1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
|
/*
* GK20A Channel Synchronization Abstraction
*
* Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/semaphore.h>
#include <nvgpu/kmem.h>
#include <nvgpu/log.h>
#include <nvgpu/atomic.h>
#include <nvgpu/bug.h>
#include <nvgpu/list.h>
#include <nvgpu/nvhost.h>
#include "channel_sync_gk20a.h"
#include "gk20a.h"
#include "fence_gk20a.h"
#include "sync_gk20a.h"
#include "mm_gk20a.h"
#ifdef CONFIG_SYNC
#include "../drivers/staging/android/sync.h"
#endif
#ifdef CONFIG_TEGRA_GK20A_NVHOST
struct gk20a_channel_syncpt {
struct gk20a_channel_sync ops;
struct channel_gk20a *c;
struct nvgpu_nvhost_dev *nvhost_dev;
u32 id;
struct nvgpu_mem syncpt_buf;
};
static int gk20a_channel_syncpt_wait_syncpt(struct gk20a_channel_sync *s,
u32 id, u32 thresh, struct priv_cmd_entry *wait_cmd,
struct gk20a_fence *fence)
{
struct gk20a_channel_syncpt *sp =
container_of(s, struct gk20a_channel_syncpt, ops);
struct channel_gk20a *c = sp->c;
int err = 0;
if (!nvgpu_nvhost_syncpt_is_valid_pt_ext(sp->nvhost_dev, id)) {
nvgpu_warn(c->g, "invalid wait id in gpfifo submit, elided");
return 0;
}
if (nvgpu_nvhost_syncpt_is_expired_ext(sp->nvhost_dev, id, thresh))
return 0;
err = gk20a_channel_alloc_priv_cmdbuf(c,
c->g->ops.fifo.get_syncpt_wait_cmd_size(), wait_cmd);
if (err) {
nvgpu_err(c->g,
"not enough priv cmd buffer space");
return err;
}
nvgpu_log(c->g, gpu_dbg_info, "sp->id %d gpu va %llx",
id, sp->syncpt_buf.gpu_va);
c->g->ops.fifo.add_syncpt_wait_cmd(c->g, wait_cmd, 0, id,
thresh, sp->syncpt_buf.gpu_va);
return 0;
}
static int gk20a_channel_syncpt_wait_fd(struct gk20a_channel_sync *s, int fd,
struct priv_cmd_entry *wait_cmd,
struct gk20a_fence *fence)
{
#ifdef CONFIG_SYNC
int i;
int num_wait_cmds;
struct sync_fence *sync_fence;
struct sync_pt *pt;
struct gk20a_channel_syncpt *sp =
container_of(s, struct gk20a_channel_syncpt, ops);
struct channel_gk20a *c = sp->c;
u32 wait_id;
int err = 0;
u32 wait_cmd_size = 0;
sync_fence = nvgpu_nvhost_sync_fdget(fd);
if (!sync_fence)
return -EINVAL;
/* validate syncpt ids */
for (i = 0; i < sync_fence->num_fences; i++) {
pt = sync_pt_from_fence(sync_fence->cbs[i].sync_pt);
wait_id = nvgpu_nvhost_sync_pt_id(pt);
if (!wait_id || !nvgpu_nvhost_syncpt_is_valid_pt_ext(
sp->nvhost_dev, wait_id)) {
sync_fence_put(sync_fence);
return -EINVAL;
}
}
num_wait_cmds = nvgpu_nvhost_sync_num_pts(sync_fence);
if (num_wait_cmds == 0) {
sync_fence_put(sync_fence);
return 0;
}
wait_cmd_size = c->g->ops.fifo.get_syncpt_wait_cmd_size();
err = gk20a_channel_alloc_priv_cmdbuf(c,
wait_cmd_size * num_wait_cmds,
wait_cmd);
if (err) {
nvgpu_err(c->g,
"not enough priv cmd buffer space");
sync_fence_put(sync_fence);
return err;
}
i = 0;
for (i = 0; i < sync_fence->num_fences; i++) {
struct fence *f = sync_fence->cbs[i].sync_pt;
struct sync_pt *pt = sync_pt_from_fence(f);
u32 wait_id = nvgpu_nvhost_sync_pt_id(pt);
