clk("actual target freq %d MHz, M %d, N %d, PL %d(div%d)",
		*target_freq, pll->M, pll->N, pll->PL, pl_to_div(pll->PL));

	gk20a_dbg_fn("done");

	return 0;
}

/* GPCPLL NA/DVFS mode methods */

/*
 * Read ADC characteristic parmeters from fuses.
 * Determine clibration settings.
 */
static int clk_config_calibration_params(struct gk20a *g)
{
	int slope, offs;
	struct pll_parms *p = &gpc_pll_params;

	if (!tegra_fuse_calib_gpcpll_get_adc(&slope, &offs)) {
		p->uvdet_slope = slope;
		p->uvdet_offs = offs;
	}

	if (!p->uvdet_slope || !p->uvdet_offs) {
		/*
		 * If ADC conversion slope/offset parameters are not fused
		 * (non-production config), report error, but allow to use
		 * boot internal calibration with default slope.
		 */
		gk20a_err(dev_from_gk20a(g), "ADC coeff are not fused\n");
		return -EINVAL;
	}
	return 0;
}

/*
 * Determine DFS_COEFF for the requested voltage. Always select external
 * calibration override equal to the voltage, and set maximum detection
 * limit "0" (to make sure that PLL output remains under F/V curve when
 * voltage increases).
 */
static void clk_config_dvfs_detection(int mv, struct na_dvfs *d)
{
	u32 coeff, coeff_max;
	struct pll_parms *p = &gpc_pll_params;

	coeff_max = trim_sys_gpcpll_dvfs0_dfs_coeff_v(
		trim_sys_gpcpll_dvfs0_dfs_coeff_m());
	coeff = DIV_ROUND_CLOSEST(mv * p->coeff_slope, 1000) + p->coeff_offs;
	coeff = DIV_ROUND_CLOSEST(coeff, 1000);
	coeff = min(coeff, coeff_max);
	d->dfs_coeff = coeff;

	d->dfs_ext_cal = DIV_ROUND_CLOSEST(mv * 1000 - p->uvdet_offs,
					   p->uvdet_slope);
	BUG_ON(abs(d->dfs_ext_cal) >= (1 << DFS_DET_RANGE));
	d->uv_cal = p->uvdet_offs + d->dfs_ext_cal * p->uvdet_slope;
	d->dfs_det_max = 0;
}

/*
 * Solve equation for integer and fractional part of the effective NDIV:
 *
 * n_eff = n_int + 1/2 + SDM_DIN / 2^(SDM_DIN_RANGE + 1) +
 * DVFS_COEFF * DVFS_DET_DELTA / 2^DFS_DET_RANGE
 *
 * The SDM_DIN LSB is finally shifted out, since it is not accessible by s/w.
 */
static void clk_config_dvfs_ndiv(int mv, u32 n_eff, struct na_dvfs *d)
{
	int n, det_delta;
	u32 rem, rem_range;
	struct pll_parms *p = &gpc_pll_params;

	det_delta = (mv * 1000 - d->uv_cal);
	det_delta = min(det_delta, d->dfs_det_max * p->uvdet_slope);
	det_delta = det_delta * d->dfs_coeff;
	det_delta = DIV_ROUND_CLOSEST(det_delta, p->uvdet_slope);

	n = (int)(n_eff << DFS_DET_RANGE) - det_delta;
	BUG_ON((n < 0) || (n > (p->max_N << DFS_DET_RANGE)));
	d->n_int = ((u32)n) >> DFS_DET_RANGE;

	rem = ((u32)n) & ((1 << DFS_DET_RANGE) - 1);
	rem_range = SDM_DIN_RANGE + 1 - DFS_DET_RANGE;
	d->sdm_din = (rem << rem_range) - (1 << SDM_DIN_RANGE);
	d->sdm_din = (d->sdm_din >> BITS_PER_BYTE) & 0xff;
}

/* Voltage dependent configuration */
static void clk_config_dvfs(struct gk20a *g, struct pll *gpll)
{
	struct na_dvfs *d = &gpll->dvfs;

	d->mv = tegra_dvfs_predict_millivolts_t(
			clk_get_parent(g->clk.tegra_clk),
			rate_gpc2clk_to_gpu(gpll->freq));
	clk_config_dvfs_detection(d->mv, d);
	clk_config_dvfs_ndiv(d->mv, gpll->N, d);
}

/* Update DVFS detection settings in flight */
static void clk_set_dfs_coeff(struct gk20a *g, u32 dfs_coeff)
{
	u32 data = gk20a_readl(g, trim_gpc_bcast_gpcpll_dvfs2_r());
	data |= DFS_EXT_STROBE;
	gk20a_writel(g, trim_gpc_bcast_gpcpll_dvfs2_r(), data);

	data = gk20a_readl(g, trim_sys_gpcpll_dvfs0_r());
	data = set_field(data, trim_sys_gpcpll_dvfs0_dfs_coeff_m(),
		trim_sys_gpcpll_dvfs0_dfs_coeff_f(dfs_coeff));
	gk20a_writel(g, trim_sys_gpcpll_dvfs0_r(), data);

	data = gk20a_readl(g, trim_gpc_bcast_gpcpll_dvfs2_r());
	udelay(1);
	data &= ~DFS_EXT_STROBE;
	gk20a_writel(g, trim_gpc_bcast_gpcpll_dvfs2_r(), data);
}

static void __maybe_unused clk_set_dfs_det_max(struct gk20a *g, u32 dfs_det_max)
{
	u32 data = gk20a_readl(g, trim_gpc_bcast_gpcpll_dvfs2_r());
	data |= DFS_EXT_STROBE;
	gk20a_writel(g, trim_gpc_bcast_gpcpll_dvfs2_r(), data);

	data = gk20a_readl(g, trim_sys_gpcpll_dvfs0_r());
	data = set_field(data, trim_sys_gpcpll_dvfs0_dfs_det_max_m(),
		trim_sys_gpcpll_dvfs0_dfs_det_max_f(dfs_det_max));
	gk20a_writel(g, trim_sys_gpcpll_dvfs0_r(), data);

	data = gk20a_readl(g, trim_gpc_bcast_gpcpll_dvfs2_r());
	udelay(1);
	data &= ~DFS_EXT_STROBE;
	gk20a_writel(g, trim_gpc_bcast_gpcpll_dvfs2_r(), data);
}

