summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/nvgpu/gk20a/channel_gk20a.c
blob: a0494e31b988c9522df4dd914366dab1ff4c9d29 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
/*
 * GK20A Graphics channel
 *
 * Copyright (c) 2011-2017, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <trace/events/gk20a.h>

#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_GK20A_CYCLE_STATS)
#include <linux/dma-buf.h>
#endif

#include <nvgpu/semaphore.h>
#include <nvgpu/timers.h>
#include <nvgpu/kmem.h>
#include <nvgpu/dma.h>
#include <nvgpu/log.h>
#include <nvgpu/atomic.h>
#include <nvgpu/bug.h>
#include <nvgpu/list.h>
#include <nvgpu/circ_buf.h>
#include <nvgpu/cond.h>
#include <nvgpu/enabled.h>
#include <nvgpu/debug.h>
#include <nvgpu/ltc.h>
#include <nvgpu/barrier.h>

#include "gk20a.h"
#include "ctxsw_trace_gk20a.h"
#include "dbg_gpu_gk20a.h"
#include "fence_gk20a.h"

#include <nvgpu/hw/gk20a/hw_pbdma_gk20a.h>

/*
 * This is required for nvgpu_vm_find_buffer() which is used in the tracing
 * code. Once we can get and access userspace buffers without requiring
 * direct dma_buf usage this can be removed.
 */
#include "common/linux/vm_priv.h"

/*
 * Although channels do have pointers back to the gk20a struct that they were
 * created under in cases where the driver is killed that pointer can be bad.
 * The channel memory can be freed before the release() function for a given
 * channel is called. This happens when the driver dies and userspace doesn't
 * get a chance to call release() until after the entire gk20a driver data is
 * unloaded and freed.
 */
struct channel_priv {
	struct gk20a *g;
	struct channel_gk20a *c;
};

static void free_channel(struct fifo_gk20a *f, struct channel_gk20a *c);
static void gk20a_channel_dump_ref_actions(struct channel_gk20a *c);

static void free_priv_cmdbuf(struct channel_gk20a *c,
			     struct priv_cmd_entry *e);

static int channel_gk20a_alloc_priv_cmdbuf(struct channel_gk20a *c);
static void channel_gk20a_free_priv_cmdbuf(struct channel_gk20a *c);

static void channel_gk20a_free_prealloc_resources(struct channel_gk20a *c);

static void channel_gk20a_joblist_add(struct channel_gk20a *c,
		struct channel_gk20a_job *job);
static void channel_gk20a_joblist_delete(struct channel_gk20a *c,
		struct channel_gk20a_job *job);
static struct channel_gk20a_job *channel_gk20a_joblist_peek(
		struct channel_gk20a *c);

static u32 gk20a_get_channel_watchdog_timeout(struct channel_gk20a *ch);

static void gk20a_channel_clean_up_jobs(struct channel_gk20a *c,
					bool clean_all);

/* allocate GPU channel */
static struct channel_gk20a *allocate_channel(struct fifo_gk20a *f)
{
	struct channel_gk20a *ch = NULL;
	struct gk20a *g = f->g;

	nvgpu_mutex_acquire(&f->free_chs_mutex);
	if (!nvgpu_list_empty(&f->free_chs)) {
		ch = nvgpu_list_first_entry(&f->free_chs, channel_gk20a,
							  free_chs);
		nvgpu_list_del(&ch->free_chs);
		WARN_ON(nvgpu_atomic_read(&ch->ref_count));
		WARN_ON(ch->referenceable);
		f->used_channels++;
	}
	nvgpu_mutex_release(&f->free_chs_mutex);

	if (g->aggressive_sync_destroy_thresh &&
			(f->used_channels >
			 g->aggressive_sync_destroy_thresh))
		g->aggressive_sync_destroy = true;

	return ch;
}

static void free_channel(struct fifo_gk20a *f,
		struct channel_gk20a *ch)
{
	struct gk20a *g = f->g;

	trace_gk20a_release_used_channel(ch->chid);
	/* refcount is zero here and channel is in a freed/dead state */
	nvgpu_mutex_acquire(&f->free_chs_mutex);
	/* add to head to increase visibility of timing-related bugs */
	nvgpu_list_add(&ch->free_chs, &f->free_chs);
	f->used_channels--;
	nvgpu_mutex_release(&f->free_chs_mutex);