u32 wait_value = nvgpu_nvhost_sync_pt_thresh(pt);
if (nvgpu_nvhost_syncpt_is_expired_ext(sp->nvhost_dev,
wait_id, wait_value)) {
nvgpu_memset(c->g, wait_cmd->mem,
(wait_cmd->off + i * wait_cmd_size) * sizeof(u32),
0, wait_cmd_size * sizeof(u32));
} else {
nvgpu_log(c->g, gpu_dbg_info, "sp->id %d gpu va %llx",
wait_id, sp->syncpt_buf.gpu_va);
c->g->ops.fifo.add_syncpt_wait_cmd(c->g, wait_cmd,
i * wait_cmd_size, wait_id, wait_value,
sp->syncpt_buf.gpu_va);
}
}
WARN_ON(i != num_wait_cmds);
sync_fence_put(sync_fence);
return 0;
#else
return -ENODEV;
#endif
}
static void gk20a_channel_syncpt_update(void *priv, int nr_completed)
{
struct channel_gk20a *ch = priv;
gk20a_channel_update(ch);
/* note: channel_get() is in __gk20a_channel_syncpt_incr() */
gk20a_channel_put(ch);
}
static int __gk20a_channel_syncpt_incr(struct gk20a_channel_sync *s,
bool wfi_cmd,
bool register_irq,
struct priv_cmd_entry *incr_cmd,
struct gk20a_fence *fence,
bool need_sync_fence)
{
u32 thresh;
int err;
struct gk20a_channel_syncpt *sp =
container_of(s, struct gk20a_channel_syncpt, ops);
struct channel_gk20a *c = sp->c;
err = gk20a_channel_alloc_priv_cmdbuf(c,
c->g->ops.fifo.get_syncpt_incr_cmd_size(wfi_cmd),
incr_cmd);
if (err)
return err;
nvgpu_log(c->g, gpu_dbg_info, "sp->id %d gpu va %llx",
sp->id, sp->syncpt_buf.gpu_va);
c->g->ops.fifo.add_syncpt_incr_cmd(c->g, wfi_cmd,
incr_cmd, sp->id, sp->syncpt_buf.gpu_va);
thresh = nvgpu_nvhost_syncpt_incr_max_ext(sp->nvhost_dev, sp->id, 2);
if (register_irq) {
struct channel_gk20a *referenced = gk20a_channel_get(c);
WARN_ON(!referenced);
if (referenced) {
/* note: channel_put() is in
* gk20a_channel_syncpt_update() */
err = nvgpu_nvhost_intr_register_notifier(
sp->nvhost_dev,
sp->id, thresh,
gk20a_channel_syncpt_update, c);
if (err)
gk20a_channel_put(referenced);
/* Adding interrupt action should
* never fail. A proper error handling
* here would require us to decrement
* the syncpt max back to its original
* value. */
WARN(err,
"failed to set submit complete interrupt");
}
}
err = gk20a_fence_from_syncpt(fence, sp->nvhost_dev, sp->id, thresh,
wfi_cmd, need_sync_fence);
if (err)
goto clean_up_priv_cmd;
return 0;
clean_up_priv_cmd:
gk20a_free_priv_cmdbuf(c, incr_cmd);
return err;
}
static int gk20a_channel_syncpt_incr_wfi(struct gk20a_channel_sync *s,
struct priv_cmd_entry *entry,
struct gk20a_fence *fence)
{
return __gk20a_channel_syncpt_incr(s,
true /* wfi */,
false /* no irq handler */,
entry, fence, true);
}
static int gk20a_channel_syncpt_incr(struct gk20a_channel_sync *s,
struct priv_cmd_entry *entry,
struct gk20a_fence *fence,
bool need_sync_fence,
bool register_irq)
{
/* Don't put wfi cmd to this one since we're not returning
* a fence to user space. */
return __gk20a_channel_syncpt_incr(s,
false /* no wfi */,
register_irq /* register irq */,
entry, fence, need_sync_fence);
}
static int gk20a_channel_syncpt_incr_user(struct gk20a_channel_sync *s,