static void clk_set_dfs_ext_cal(struct gk20a *g, u32 dfs_det_cal)
{
	u32 data;

	data = gk20a_readl(g, trim_gpc_bcast_gpcpll_dvfs2_r());
	data &= ~(BIT(DFS_DET_RANGE + 1) - 1);
	data |= dfs_det_cal;
	gk20a_writel(g, trim_gpc_bcast_gpcpll_dvfs2_r(), data);

	data = gk20a_readl(g, trim_sys_gpcpll_dvfs1_r());
	udelay(1);
	if (~trim_sys_gpcpll_dvfs1_dfs_ctrl_v(data) & DFS_EXT_CAL_EN) {
		data = set_field(data, trim_sys_gpcpll_dvfs1_dfs_ctrl_m(),
			trim_sys_gpcpll_dvfs1_dfs_ctrl_f(DFS_EXT_CAL_EN));
		gk20a_writel(g, trim_sys_gpcpll_dvfs1_r(), data);
	}
}

static void clk_setup_dvfs_detection(struct gk20a *g, struct pll *gpll)
{
	struct na_dvfs *d = &gpll->dvfs;

	u32 data = gk20a_readl(g, trim_gpc_bcast_gpcpll_dvfs2_r());
	data |= DFS_EXT_STROBE;
	gk20a_writel(g, trim_gpc_bcast_gpcpll_dvfs2_r(), data);

	data = gk20a_readl(g, trim_sys_gpcpll_dvfs0_r());
	data = set_field(data, trim_sys_gpcpll_dvfs0_dfs_coeff_m(),
		trim_sys_gpcpll_dvfs0_dfs_coeff_f(d->dfs_coeff));
	data = set_field(data, trim_sys_gpcpll_dvfs0_dfs_det_max_m(),
		trim_sys_gpcpll_dvfs0_dfs_det_max_f(d->dfs_det_max));
	gk20a_writel(g, trim_sys_gpcpll_dvfs0_r(), data);

	data = gk20a_readl(g, trim_gpc_bcast_gpcpll_dvfs2_r());
	udelay(1);
	data &= ~DFS_EXT_STROBE;
	gk20a_writel(g, trim_gpc_bcast_gpcpll_dvfs2_r(), data);

	clk_set_dfs_ext_cal(g, d->dfs_ext_cal);
}

/* Enable NA/DVFS mode */
static int clk_enbale_pll_dvfs(struct gk20a *g)
{
	u32 data;
	int delay = 5;	/* use for iddq exit delay & calib timeout */
	struct pll_parms *p = &gpc_pll_params;
	bool calibrated = p->uvdet_slope && p->uvdet_offs;

	/* FIXME: Set VCO_CTRL */

	/* Enable NA DVFS */
	data = gk20a_readl(g, trim_sys_gpcpll_dvfs1_r());
	data |= trim_sys_gpcpll_dvfs1_en_dfs_m();
	gk20a_writel(g, trim_sys_gpcpll_dvfs1_r(), data);

	/*
	 * If calibration parameters are known (either from fuses, or from
	 * internal calibration on boot) - use them. Internal calibration is
	 * started anyway; it will complete, but results will not be used.
	 */
	if (calibrated) {
		data = gk20a_readl(g, trim_sys_gpcpll_dvfs1_r());
		data |= trim_sys_gpcpll_dvfs1_en_dfs_cal_m();
		gk20a_writel(g, trim_sys_gpcpll_dvfs1_r(), data);
	}

	/* Exit IDDQ mode */
	data = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	data = set_field(data, trim_sys_gpcpll_cfg_iddq_m(),
			 trim_sys_gpcpll_cfg_iddq_power_on_v());
	gk20a_writel(g, trim_sys_gpcpll_cfg_r(), data);
	gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	udelay(delay);

	if (calibrated)
		return 0;

	/*
	 * If calibration parameters are not fused, start internal calibration,
	 * wait for completion, and use results along with default slope to
	 * calculate ADC offset during boot.
	 */
	data = gk20a_readl(g, trim_sys_gpcpll_dvfs1_r());
	data |= trim_sys_gpcpll_dvfs1_en_dfs_cal_m();
	gk20a_writel(g, trim_sys_gpcpll_dvfs1_r(), data);

	/* Wait for internal calibration done (spec < 2us). */
	do {
		data = gk20a_readl(g, trim_sys_gpcpll_dvfs1_r());
		if (trim_sys_gpcpll_dvfs1_dfs_cal_done_v(data))
			break;
		udelay(1);
		delay--;
	} while (delay > 0);

	if (delay <= 0) {
		gk20a_err(dev_from_gk20a(g), "GPCPLL calibration timeout");
		return -ETIMEDOUT;
	}

	data = gk20a_readl(g, trim_sys_gpcpll_cfg3_r());
	data = trim_sys_gpcpll_cfg3_dfs_testout_v(data);
	p->uvdet_offs = BOOT_GPU_UV - data * ADC_SLOPE_UV;
	p->uvdet_slope = ADC_SLOPE_UV;
	return 0;
}

/* GPCPLL slide methods */
static void clk_setup_slide(struct gk20a *g, u32 clk_u)
{
	u32 data, step_a, step_b;

	switch (clk_u) {
	case 12000:
	case 12800:
	case 13000:			/* only on FPGA */
		step_a = 0x2B;
		step_b = 0x0B;
		break;
	case 19200:
		step_a = 0x12;
		step_b = 0x08;
		break;
	case 38400:
		step_a = 0x04;
		step_b = 0x05;
		break;
	default:
		gk20a_err(dev_from_gk20a(g), "Unexpected reference rate %u kHz",
			  clk_u);
		BUG();
	}

	/* setup */
	data = gk20a_readl(g, trim_sys_gpcpll_cfg2_r());
	data = set_field(data, trim_sys_gpcpll_cfg2_pll_stepa_m(),
			trim_sys_gpcpll_cfg2_pll_stepa_f(step_a));
	gk20a_writel(g, trim_sys_gpcpll_cfg2_r(), data);
	data = gk20a_readl(g, trim_sys_gpcpll_cfg3_r());
	data = set_field(data, trim_sys_gpcpll_cfg3_pll_stepb_m(),
			trim_sys_gpcpll_cfg3_pll_stepb_f(step_b));
	gk20a_writel(g, trim_sys_gpcpll_cfg3_r(), data);
}

static int clk_slide_gpc_pll(struct gk20a *g, struct pll *gpll)
{
	u32 data, coeff;
	u32 nold;
	int ramp_timeout = 500;

