1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
/*
* GK20A Master Control
*
* Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <trace/events/gk20a.h>
#include "gk20a.h"
#include "mc_gk20a.h"
#include <nvgpu/timers.h>
#include <nvgpu/atomic.h>
#include <nvgpu/unit.h>
#include <nvgpu/hw/gk20a/hw_mc_gk20a.h>
void mc_gk20a_isr_stall(struct gk20a *g)
{
u32 mc_intr_0;
u32 engine_id_idx;
u32 active_engine_id = 0;
u32 engine_enum = ENGINE_INVAL_GK20A;
mc_intr_0 = g->ops.mc.intr_stall(g);
gk20a_dbg(gpu_dbg_intr, "stall intr %08x\n", mc_intr_0);
for (engine_id_idx = 0; engine_id_idx < g->fifo.num_engines; engine_id_idx++) {
active_engine_id = g->fifo.active_engines_list[engine_id_idx];
if (mc_intr_0 & g->fifo.engine_info[active_engine_id].intr_mask) {
engine_enum = g->fifo.engine_info[active_engine_id].engine_enum;
/* GR Engine */
if (engine_enum == ENGINE_GR_GK20A) {
gr_gk20a_elpg_protected_call(g, gk20a_gr_isr(g));
}
/* CE Engine */
if (((engine_enum == ENGINE_GRCE_GK20A) ||
(engine_enum == ENGINE_ASYNC_CE_GK20A)) &&
g->ops.ce2.isr_stall){
g->ops.ce2.isr_stall(g,
g->fifo.engine_info[active_engine_id].inst_id,
g->fifo.engine_info[active_engine_id].pri_base);
}
}
}
if (mc_intr_0 & mc_intr_0_pfifo_pending_f())
gk20a_fifo_isr(g);
if (mc_intr_0 & mc_intr_0_pmu_pending_f())
gk20a_pmu_isr(g);
if (mc_intr_0 & mc_intr_0_priv_ring_pending_f())
gk20a_priv_ring_isr(g);
if (mc_intr_0 & mc_intr_0_ltc_pending_f())
g->ops.ltc.isr(g);
if (mc_intr_0 & mc_intr_0_pbus_pending_f())
g->ops.bus.isr(g);
}
void mc_gk20a_intr_enable(struct gk20a *g)
{
u32 eng_intr_mask = gk20a_fifo_engine_interrupt_mask(g);
gk20a_writel(g, mc_intr_mask_1_r(),
mc_intr_0_pfifo_pending_f()
| eng_intr_mask);
gk20a_writel(g, mc_intr_en_1_r(),
mc_intr_en_1_inta_hardware_f());
gk20a_writel(g, mc_intr_mask_0_r(),
mc_intr_0_pfifo_pending_f()
| mc_intr_0_priv_ring_pending_f()
| mc_intr_0_ltc_pending_f()
| mc_intr_0_pbus_pending_f()
| eng_intr_mask);
gk20a_writel(g, mc_intr_en_0_r(),
mc_intr_en_0_inta_hardware_f());
}
void mc_gk20a_intr_unit_config(struct gk20a *g, bool enable,
bool is_stalling, u32 mask)
{
u32 mask_reg = (is_stalling ? mc_intr_mask_0_r() :
mc_intr_mask_1_r());
if (enable) {
gk20a_writel(g, mask_reg,
gk20a_readl(g, mask_reg) |
mask);
} else {
gk20a_writel(g, mask_reg,
gk20a_readl(g, mask_reg) &
~mask);
}
}
void mc_gk20a_intr_stall_pause(struct gk20a *g)
{
gk20a_writel(g, mc_intr_en_0_r(),
mc_intr_en_0_inta_disabled_f());
/* flush previous write */
gk20a_readl(g, mc_intr_en_0_r());
}
void mc_gk20a_intr_stall_resume(struct gk20a *g)
{
gk20a_writel(g, mc_intr_en_0_r(),
mc_intr_en_0_inta_hardware_f());
/* flush previous write */
gk20a_readl(g, mc_intr_en_0_r());
}
void mc_gk20a_intr_nonstall_pause(struct gk20a *g)
{
gk20a_writel(g, mc_intr_en_1_r(),
mc_intr_en_0_inta_disabled_f());
/* flush previous write */
gk20a_readl(g, mc_intr_en_1_r());
}
void mc_gk20a_intr_nonstall_resume(struct gk20a *g)
{
gk20a_writel(g, mc_intr_en_1_r(),
mc_intr_en_0_inta_hardware_f());
/* flush previous write */
gk20a_readl(g, mc_intr_en_1_r());
}
u32 mc_gk20a_intr_stall(struct gk20a *g)
{
return gk20a_readl(g, mc_intr_0_r());
}
u32 mc_gk20a_intr_nonstall(struct gk20a *g)
{
return gk20a_readl(g, mc_intr_1_r());
}
void gk20a_mc_disable(struct gk20a *g, u32 units)
{
u32 pmc;
gk20a_dbg(gpu_dbg_info, "pmc disable: %08x\n", units);
nvgpu_spinlock_acquire(&g->mc_enable_lock);
pmc = gk20a_readl(g, mc_enable_r());
pmc &= ~units;
gk20a_writel(g, mc_enable_r(), pmc);
nvgpu_spinlock_release(&g->mc_enable_lock);
}
void gk20a_mc_enable(struct gk20a *g, u32 units)
{
u32 pmc;
gk20a_dbg(gpu_dbg_info, "pmc enable: %08x\n", units);
nvgpu_spinlock_acquire(&g->mc_enable_lock);
pmc = gk20a_readl(g, mc_enable_r());
pmc |= units;
gk20a_writel(g, mc_enable_r(), pmc);
gk20a_readl(g, mc_enable_r());
nvgpu_spinlock_release(&g->mc_enable_lock);
nvgpu_udelay(20);
}
void gk20a_mc_reset(struct gk20a *g, u32 units)
{
g->ops.mc.disable(g, units);
if (units & gk20a_fifo_get_all_ce_engine_reset_mask(g))
nvgpu_udelay(500);
else
nvgpu_udelay(20);
g->ops.mc.enable(g, units);
}
u32 gk20a_mc_boot_0(struct gk20a *g, u32 *arch, u32 *impl, u32 *rev)
{
u32 val = gk20a_readl(g, mc_boot_0_r());
if (arch)
*arch = mc_boot_0_architecture_v(val) <<
NVGPU_GPU_ARCHITECTURE_SHIFT;
if (impl)
*impl = mc_boot_0_implementation_v(val);
if (rev)
*rev = (mc_boot_0_major_revision_v(val) << 4) |
mc_boot_0_minor_revision_v(val);
return val;
}
bool mc_gk20a_is_intr1_pending(struct gk20a *g,
enum nvgpu_unit unit, u32 mc_intr_1)
{
u32 mask = 0;
bool is_pending;
switch (unit) {
case NVGPU_UNIT_FIFO:
mask = mc_intr_0_pfifo_pending_f();
break;
default:
break;
}
if (mask == 0) {
nvgpu_err(g, "unknown unit %d", unit);
is_pending = false;
} else {
is_pending = (mc_intr_1 & mask) ? true : false;
}
return is_pending;
}
|