int wait_fence_fd,
struct priv_cmd_entry *entry,
struct gk20a_fence *fence,
bool wfi,
bool need_sync_fence,
bool register_irq)
{
/* Need to do 'wfi + host incr' since we return the fence
* to user space. */
return __gk20a_channel_syncpt_incr(s,
wfi,
register_irq /* register irq */,
entry, fence, need_sync_fence);
}
static void gk20a_channel_syncpt_set_min_eq_max(struct gk20a_channel_sync *s)
{
struct gk20a_channel_syncpt *sp =
container_of(s, struct gk20a_channel_syncpt, ops);
nvgpu_nvhost_syncpt_set_min_eq_max_ext(sp->nvhost_dev, sp->id);
}
static void gk20a_channel_syncpt_signal_timeline(
struct gk20a_channel_sync *s)
{
/* Nothing to do. */
}
static int gk20a_channel_syncpt_id(struct gk20a_channel_sync *s)
{
struct gk20a_channel_syncpt *sp =
container_of(s, struct gk20a_channel_syncpt, ops);
return sp->id;
}
static void gk20a_channel_syncpt_destroy(struct gk20a_channel_sync *s)
{
struct gk20a_channel_syncpt *sp =
container_of(s, struct gk20a_channel_syncpt, ops);
sp->c->g->ops.fifo.free_syncpt_buf(sp->c, &sp->syncpt_buf);
nvgpu_nvhost_syncpt_set_min_eq_max_ext(sp->nvhost_dev, sp->id);
nvgpu_nvhost_syncpt_put_ref_ext(sp->nvhost_dev, sp->id);
nvgpu_kfree(sp->c->g, sp);
}
static struct gk20a_channel_sync *
gk20a_channel_syncpt_create(struct channel_gk20a *c)
{
struct gk20a_channel_syncpt *sp;
char syncpt_name[32];
sp = nvgpu_kzalloc(c->g, sizeof(*sp));
if (!sp)
return NULL;
sp->c = c;
sp->nvhost_dev = c->g->nvhost_dev;
snprintf(syncpt_name, sizeof(syncpt_name),
"%s_%d", c->g->name, c->chid);
sp->id = nvgpu_nvhost_get_syncpt_host_managed(sp->nvhost_dev,
c->chid, syncpt_name);
if (!sp->id) {
nvgpu_kfree(c->g, sp);
nvgpu_err(c->g, "failed to get free syncpt");
return NULL;
}
sp->c->g->ops.fifo.alloc_syncpt_buf(sp->c, sp->id,
&sp->syncpt_buf);
nvgpu_nvhost_syncpt_set_min_eq_max_ext(sp->nvhost_dev, sp->id);
nvgpu_atomic_set(&sp->ops.refcount, 0);
sp->ops.wait_syncpt = gk20a_channel_syncpt_wait_syncpt;
sp->ops.wait_fd = gk20a_channel_syncpt_wait_fd;
sp->ops.incr = gk20a_channel_syncpt_incr;
sp->ops.incr_wfi = gk20a_channel_syncpt_incr_wfi;
sp->ops.incr_user = gk20a_channel_syncpt_incr_user;
sp->ops.set_min_eq_max = gk20a_channel_syncpt_set_min_eq_max;
sp->ops.signal_timeline = gk20a_channel_syncpt_signal_timeline;
sp->ops.syncpt_id = gk20a_channel_syncpt_id;
sp->ops.destroy = gk20a_channel_syncpt_destroy;
return &sp->ops;
}
#endif /* CONFIG_TEGRA_GK20A_NVHOST */
struct gk20a_channel_semaphore {
struct gk20a_channel_sync ops;
struct channel_gk20a *c;
/* A semaphore pool owned by this channel. */
struct nvgpu_semaphore_pool *pool;
/* A sync timeline that advances when gpu completes work. */
struct sync_timeline *timeline;
};
#ifdef CONFIG_SYNC
struct wait_fence_work {
struct sync_fence_waiter waiter;
struct sync_fence *fence;
struct channel_gk20a *ch;
struct nvgpu_semaphore *sema;
struct gk20a *g;
struct nvgpu_list_node entry;
};
static inline struct wait_fence_work *