	/* get old coefficients */
	coeff = gk20a_readl(g, trim_sys_gpcpll_coeff_r());
	nold = trim_sys_gpcpll_coeff_ndiv_v(coeff);

	/* do nothing if NDIV is same */
	if (gpll->N == nold)
		return 0;

	/* dynamic ramp setup based on update rate */
	clk_setup_slide(g, gpll->clk_in / gpll->M);

	/* pll slowdown mode */
	data = gk20a_readl(g, trim_sys_gpcpll_ndiv_slowdown_r());
	data = set_field(data,
			trim_sys_gpcpll_ndiv_slowdown_slowdown_using_pll_m(),
			trim_sys_gpcpll_ndiv_slowdown_slowdown_using_pll_yes_f());
	gk20a_writel(g, trim_sys_gpcpll_ndiv_slowdown_r(), data);

	/* new ndiv ready for ramp */
	coeff = gk20a_readl(g, trim_sys_gpcpll_coeff_r());
	coeff = set_field(coeff, trim_sys_gpcpll_coeff_ndiv_m(),
			trim_sys_gpcpll_coeff_ndiv_f(gpll->N));
	udelay(1);
	gk20a_writel(g, trim_sys_gpcpll_coeff_r(), coeff);

	/* dynamic ramp to new ndiv */
	data = gk20a_readl(g, trim_sys_gpcpll_ndiv_slowdown_r());
	data = set_field(data,
			trim_sys_gpcpll_ndiv_slowdown_en_dynramp_m(),
			trim_sys_gpcpll_ndiv_slowdown_en_dynramp_yes_f());
	udelay(1);
	gk20a_writel(g, trim_sys_gpcpll_ndiv_slowdown_r(), data);

	do {
		udelay(1);
		ramp_timeout--;
		data = gk20a_readl(
			g, trim_gpc_bcast_gpcpll_ndiv_slowdown_debug_r());
		if (trim_gpc_bcast_gpcpll_ndiv_slowdown_debug_pll_dynramp_done_synced_v(data))
			break;
	} while (ramp_timeout > 0);

	/* exit slowdown mode */
	data = gk20a_readl(g, trim_sys_gpcpll_ndiv_slowdown_r());
	data = set_field(data,
			trim_sys_gpcpll_ndiv_slowdown_slowdown_using_pll_m(),
			trim_sys_gpcpll_ndiv_slowdown_slowdown_using_pll_no_f());
	data = set_field(data,
			trim_sys_gpcpll_ndiv_slowdown_en_dynramp_m(),
			trim_sys_gpcpll_ndiv_slowdown_en_dynramp_no_f());
	gk20a_writel(g, trim_sys_gpcpll_ndiv_slowdown_r(), data);
	gk20a_readl(g, trim_sys_gpcpll_ndiv_slowdown_r());

	if (ramp_timeout <= 0) {
		gk20a_err(dev_from_gk20a(g), "gpcpll dynamic ramp timeout");
		return -ETIMEDOUT;
	}
	return 0;
}

/* GPCPLL bypass methods */
static int clk_change_pldiv_under_bypass(struct gk20a *g, struct pll *gpll)
{
	u32 data, coeff;

	/* put PLL in bypass before programming it */
	data = gk20a_readl(g, trim_sys_sel_vco_r());
	data = set_field(data, trim_sys_sel_vco_gpc2clk_out_m(),
		trim_sys_sel_vco_gpc2clk_out_bypass_f());
	gk20a_writel(g, trim_sys_sel_vco_r(), data);

	/* change PLDIV */
	coeff = gk20a_readl(g, trim_sys_gpcpll_coeff_r());
	udelay(1);
	coeff = set_field(coeff, trim_sys_gpcpll_coeff_pldiv_m(),
			  trim_sys_gpcpll_coeff_pldiv_f(gpll->PL));
	gk20a_writel(g, trim_sys_gpcpll_coeff_r(), coeff);

	/* put PLL back on vco */
	data = gk20a_readl(g, trim_sys_sel_vco_r());
	udelay(1);
	data = set_field(data, trim_sys_sel_vco_gpc2clk_out_m(),
		trim_sys_sel_vco_gpc2clk_out_vco_f());
	gk20a_writel(g, trim_sys_sel_vco_r(), data);

	return 0;
}

static int clk_lock_gpc_pll_under_bypass(struct gk20a *g, struct pll *gpll)
{
	u32 data, cfg, coeff, timeout;

	/* put PLL in bypass before programming it */
	data = gk20a_readl(g, trim_sys_sel_vco_r());
	data = set_field(data, trim_sys_sel_vco_gpc2clk_out_m(),
		trim_sys_sel_vco_gpc2clk_out_bypass_f());
	gk20a_writel(g, trim_sys_sel_vco_r(), data);

	cfg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	udelay(1);
	if (trim_sys_gpcpll_cfg_iddq_v(cfg)) {
		/* get out from IDDQ (1st power up) */
		cfg = set_field(cfg, trim_sys_gpcpll_cfg_iddq_m(),
				trim_sys_gpcpll_cfg_iddq_power_on_v());
		gk20a_writel(g, trim_sys_gpcpll_cfg_r(), cfg);
		gk20a_readl(g, trim_sys_gpcpll_cfg_r());
		udelay(5);
	} else {
		/* clear SYNC_MODE before disabling PLL */
		cfg = set_field(cfg, trim_sys_gpcpll_cfg_sync_mode_m(),
				trim_sys_gpcpll_cfg_sync_mode_disable_f());
		gk20a_writel(g, trim_sys_gpcpll_cfg_r(), cfg);
		gk20a_readl(g, trim_sys_gpcpll_cfg_r());

		/* disable running PLL before changing coefficients */
		cfg = set_field(cfg, trim_sys_gpcpll_cfg_enable_m(),
				trim_sys_gpcpll_cfg_enable_no_f());
		gk20a_writel(g, trim_sys_gpcpll_cfg_r(), cfg);
		gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	}