wait_fence_work_from_entry(struct nvgpu_list_node *node)
{
return (struct wait_fence_work *)
((uintptr_t)node - offsetof(struct wait_fence_work, entry));
};
/*
* Keep track of all the pending waits on semaphores that exist for a GPU. This
* has to be done because the waits on fences backed by semaphores are
* asynchronous so it's impossible to otherwise know when they will fire. During
* driver cleanup this list can be checked and all existing waits can be
* canceled.
*/
static void gk20a_add_pending_sema_wait(struct gk20a *g,
struct wait_fence_work *work)
{
nvgpu_raw_spinlock_acquire(&g->pending_sema_waits_lock);
nvgpu_list_add(&work->entry, &g->pending_sema_waits);
nvgpu_raw_spinlock_release(&g->pending_sema_waits_lock);
}
/*
* Copy the list head from the pending wait list to the passed list and
* then delete the entire pending list.
*/
static void gk20a_start_sema_wait_cancel(struct gk20a *g,
struct nvgpu_list_node *list)
{
nvgpu_raw_spinlock_acquire(&g->pending_sema_waits_lock);
nvgpu_list_replace_init(&g->pending_sema_waits, list);
nvgpu_raw_spinlock_release(&g->pending_sema_waits_lock);
}
/*
* During shutdown this should be called to make sure that any pending sema
* waits are canceled. This is a fairly delicate and tricky bit of code. Here's
* how it works.
*
* Every time a semaphore wait is initiated in SW the wait_fence_work struct is
* added to the pending_sema_waits list. When the semaphore launcher code runs
* it checks the pending_sema_waits list. If this list is non-empty that means
* that the wait_fence_work struct must be present and can be removed.
*
* When the driver shuts down one of the steps is to cancel pending sema waits.
* To do this the entire list of pending sema waits is removed (and stored in a
* separate local list). So now, if the semaphore launcher code runs it will see
* that the pending_sema_waits list is empty and knows that it no longer owns
* the wait_fence_work struct.
*/
void gk20a_channel_cancel_pending_sema_waits(struct gk20a *g)
{
struct wait_fence_work *work;
struct nvgpu_list_node local_pending_sema_waits;
gk20a_start_sema_wait_cancel(g, &local_pending_sema_waits);
while (!nvgpu_list_empty(&local_pending_sema_waits)) {
int ret;
work = nvgpu_list_first_entry(&local_pending_sema_waits,
wait_fence_work,
entry);
nvgpu_list_del(&work->entry);
/*
* Only nvgpu_kfree() work if the cancel is successful.
* Otherwise it's in use by the
* gk20a_channel_semaphore_launcher() code.
*/
ret = sync_fence_cancel_async(work->fence, &work->waiter);
if (ret == 0)
nvgpu_kfree(g, work);
}
}
static void gk20a_channel_semaphore_launcher(
struct sync_fence *fence,
struct sync_fence_waiter *waiter)
{
int err;
struct wait_fence_work *w =
container_of(waiter, struct wait_fence_work, waiter);
struct gk20a *g = w->g;
/*
* This spinlock must protect a _very_ small critical section -
* otherwise it's possible that the deterministic submit path suffers.