	/* change coefficients */
	if (gpll->mode == GPC_PLL_MODE_DVFS) {
		clk_setup_dvfs_detection(g, gpll);

		coeff = gk20a_readl(g, trim_sys_gpcpll_cfg2_r());
		coeff = set_field(coeff, trim_sys_gpcpll_cfg2_sdm_din_m(),
			trim_sys_gpcpll_cfg2_sdm_din_f(gpll->dvfs.sdm_din));
		gk20a_writel(g, trim_sys_gpcpll_cfg2_r(), coeff);

		coeff = trim_sys_gpcpll_coeff_mdiv_f(gpll->M) |
			trim_sys_gpcpll_coeff_ndiv_f(gpll->dvfs.n_int) |
			trim_sys_gpcpll_coeff_pldiv_f(gpll->PL);
		gk20a_writel(g, trim_sys_gpcpll_coeff_r(), coeff);
	} else {
		coeff = trim_sys_gpcpll_coeff_mdiv_f(gpll->M) |
			trim_sys_gpcpll_coeff_ndiv_f(gpll->N) |
			trim_sys_gpcpll_coeff_pldiv_f(gpll->PL);
		gk20a_writel(g, trim_sys_gpcpll_coeff_r(), coeff);
	}

	/* enable PLL after changing coefficients */
	cfg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	cfg = set_field(cfg, trim_sys_gpcpll_cfg_enable_m(),
			trim_sys_gpcpll_cfg_enable_yes_f());
	gk20a_writel(g, trim_sys_gpcpll_cfg_r(), cfg);

	/* just delay in DVFS mode (lock cannot be used) */
	if (gpll->mode == GPC_PLL_MODE_DVFS) {
		gk20a_readl(g, trim_sys_gpcpll_cfg_r());
		udelay(g->clk.na_pll_delay);
		goto pll_locked;
	}

	/* lock pll */
	cfg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	if (cfg & trim_sys_gpcpll_cfg_enb_lckdet_power_off_f()){
		cfg = set_field(cfg, trim_sys_gpcpll_cfg_enb_lckdet_m(),
			trim_sys_gpcpll_cfg_enb_lckdet_power_on_f());
		gk20a_writel(g, trim_sys_gpcpll_cfg_r(), cfg);
		cfg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	}

	/* wait pll lock */
	timeout = g->clk.pll_delay + 1;
	do {
		udelay(1);
		cfg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
		if (cfg & trim_sys_gpcpll_cfg_pll_lock_true_f())
			goto pll_locked;
	} while (--timeout > 0);

	/* PLL is messed up. What can we do here? */
	dump_gpc_pll(g, gpll, cfg);
	BUG();
	return -EBUSY;

pll_locked:
	gk20a_dbg_clk("locked config_pll under bypass r=0x%x v=0x%x",
		trim_sys_gpcpll_cfg_r(), cfg);

	/* set SYNC_MODE for glitchless switch out of bypass */
	cfg = set_field(cfg, trim_sys_gpcpll_cfg_sync_mode_m(),
			trim_sys_gpcpll_cfg_sync_mode_enable_f());
	gk20a_writel(g, trim_sys_gpcpll_cfg_r(), cfg);
	gk20a_readl(g, trim_sys_gpcpll_cfg_r());

	/* put PLL back on vco */
	data = gk20a_readl(g, trim_sys_sel_vco_r());
	data = set_field(data, trim_sys_sel_vco_gpc2clk_out_m(),
		trim_sys_sel_vco_gpc2clk_out_vco_f());
	gk20a_writel(g, trim_sys_sel_vco_r(), data);

	return 0;
}

/* GPCPLL programming in legacy (non-DVFS) mode */
static int clk_program_gpc_pll(struct gk20a *g, struct pll *gpll_new,
			int allow_slide)
{
	u32 cfg, coeff, data;
	bool can_slide, pldiv_only;
	struct pll gpll;

	gk20a_dbg_fn("");

	if (!tegra_platform_is_silicon())
		return 0;

	/* get old coefficients */
	coeff = gk20a_readl(g, trim_sys_gpcpll_coeff_r());
	gpll.M = trim_sys_gpcpll_coeff_mdiv_v(coeff);
	gpll.N = trim_sys_gpcpll_coeff_ndiv_v(coeff);
	gpll.PL = trim_sys_gpcpll_coeff_pldiv_v(coeff);
	gpll.clk_in = gpll_new->clk_in;

	/* do NDIV slide if there is no change in M and PL */
	cfg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	can_slide = allow_slide && trim_sys_gpcpll_cfg_enable_v(cfg);

	if (can_slide && (gpll_new->M == gpll.M) && (gpll_new->PL == gpll.PL))
		return clk_slide_gpc_pll(g, gpll_new);

	/* slide down to NDIV_LO */
	if (can_slide) {
		int ret;
		gpll.N = DIV_ROUND_UP(gpll.M * gpc_pll_params.min_vco,
				      gpll.clk_in);
		ret = clk_slide_gpc_pll(g, &gpll);
		if (ret)
			return ret;
	}
	pldiv_only = can_slide && (gpll_new->M == gpll.M);

	/*
	 *  Split FO-to-bypass jump in halfs by setting out divider 1:2.
	 *  (needed even if PLDIV_GLITCHLESS is set, since 1:1 <=> 1:2 direct
	 *  transition is not really glitch-less - see get_interim_pldiv
	 *  function header).
	 */
	if ((gpll_new->PL < 2) || (gpll.PL < 2)) {
		data = gk20a_readl(g, trim_sys_gpc2clk_out_r());
		data = set_field(data, trim_sys_gpc2clk_out_vcodiv_m(),
			trim_sys_gpc2clk_out_vcodiv_f(2));
		gk20a_writel(g, trim_sys_gpc2clk_out_r(), data);
		/* Intentional 2nd write to assure linear divider operation */
		gk20a_writel(g, trim_sys_gpc2clk_out_r(), data);
		gk20a_readl(g, trim_sys_gpc2clk_out_r());
		udelay(2);
	}

#if PLDIV_GLITCHLESS
	coeff = gk20a_readl(g, trim_sys_gpcpll_coeff_r());
	if (pldiv_only) {
		/* Insert interim PLDIV state if necessary */
		u32 interim_pl = get_interim_pldiv(gpll_new->PL, gpll.PL);
		if (interim_pl) {
			coeff = set_field(coeff,
				trim_sys_gpcpll_coeff_pldiv_m(),
				trim_sys_gpcpll_coeff_pldiv_f(interim_pl));
			gk20a_writel(g, trim_sys_gpcpll_coeff_r(), coeff);
			coeff = gk20a_readl(g, trim_sys_gpcpll_coeff_r());
		}
		goto set_pldiv;	/* path A: no need to bypass */
	}

	/* path B: bypass if either M changes or PLL is disabled */
#endif
	/*
	 * Program and lock pll under bypass. On exit PLL is out of bypass,
	 * enabled, and locked. VCO is at vco_min if sliding is allowed.
	 * Otherwise it is at VCO target (and therefore last slide call below
	 * is effectively NOP). PL is set to target. Output divider is engaged
	 * at 1:2 if either entry, or exit PL setting is 1:1.
	 */
	gpll = *gpll_new;
	if (allow_slide)
		gpll.N = DIV_ROUND_UP(gpll_new->M * gpc_pll_params.min_vco,
				      gpll_new->clk_in);
	if (pldiv_only)
		clk_change_pldiv_under_bypass(g, &gpll);
	else
		clk_lock_gpc_pll_under_bypass(g, &gpll);

#if PLDIV_GLITCHLESS
	coeff = gk20a_readl(g, trim_sys_gpcpll_coeff_r());

set_pldiv:
	/* coeff must be current from either path A or B */
	if (trim_sys_gpcpll_coeff_pldiv_v(coeff) != gpll_new->PL) {
		coeff = set_field(coeff, trim_sys_gpcpll_coeff_pldiv_m(),
			trim_sys_gpcpll_coeff_pldiv_f(gpll_new->PL));
		gk20a_writel(g, trim_sys_gpcpll_coeff_r(), coeff);
	}
#endif
	/* restore out divider 1:1 */
	data = gk20a_readl(g, trim_sys_gpc2clk_out_r());
	if ((data & trim_sys_gpc2clk_out_vcodiv_m()) !=
	    trim_sys_gpc2clk_out_vcodiv_by1_f()) {
		data = set_field(data, trim_sys_gpc2clk_out_vcodiv_m(),
				 trim_sys_gpc2clk_out_vcodiv_by1_f());
		udelay(2);
		gk20a_writel(g, trim_sys_gpc2clk_out_r(), data);
		/* Intentional 2nd write to assure linear divider operation */
		gk20a_writel(g, trim_sys_gpc2clk_out_r(), data);
		gk20a_readl(g, trim_sys_gpc2clk_out_r());
	}

	/* slide up to target NDIV */
	return clk_slide_gpc_pll(g, gpll_new);
}

/* GPCPLL programming in DVFS mode */
static int clk_program_na_gpc_pll(struct gk20a *g, struct pll *gpll_new,
				  int allow_slide)
{
	clk_config_dvfs(g, gpll_new);

	/* always under bypass, for now */
	return clk_program_gpc_pll(g, gpll_new, 0);
}

static int clk_disable_gpcpll(struct gk20a *g, int allow_slide)
{
	u32 cfg, coeff;
	struct clk_gk20a *clk = &g->clk;
	struct pll gpll = clk->gpc_pll;

	/* slide to VCO min */
	cfg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	if (allow_slide && trim_sys_gpcpll_cfg_enable_v(cfg)) {
		coeff = gk20a_readl(g, trim_sys_gpcpll_coeff_r());
		gpll.M = trim_sys_gpcpll_coeff_mdiv_v(coeff);
		gpll.N = DIV_ROUND_UP(gpll.M * gpc_pll_params.min_vco,
				      gpll.clk_in);
		clk_slide_gpc_pll(g, &gpll);
	}

	/* put PLL in bypass before disabling it */
	cfg = gk20a_readl(g, trim_sys_sel_vco_r());
	cfg = set_field(cfg, trim_sys_sel_vco_gpc2clk_out_m(),
			trim_sys_sel_vco_gpc2clk_out_bypass_f());
	gk20a_writel(g, trim_sys_sel_vco_r(), cfg);

	/* clear SYNC_MODE before disabling PLL */
	cfg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	cfg = set_field(cfg, trim_sys_gpcpll_cfg_sync_mode_m(),
			trim_sys_gpcpll_cfg_sync_mode_disable_f());
	gk20a_writel(g, trim_sys_gpcpll_cfg_r(), cfg);

	/* disable PLL */
	cfg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	cfg = set_field(cfg, trim_sys_gpcpll_cfg_enable_m(),
			trim_sys_gpcpll_cfg_enable_no_f());
	gk20a_writel(g, trim_sys_gpcpll_cfg_r(), cfg);
	gk20a_readl(g, trim_sys_gpcpll_cfg_r());

	clk->gpc_pll.enabled = false;
	return 0;
}

static int gm20b_init_clk_reset_enable_hw(struct gk20a *g)
{
	gk20a_dbg_fn("");
	return 0;
}

struct clk *gm20b_clk_get(struct gk20a *g)
{
	if (!g->clk.tegra_clk) {
		struct clk *clk;

		clk = clk_get_sys("tegra_gk20a", "gpu");
		if (IS_ERR(clk)) {
			gk20a_err(dev_from_gk20a(g),
				"fail to get tegra gpu clk tegra_gk20a/gpu");
			return NULL;
		}
		g->clk.tegra_clk = clk;
	}

	return g->clk.tegra_clk;
}

static int gm20b_init_clk_setup_sw(struct gk20a *g)
{
	struct clk_gk20a *clk = &g->clk;
	static int initialized;
	struct clk *ref;
	unsigned long ref_rate;
	bool calibrated;

	gk20a_dbg_fn("");

	if (clk->sw_ready) {
		gk20a_dbg_fn("skip init");
		return 0;
	}

	if (!gk20a_clk_get(g))
		return -EINVAL;

	ref = clk_get_parent(clk_get_parent(clk->tegra_clk));
	if (IS_ERR(ref)) {
		gk20a_err(dev_from_gk20a(g),
			"failed to get GPCPLL reference clock");
		return -EINVAL;
	}
	ref_rate = clk_get_rate(ref);

	/*
	 * Locking time in both legacy and DVFS mode is 40us. However, in legacy
	 * mode we rely on lock detection signal, and delay is just timeout
	 * limit, so we can afford set it longer. In DVFS mode each lock inserts
	 * specified delay, so it should be set as short as h/w allows.
	 */
	clk->pll_delay = 300; /* usec */
	clk->na_pll_delay = 40; /* usec*/

	clk->gpc_pll.id = GK20A_GPC_PLL;
	clk->gpc_pll.clk_in = ref_rate / KHZ;