*/
nvgpu_raw_spinlock_acquire(&g->pending_sema_waits_lock);
if (!nvgpu_list_empty(&g->pending_sema_waits))
nvgpu_list_del(&w->entry);
nvgpu_raw_spinlock_release(&g->pending_sema_waits_lock);
gk20a_dbg_info("waiting for pre fence %p '%s'",
fence, fence->name);
err = sync_fence_wait(fence, -1);
if (err < 0)
nvgpu_err(g, "error waiting pre-fence: %d", err);
gk20a_dbg_info(
"wait completed (%d) for fence %p '%s', triggering gpu work",
err, fence, fence->name);
sync_fence_put(fence);
nvgpu_semaphore_release(w->sema);
nvgpu_semaphore_put(w->sema);
nvgpu_kfree(g, w);
}
#endif
static void add_sema_cmd(struct gk20a *g, struct channel_gk20a *c,
struct nvgpu_semaphore *s, struct priv_cmd_entry *cmd,
int cmd_size, bool acquire, bool wfi)
{
int ch = c->chid;
u32 ob, off = cmd->off;
u64 va;
ob = off;
/*
* RO for acquire (since we just need to read the mem) and RW for
* release since we will need to write back to the semaphore memory.
*/
va = acquire ? nvgpu_semaphore_gpu_ro_va(s) :
nvgpu_semaphore_gpu_rw_va(s);
/*
* If the op is not an acquire (so therefor a release) we should
* incr the underlying sema next_value.
*/
if (!acquire)
nvgpu_semaphore_incr(s);
/* semaphore_a */
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010004);
/* offset_upper */
nvgpu_mem_wr32(g, cmd->mem, off++, (va >> 32) & 0xff);
/* semaphore_b */
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010005);
/* offset */
nvgpu_mem_wr32(g, cmd->mem, off++, va & 0xffffffff);
if (acquire) {
/* semaphore_c */
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010006);
/* payload */
nvgpu_mem_wr32(g, cmd->mem, off++,
nvgpu_semaphore_get_value(s));
/* semaphore_d */
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010007);
/* operation: acq_geq, switch_en */
nvgpu_mem_wr32(g, cmd->mem, off++, 0x4 | (0x1 << 12));
} else {
/* semaphore_c */
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010006);
/* payload */
nvgpu_mem_wr32(g, cmd->mem, off++,
nvgpu_semaphore_get_value(s));
/* semaphore_d */
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010007);
/* operation: release, wfi */
nvgpu_mem_wr32(g, cmd->mem, off++,
0x2 | ((wfi ? 0x0 : 0x1) << 20));
/* non_stall_int */
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010008);
/* ignored */
nvgpu_mem_wr32(g, cmd->mem, off++, 0);
}
if (acquire)
gpu_sema_verbose_dbg(g, "(A) c=%d ACQ_GE %-4u owner=%-3d"
"va=0x%llx cmd_mem=0x%llx b=0x%llx off=%u",
ch, nvgpu_semaphore_get_value(s),
s->hw_sema->ch->chid, va, cmd->gva,
cmd->mem->gpu_va, ob);
else
gpu_sema_verbose_dbg(g, "(R) c=%d INCR %u (%u) va=0x%llx "
"cmd_mem=0x%llx b=0x%llx off=%u",
ch, nvgpu_semaphore_get_value(s),
nvgpu_semaphore_read(s), va, cmd->gva,
cmd->mem->gpu_va, ob);
}
static int gk20a_channel_semaphore_wait_syncpt(
struct gk20a_channel_sync *s, u32 id,
u32 thresh, struct priv_cmd_entry *entry,
struct gk20a_fence *fence)
{
struct gk20a_channel_semaphore *sema =
container_of(s, struct gk20a_channel_semaphore, ops);
struct gk20a *g = sema->c->g;
nvgpu_err(g, "trying to use syncpoint synchronization");
return -ENODEV;
}
#ifdef CONFIG_SYNC
/*
* Attempt a fast path for waiting on a sync_fence. Basically if the passed
* sync_fence is backed by a nvgpu_semaphore then there's no reason to go
* through the rigmarole of setting up a separate semaphore which waits on an
* interrupt from the GPU and then triggers a worker thread to execute a SW
* based semaphore release. Instead just have the GPU wait on the same semaphore
* that is going to be incremented by the GPU.