	/* Initial frequency: 1/3 VCO min (low enough to be safe at Vmin) */
	if (!initialized) {
		initialized = 1;
		clk->gpc_pll.M = 1;
		clk->gpc_pll.N = DIV_ROUND_UP(gpc_pll_params.min_vco,
					clk->gpc_pll.clk_in);
		clk->gpc_pll.PL = 3;
		clk->gpc_pll.freq = clk->gpc_pll.clk_in * clk->gpc_pll.N;
		clk->gpc_pll.freq /= pl_to_div(clk->gpc_pll.PL);
	}

	calibrated = !clk_config_calibration_params(g);
#ifdef CONFIG_TEGRA_USE_NA_GPCPLL
	if (ALLOW_NON_CALIBRATED_NA_MODE || calibrated) {
		/* NA mode is supported only at max update rate 38.4 MHz */
		if (clk->gpc_pll.clk_in == gpc_pll_params.max_u) {
			clk->gpc_pll.mode = GPC_PLL_MODE_DVFS;
			gpc_pll_params.min_u = gpc_pll_params.max_u;
		}
	}
#endif

	mutex_init(&clk->clk_mutex);

	clk->sw_ready = true;

	gk20a_dbg_fn("done");
	return 0;
}

static int gm20b_init_clk_setup_hw(struct gk20a *g)
{
	u32 data;

	gk20a_dbg_fn("");

	/* LDIV: Div4 mode (required); both  bypass and vco ratios 1:1 */
	data = gk20a_readl(g, trim_sys_gpc2clk_out_r());
	data = set_field(data,
			trim_sys_gpc2clk_out_sdiv14_m() |
			trim_sys_gpc2clk_out_vcodiv_m() |
			trim_sys_gpc2clk_out_bypdiv_m(),
			trim_sys_gpc2clk_out_sdiv14_indiv4_mode_f() |
			trim_sys_gpc2clk_out_vcodiv_by1_f() |
			trim_sys_gpc2clk_out_bypdiv_f(0));
	gk20a_writel(g, trim_sys_gpc2clk_out_r(), data);

	/*
	 * Clear global bypass control; PLL is still under bypass, since SEL_VCO
	 * is cleared by default.
	 */
	data = gk20a_readl(g, trim_sys_bypassctrl_r());
	data = set_field(data, trim_sys_bypassctrl_gpcpll_m(),
			 trim_sys_bypassctrl_gpcpll_vco_f());
	gk20a_writel(g, trim_sys_bypassctrl_r(), data);

	/* Disable idle slow down */
	data = gk20a_readl(g, therm_clk_slowdown_r(0));
	data = set_field(data, therm_clk_slowdown_idle_factor_m(),
			 therm_clk_slowdown_idle_factor_disabled_f());
	gk20a_writel(g, therm_clk_slowdown_r(0), data);
	gk20a_readl(g, therm_clk_slowdown_r(0));

	if (g->clk.gpc_pll.mode == GPC_PLL_MODE_DVFS)
		return clk_enbale_pll_dvfs(g);

	return 0;
}

static int set_pll_target(struct gk20a *g, u32 freq, u32 old_freq)
{
	struct clk_gk20a *clk = &g->clk;

	if (freq > gpc_pll_params.max_freq)
		freq = gpc_pll_params.max_freq;
	else if (freq < gpc_pll_params.min_freq)
		freq = gpc_pll_params.min_freq;

	if (freq != old_freq) {
		/* gpc_pll.freq is changed to new value here */
		if (clk_config_pll(clk, &clk->gpc_pll, &gpc_pll_params,
				   &freq, true)) {
			gk20a_err(dev_from_gk20a(g),
				   "failed to set pll target for %d", freq);
			return -EINVAL;
		}
	}
	return 0;
}

static int set_pll_freq(struct gk20a *g, int allow_slide)
{
	struct clk_gk20a *clk = &g->clk;
	int err = 0;

	gk20a_dbg_fn("last freq: %dMHz, target freq %dMHz",
		     clk->gpc_pll_last.freq, clk->gpc_pll.freq);

	/* If programming with dynamic sliding failed, re-try under bypass */
	if (clk->gpc_pll.mode == GPC_PLL_MODE_DVFS) {
		err = clk_program_na_gpc_pll(g, &clk->gpc_pll, allow_slide);
		if (err && allow_slide)
			err = clk_program_na_gpc_pll(g, &clk->gpc_pll, 0);
	} else {
		err = clk_program_gpc_pll(g, &clk->gpc_pll, allow_slide);
		if (err && allow_slide)
			err = clk_program_gpc_pll(g, &clk->gpc_pll, 0);
	}

	if (!err) {
		clk->gpc_pll.enabled = true;
		clk->gpc_pll_last = clk->gpc_pll;
		return 0;
	}

	/*
	 * Just report error but not restore PLL since dvfs could already change
	 * voltage even when programming failed.
	 */
	gk20a_err(dev_from_gk20a(g), "failed to set pll to %d",
		  clk->gpc_pll.freq);
	return err;
}

static int gm20b_clk_export_set_rate(void *data, unsigned long *rate)
{
	u32 old_freq;
	int ret = -ENODATA;
	struct gk20a *g = data;
	struct clk_gk20a *clk = &g->clk;

	if (rate) {
		mutex_lock(&clk->clk_mutex);
		old_freq = clk->gpc_pll.freq;
		ret = set_pll_target(g, rate_gpu_to_gpc2clk(*rate), old_freq);
		if (!ret && clk->gpc_pll.enabled && clk->clk_hw_on)
			ret = set_pll_freq(g, 1);
		if (!ret)
			*rate = rate_gpc2clk_to_gpu(clk->gpc_pll.freq);
		mutex_unlock(&clk->clk_mutex);
	}
	return ret;
}

static int gm20b_clk_export_enable(void *data)
{
	int ret = 0;
	struct gk20a *g = data;
	struct clk_gk20a *clk = &g->clk;

	mutex_lock(&clk->clk_mutex);
	if (!clk->gpc_pll.enabled && clk->clk_hw_on)
		ret = set_pll_freq(g, 1);
	mutex_unlock(&clk->clk_mutex);
	return ret;
}

static void gm20b_clk_export_disable(void *data)
{
	struct gk20a *g = data;
	struct clk_gk20a *clk = &g->clk;

	mutex_lock(&clk->clk_mutex);
	if (clk->gpc_pll.enabled && clk->clk_hw_on)
		clk_disable_gpcpll(g, 1);
	mutex_unlock(&clk->clk_mutex);
}

static void gm20b_clk_export_init(void *data, unsigned long *rate, bool *state)
{
	struct gk20a *g = data;
	struct clk_gk20a *clk = &g->clk;

	mutex_lock(&clk->clk_mutex);
	if (state)
		*state = clk->gpc_pll.enabled;
	if (rate)
		*rate = rate_gpc2clk_to_gpu(clk->gpc_pll.freq);
	mutex_unlock(&clk->clk_mutex);
}

static struct tegra_clk_export_ops gm20b_clk_export_ops = {
	.init = gm20b_clk_export_init,
	.enable = gm20b_clk_export_enable,
	.disable = gm20b_clk_export_disable,
	.set_rate = gm20b_clk_export_set_rate,
};

static int gm20b_clk_register_export_ops(struct gk20a *g)
{
	int ret;
	struct clk *c;

	if (gm20b_clk_export_ops.data)
		return 0;

	gm20b_clk_export_ops.data = (void *)g;
	c = g->clk.tegra_clk;
	if (!c || !clk_get_parent(c))
		return -ENOSYS;

	ret = tegra_clk_register_export_ops(clk_get_parent(c),
					    &gm20b_clk_export_ops);

	return ret;
}

static int gm20b_init_clk_support(struct gk20a *g)
{
	struct clk_gk20a *clk = &g->clk;
	u32 err;

	gk20a_dbg_fn("");

	clk->g = g;

	err = gm20b_init_clk_reset_enable_hw(g);
	if (err)
		return err;

	err = gm20b_init_clk_setup_sw(g);
	if (err)
		return err;

	mutex_lock(&clk->clk_mutex);
	clk->clk_hw_on = true;

	err = gm20b_init_clk_setup_hw(g);
	mutex_unlock(&clk->clk_mutex);
	if (err)
		return err;

	err = gm20b_clk_register_export_ops(g);
	if (err)
		return err;

	/* FIXME: this effectively prevents host level clock gating */
	err = clk_enable(g->clk.tegra_clk);
	if (err)
		return err;

	/* The prev call may not enable PLL if gbus is unbalanced - force it */
	mutex_lock(&clk->clk_mutex);
	if (!clk->gpc_pll.enabled)
		err = set_pll_freq(g, 1);
	mutex_unlock(&clk->clk_mutex);
	if (err)
		return err;

#ifdef CONFIG_DEBUG_FS
	if (!clk->debugfs_set) {
		if (!clk_gm20b_debugfs_init(g))
			clk->debugfs_set = true;
	}
#endif
	return err;
}

static int gm20b_suspend_clk_support(struct gk20a *g)
{
	int ret = 0;

	clk_disable(g->clk.tegra_clk);

	/* The prev call may not disable PLL if gbus is unbalanced - force it */
	mutex_lock(&g->clk.clk_mutex);
	if (g->clk.gpc_pll.enabled)
		ret = clk_disable_gpcpll(g, 1);
	g->clk.clk_hw_on = false;
	mutex_unlock(&g->clk.clk_mutex);
	return ret;
}

void gm20b_init_clk_ops(struct gpu_ops *gops)
{
	gops->clk.init_clk_support = gm20b_init_clk_support;
	gops->clk.suspend_clk_support = gm20b_suspend_clk_support;
}

#ifdef CONFIG_DEBUG_FS

static int rate_get(void *data, u64 *val)
{
	struct gk20a *g = (struct gk20a *)data;
	*val = (u64)gk20a_clk_get_rate(g);
	return 0;
}
static int rate_set(void *data, u64 val)
{
	struct gk20a *g = (struct gk20a *)data;
	return gk20a_clk_set_rate(g, (u32)val);
}
DEFINE_SIMPLE_ATTRIBUTE(rate_fops, rate_get, rate_set, "%llu\n");

static int pll_reg_show(struct seq_file *s, void *data)
{
	struct gk20a *g = s->private;
	u32 reg, m, n, pl, f;

	mutex_lock(&g->clk.clk_mutex);
	if (!g->clk.clk_hw_on) {
		seq_printf(s, "gk20a powered down - no access to registers\n");
		mutex_unlock(&g->clk.clk_mutex);
		return 0;
	}

	reg = gk20a_readl(g, trim_sys_bypassctrl_r());
	seq_printf(s, "bypassctrl = %s, ", reg ? "bypass" : "vco");
	reg = gk20a_readl(g, trim_sys_sel_vco_r());
	seq_printf(s, "sel_vco = %s, ", reg ? "vco" : "bypass");

	reg = gk20a_readl(g, trim_sys_gpcpll_cfg_r());
	seq_printf(s, "cfg  = 0x%x : %s : %s : %s\n", reg,
		trim_sys_gpcpll_cfg_enable_v(reg) ? "enabled" : "disabled",
		trim_sys_gpcpll_cfg_pll_lock_v(reg) ? "locked" : "unlocked",
		trim_sys_gpcpll_cfg_sync_mode_v(reg) ? "sync_on" : "sync_off");

	reg = gk20a_readl(g, trim_sys_gpcpll_coeff_r());
	m = trim_sys_gpcpll_coeff_mdiv_v(reg);
	n = trim_sys_gpcpll_coeff_ndiv_v(reg);
	pl = trim_sys_gpcpll_coeff_pldiv_v(reg);
	f = g->clk.gpc_pll.clk_in * n / (m * pl_to_div(pl));
	seq_printf(s, "coef = 0x%x : m = %u : n = %u : pl = %u", reg, m, n, pl);
	seq_printf(s, " : pll_f(gpu_f) = %u(%u) kHz\n", f, f/2);
	mutex_unlock(&g->clk.clk_mutex);
	return 0;
}

static int pll_reg_open(struct inode *inode, struct file *file)
{
	return single_open(file, pll_reg_show, inode->i_private);
}

static const struct file_operations pll_reg_fops = {
	.open		= pll_reg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static int pll_reg_raw_show(struct seq_file *s, void *data)
{
	struct gk20a *g = s->private;
	u32 reg;