*
* This function returns 2 possible values: -ENODEV or 0 on success. In the case
* of -ENODEV the fastpath cannot be taken due to the fence not being backed by
* a GPU semaphore.
*/
static int __semaphore_wait_fd_fast_path(struct channel_gk20a *c,
struct sync_fence *fence,
struct priv_cmd_entry *wait_cmd,
struct nvgpu_semaphore **fp_sema)
{
struct nvgpu_semaphore *sema;
int err;
if (!gk20a_is_sema_backed_sync_fence(fence))
return -ENODEV;
sema = gk20a_sync_fence_get_sema(fence);
/*
* If there's no underlying sema then that means the underlying sema has
* already signaled.
*/
if (!sema) {
*fp_sema = NULL;
return 0;
}
err = gk20a_channel_alloc_priv_cmdbuf(c, 8, wait_cmd);
if (err)
return err;
nvgpu_semaphore_get(sema);
BUG_ON(!nvgpu_atomic_read(&sema->value));
add_sema_cmd(c->g, c, sema, wait_cmd, 8, true, false);
/*
* Make sure that gk20a_channel_semaphore_wait_fd() can create another
* fence with the underlying semaphore.
*/
*fp_sema = sema;
return 0;
}
#endif
static int gk20a_channel_semaphore_wait_fd(
struct gk20a_channel_sync *s, int fd,
struct priv_cmd_entry *entry,
struct gk20a_fence *fence)
{
struct gk20a_channel_semaphore *sema =
container_of(s, struct gk20a_channel_semaphore, ops);
struct channel_gk20a *c = sema->c;
#ifdef CONFIG_SYNC
struct nvgpu_semaphore *fp_sema;
struct sync_fence *sync_fence;
struct priv_cmd_entry *wait_cmd = entry;
struct wait_fence_work *w = NULL;
int err, ret, status;
sync_fence = gk20a_sync_fence_fdget(fd);
if (!sync_fence)
return -EINVAL;
ret = __semaphore_wait_fd_fast_path(c, sync_fence, wait_cmd, &fp_sema);
if (ret == 0) {
if (fp_sema) {
err = gk20a_fence_from_semaphore(c->g, fence,
sema->timeline,
fp_sema,
&c->semaphore_wq,
false, false);
if (err) {
nvgpu_semaphore_put(fp_sema);
goto clean_up_priv_cmd;
}
} else
/*
* Init an empty fence. It will instantly return
* from gk20a_fence_wait().
*/
gk20a_init_fence(fence, NULL, NULL, false);
sync_fence_put(sync_fence);
goto skip_slow_path;
}
/* If the fence has signaled there is no reason to wait on it. */
status = atomic_read(&sync_fence->status);
if (status == 0) {
sync_fence_put(sync_fence);
goto skip_slow_path;
}
err = gk20a_channel_alloc_priv_cmdbuf(c, 8, wait_cmd);
if (err) {
nvgpu_err(c->g,
"not enough priv cmd buffer space");
goto clean_up_sync_fence;
}
w = nvgpu_kzalloc(c->g, sizeof(*w));
if (!w) {
err = -ENOMEM;
goto clean_up_priv_cmd;
}
sync_fence_waiter_init(&w->waiter, gk20a_channel_semaphore_launcher);
w->fence = sync_fence;
w->g = c->g;
w->ch = c;
w->sema = nvgpu_semaphore_alloc(c);
if (!w->sema) {
nvgpu_err(c->g, "ran out of semaphores");
err = -ENOMEM;
goto clean_up_worker;
}
/* worker takes one reference */
nvgpu_semaphore_get(w->sema);
nvgpu_semaphore_incr(w->sema);
/* GPU unblocked when the semaphore value increments. */
add_sema_cmd(c->g, c, w->sema, wait_cmd, 8, true, false);
/*
* We need to create the fence before adding the waiter to ensure
* that we properly clean up in the event the sync_fence has
* already signaled
*/
err = gk20a_fence_from_semaphore(c->g, fence, sema->timeline, w->sema,
&c->semaphore_wq, false, false);
if (err)
goto clean_up_sema;
ret = sync_fence_wait_async(sync_fence, &w->waiter);
gk20a_add_pending_sema_wait(c->g, w);
/*
* If the sync_fence has already signaled then the above async_wait
* will never trigger. This causes the semaphore release op to never
* happen which, in turn, hangs the GPU. That's bad. So let's just
* do the nvgpu_semaphore_release() right now.
*/
if (ret == 1) {
sync_fence_put(sync_fence);
nvgpu_semaphore_release(w->sema);
nvgpu_semaphore_put(w->sema);
}
skip_slow_path:
return 0;
clean_up_sema:
/*
* Release the refs to the semaphore, including
* the one for the worker since it will never run.
*/
nvgpu_semaphore_put(w->sema);
nvgpu_semaphore_put(w->sema);
clean_up_worker:
nvgpu_kfree(c->g, w);
clean_up_priv_cmd:
gk20a_free_priv_cmdbuf(c, entry);
clean_up_sync_fence:
sync_fence_put(sync_fence);
return err;
#else
nvgpu_err(c->g,
"trying to use sync fds with CONFIG_SYNC disabled");
return -ENODEV;
#endif
}
static int __gk20a_channel_semaphore_incr(
struct gk20a_channel_sync *s, bool wfi_cmd,
struct priv_cmd_entry *incr_cmd,
struct gk20a_fence *fence,
bool need_sync_fence)
{
int incr_cmd_size;
struct gk20a_channel_semaphore *sp =
container_of(s, struct gk20a_channel_semaphore, ops);
struct channel_gk20a *c = sp->c;
struct nvgpu_semaphore *semaphore;
int err = 0;
semaphore = nvgpu_semaphore_alloc(c);
if (!semaphore) {
nvgpu_err(c->g,
"ran out of semaphores");
return -ENOMEM;
}
incr_cmd_size = 10;
err = gk20a_channel_alloc_priv_cmdbuf(c, incr_cmd_size, incr_cmd);
if (err) {
nvgpu_err(c->g,
"not enough priv cmd buffer space");
goto clean_up_sema;
}
/* Release the completion semaphore. */
add_sema_cmd(c->g, c, semaphore, incr_cmd, 14, false, wfi_cmd);
err = gk20a_fence_from_semaphore(c->g, fence,
sp->timeline, semaphore,
&c->semaphore_wq,
wfi_cmd,
need_sync_fence);
if (err)
goto clean_up_sema;
return 0;
clean_up_sema:
nvgpu_semaphore_put(semaphore);
return err;
}
static int gk20a_channel_semaphore_incr_wfi(
struct gk20a_channel_sync *s,
struct priv_cmd_entry *entry,
struct gk20a_fence *fence)
{
return __gk20a_channel_semaphore_incr(s,
true /* wfi */,
entry, fence, true);
}
static int gk20a_channel_semaphore_incr(
struct gk20a_channel_sync *s,
struct priv_cmd_entry *entry,
struct gk20a_fence *fence,
bool need_sync_fence,
bool register_irq)
{
/* Don't put wfi cmd to this one since we're not returning
* a fence to user space. */
return __gk20a_channel_semaphore_incr(s,
false /* no wfi */,
entry, fence, need_sync_fence);
}
static int gk20a_channel_semaphore_incr_user(
struct gk20a_channel_sync *s,
int wait_fence_fd,
struct priv_cmd_entry *entry,
struct gk20a_fence *fence,
bool wfi,
bool need_sync_fence,
bool register_irq)
{
#ifdef CONFIG_SYNC
int err;
err = __gk20a_channel_semaphore_incr(s, wfi, entry, fence,
need_sync_fence);
if (err)
return err;
return 0;
#else
struct gk20a_channel_semaphore *sema =