	mutex_lock(&g->clk.clk_mutex);
	if (!g->clk.clk_hw_on) {
		seq_puts(s, "gk20a powered down - no access to registers\n");
		mutex_unlock(&g->clk.clk_mutex);
		return 0;
	}

	seq_puts(s, "GPCPLL REGISTERS:\n");
	for (reg = trim_sys_gpcpll_cfg_r(); reg <= trim_sys_gpcpll_dvfs2_r();
	      reg += sizeof(u32))
		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, gk20a_readl(g, reg));

	seq_puts(s, "\nGPC CLK OUT REGISTERS:\n");

	reg = trim_sys_sel_vco_r();
	seq_printf(s, "[0x%02x] = 0x%08x\n", reg, gk20a_readl(g, reg));
	reg = trim_sys_gpc2clk_out_r();
	seq_printf(s, "[0x%02x] = 0x%08x\n", reg, gk20a_readl(g, reg));
	reg = trim_sys_bypassctrl_r();
	seq_printf(s, "[0x%02x] = 0x%08x\n", reg, gk20a_readl(g, reg));

	mutex_unlock(&g->clk.clk_mutex);
	return 0;
}

static int pll_reg_raw_open(struct inode *inode, struct file *file)
{
	return single_open(file, pll_reg_raw_show, inode->i_private);
}

static ssize_t pll_reg_raw_write(struct file *file,
	const char __user *userbuf, size_t count, loff_t *ppos)
{
	struct gk20a *g = file->f_path.dentry->d_inode->i_private;
	char buf[80];
	u32 reg, val;

	if (sizeof(buf) <= count)
		return -EINVAL;

	if (copy_from_user(buf, userbuf, count))
		return -EFAULT;

	/* terminate buffer and trim - white spaces may be appended
	 *  at the end when invoked from shell command line */
	buf[count] = '\0';
	strim(buf);

	if (sscanf(buf, "[0x%x] = 0x%x", &reg, &val) != 2)
		return -EINVAL;

	if (((reg < trim_sys_gpcpll_cfg_r()) ||
	    (reg > trim_sys_gpcpll_dvfs2_r())) &&
	    (reg != trim_sys_sel_vco_r()) &&
	    (reg != trim_sys_gpc2clk_out_r()) &&
	    (reg != trim_sys_bypassctrl_r()))
		return -EPERM;

	mutex_lock(&g->clk.clk_mutex);
	if (!g->clk.clk_hw_on) {
		mutex_unlock(&g->clk.clk_mutex);
		return -EBUSY;
	}
	gk20a_writel(g, reg, val);
	mutex_unlock(&g->clk.clk_mutex);
	return count;
}

static const struct file_operations pll_reg_raw_fops = {
	.open		= pll_reg_raw_open,
	.read		= seq_read,
	.write		= pll_reg_raw_write,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static int monitor_get(void *data, u64 *val)
{
	struct gk20a *g = (struct gk20a *)data;
	struct clk_gk20a *clk = &g->clk;
	u32 clk_slowdown, clk_slowdown_save;
	int err;

	u32 ncycle = 800; /* count GPCCLK for ncycle of clkin */
	u64 freq = clk->gpc_pll.clk_in;
	u32 count1, count2;

	err = gk20a_busy(g->dev);
	if (err)
		return err;

	mutex_lock(&g->clk.clk_mutex);

	/* Disable clock slowdown during measurements */
	clk_slowdown_save = gk20a_readl(g, therm_clk_slowdown_r(0));
	clk_slowdown = set_field(clk_slowdown_save,
				 therm_clk_slowdown_idle_factor_m(),
				 therm_clk_slowdown_idle_factor_disabled_f());
	gk20a_writel(g, therm_clk_slowdown_r(0), clk_slowdown);
	gk20a_readl(g, therm_clk_slowdown_r(0));

	gk20a_writel(g, trim_gpc_clk_cntr_ncgpcclk_cfg_r(0),
		     trim_gpc_clk_cntr_ncgpcclk_cfg_reset_asserted_f());
	gk20a_writel(g, trim_gpc_clk_cntr_ncgpcclk_cfg_r(0),
		     trim_gpc_clk_cntr_ncgpcclk_cfg_enable_asserted_f() |
		     trim_gpc_clk_cntr_ncgpcclk_cfg_write_en_asserted_f() |
		     trim_gpc_clk_cntr_ncgpcclk_cfg_noofipclks_f(ncycle));
	/* start */

	/* It should take less than 25us to finish 800 cycle of 38.4MHz.
	   But longer than 100us delay is required here. */
	gk20a_readl(g, trim_gpc_clk_cntr_ncgpcclk_cfg_r(0));
	udelay(200);

	count1 = gk20a_readl(g, trim_gpc_clk_cntr_ncgpcclk_cnt_r(0));
	udelay(100);
	count2 = gk20a_readl(g, trim_gpc_clk_cntr_ncgpcclk_cnt_r(0));
	freq *= trim_gpc_clk_cntr_ncgpcclk_cnt_value_v(count2);
	do_div(freq, ncycle);
	*val = freq;

	/* Restore clock slowdown */
	gk20a_writel(g, therm_clk_slowdown_r(0), clk_slowdown_save);
	mutex_unlock(&g->clk.clk_mutex);

	gk20a_idle(g->dev);

	if (count1 != count2)
		return -EBUSY;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(monitor_fops, monitor_get, NULL, "%llu\n");

static int clk_gm20b_debugfs_init(struct gk20a *g)
{
	struct dentry *d;
	struct gk20a_platform *platform = platform_get_drvdata(g->dev);

	d = debugfs_create_file(
		"rate", S_IRUGO|S_IWUSR, platform->debugfs, g, &rate_fops);
	if (!d)
		goto err_out;

	d = debugfs_create_file(
		"pll_reg", S_IRUGO, platform->debugfs, g, &pll_reg_fops);
	if (!d)
		goto err_out;

	d = debugfs_create_file("pll_reg_raw",
		S_IRUGO, platform->debugfs, g, &pll_reg_raw_fops);
	if (!d)
		goto err_out;

	d = debugfs_create_file(
		"monitor", S_IRUGO, platform->debugfs, g, &monitor_fops);
	if (!d)
		goto err_out;

	return 0;

err_out:
	pr_err("%s: Failed to make debugfs node\n", __func__);
	debugfs_remove_recursive(platform->debugfs);
	return -ENOMEM;
}

#endif /* CONFIG_DEBUG_FS */