container_of(s, struct gk20a_channel_semaphore, ops);
nvgpu_err(sema->c->g,
"trying to use sync fds with CONFIG_SYNC disabled");
return -ENODEV;
#endif
}
static void gk20a_channel_semaphore_set_min_eq_max(struct gk20a_channel_sync *s)
{
/* Nothing to do. */
}
static void gk20a_channel_semaphore_signal_timeline(
struct gk20a_channel_sync *s)
{
struct gk20a_channel_semaphore *sp =
container_of(s, struct gk20a_channel_semaphore, ops);
gk20a_sync_timeline_signal(sp->timeline);
}
static int gk20a_channel_semaphore_syncpt_id(struct gk20a_channel_sync *s)
{
return -EINVAL;
}
static void gk20a_channel_semaphore_destroy(struct gk20a_channel_sync *s)
{
struct gk20a_channel_semaphore *sema =
container_of(s, struct gk20a_channel_semaphore, ops);
if (sema->timeline)
gk20a_sync_timeline_destroy(sema->timeline);
/* The sema pool is cleaned up by the VM destroy. */
sema->pool = NULL;
nvgpu_kfree(sema->c->g, sema);
}
static struct gk20a_channel_sync *
gk20a_channel_semaphore_create(struct channel_gk20a *c)
{
int asid = -1;
struct gk20a_channel_semaphore *sema;
char pool_name[20];
if (WARN_ON(!c->vm))
return NULL;
sema = nvgpu_kzalloc(c->g, sizeof(*sema));
if (!sema)
return NULL;
sema->c = c;
if (c->vm->as_share)
asid = c->vm->as_share->id;
sprintf(pool_name, "semaphore_pool-%d", c->chid);
sema->pool = c->vm->sema_pool;
#ifdef CONFIG_SYNC
sema->timeline = gk20a_sync_timeline_create(
"gk20a_ch%d_as%d", c->chid, asid);
if (!sema->timeline) {
gk20a_channel_semaphore_destroy(&sema->ops);
return NULL;
}
#endif
nvgpu_atomic_set(&sema->ops.refcount, 0);
sema->ops.wait_syncpt = gk20a_channel_semaphore_wait_syncpt;
sema->ops.wait_fd = gk20a_channel_semaphore_wait_fd;
sema->ops.incr = gk20a_channel_semaphore_incr;
sema->ops.incr_wfi = gk20a_channel_semaphore_incr_wfi;
sema->ops.incr_user = gk20a_channel_semaphore_incr_user;
sema->ops.set_min_eq_max = gk20a_channel_semaphore_set_min_eq_max;
sema->ops.signal_timeline = gk20a_channel_semaphore_signal_timeline;
sema->ops.syncpt_id = gk20a_channel_semaphore_syncpt_id;
sema->ops.destroy = gk20a_channel_semaphore_destroy;
return &sema->ops;
}
void gk20a_channel_sync_destroy(struct gk20a_channel_sync *sync)
{
sync->destroy(sync);
}
struct gk20a_channel_sync *gk20a_channel_sync_create(struct channel_gk20a *c)
{
#ifdef CONFIG_TEGRA_GK20A_NVHOST
if (gk20a_platform_has_syncpoints(c->g))
return gk20a_channel_syncpt_create(c);
#endif
return gk20a_channel_semaphore_create(c);
}
bool gk20a_channel_sync_needs_sync_framework(struct gk20a *g)
{
return !gk20a_platform_has_syncpoints(g);
}
|