	/*
	 * On teardown it is not possible to dereference platform, but ignoring
	 * this is fine then because no new channels would be created.
	 */
	if (!nvgpu_is_enabled(g, NVGPU_DRIVER_IS_DYING)) {
		if (g->aggressive_sync_destroy_thresh &&
			(f->used_channels <
			 g->aggressive_sync_destroy_thresh))
			g->aggressive_sync_destroy = false;
	}
}

int channel_gk20a_commit_va(struct channel_gk20a *c)
{
	struct gk20a *g = c->g;

	gk20a_dbg_fn("");

	g->ops.mm.init_inst_block(&c->inst_block, c->vm,
			c->vm->gmmu_page_sizes[gmmu_page_size_big]);

	return 0;
}

u32 gk20a_channel_get_timeslice(struct channel_gk20a *ch)
{
	struct gk20a *g = ch->g;

	if (!ch->timeslice_us)
		return g->ops.fifo.default_timeslice_us(g);

	return ch->timeslice_us;
}

int gk20a_channel_get_timescale_from_timeslice(struct gk20a *g,
		int timeslice_period,
		int *__timeslice_timeout, int *__timeslice_scale)
{
	int value = scale_ptimer(timeslice_period,
			ptimer_scalingfactor10x(g->ptimer_src_freq));
	int shift = 0;

	/* value field is 8 bits long */
	while (value >= 1 << 8) {
		value >>= 1;
		shift++;
	}

	/* time slice register is only 18bits long */
	if ((value << shift) >= 1<<19) {
		pr_err("Requested timeslice value is clamped to 18 bits\n");
		value = 255;
		shift = 10;
	}

	*__timeslice_timeout = value;
	*__timeslice_scale = shift;

	return 0;
}

int channel_gk20a_update_runlist(struct channel_gk20a *c, bool add)
{
	return c->g->ops.fifo.update_runlist(c->g, c->runlist_id, c->chid, add, true);
}

int gk20a_enable_channel_tsg(struct gk20a *g, struct channel_gk20a *ch)
{
	struct tsg_gk20a *tsg;

	if (gk20a_is_channel_marked_as_tsg(ch)) {
		tsg = &g->fifo.tsg[ch->tsgid];
		g->ops.fifo.enable_tsg(tsg);
	} else {
		g->ops.fifo.enable_channel(ch);
	}

	return 0;
}

int gk20a_disable_channel_tsg(struct gk20a *g, struct channel_gk20a *ch)
{
	struct tsg_gk20a *tsg;

	if (gk20a_is_channel_marked_as_tsg(ch)) {
		tsg = &g->fifo.tsg[ch->tsgid];
		g->ops.fifo.disable_tsg(tsg);
	} else {
		g->ops.fifo.disable_channel(ch);
	}

	return 0;
}

void gk20a_channel_abort_clean_up(struct channel_gk20a *ch)
{
	struct channel_gk20a_job *job, *n;
	bool released_job_semaphore = false;
	bool pre_alloc_enabled = channel_gk20a_is_prealloc_enabled(ch);

	/* synchronize with actual job cleanup */
	nvgpu_mutex_acquire(&ch->joblist.cleanup_lock);

	/* ensure no fences are pending */
	nvgpu_mutex_acquire(&ch->sync_lock);
	if (ch->sync)
		ch->sync->set_min_eq_max(ch->sync);
	nvgpu_mutex_release(&ch->sync_lock);

	/* release all job semaphores (applies only to jobs that use
	   semaphore synchronization) */
	channel_gk20a_joblist_lock(ch);
	if (pre_alloc_enabled) {
		int tmp_get = ch->joblist.pre_alloc.get;
		int put = ch->joblist.pre_alloc.put;

		/*
		 * ensure put is read before any subsequent reads.
		 * see corresponding nvgpu_smp_wmb in gk20a_channel_add_job()
		 */
		nvgpu_smp_rmb();

		while (tmp_get != put) {
			job = &ch->joblist.pre_alloc.jobs[tmp_get];
			if (job->post_fence->semaphore) {
				__nvgpu_semaphore_release(
					job->post_fence->semaphore, true);
				released_job_semaphore = true;
			}
			tmp_get = (tmp_get + 1) % ch->joblist.pre_alloc.length;
		}
	} else {
		nvgpu_list_for_each_entry_safe(job, n,
				&ch->joblist.dynamic.jobs,
				channel_gk20a_job, list) {
			if (job->post_fence->semaphore) {
				__nvgpu_semaphore_release(
					job->post_fence->semaphore, true);
				released_job_semaphore = true;
			}
		}
	}
	channel_gk20a_joblist_unlock(ch);

	nvgpu_mutex_release(&ch->joblist.cleanup_lock);

	if (released_job_semaphore)
		nvgpu_cond_broadcast_interruptible(&ch->semaphore_wq);

	/*
	 * When closing the channel, this scheduled update holds one ref which
	 * is waited for before advancing with freeing.
	 */
	gk20a_channel_update(ch);
}

void gk20a_channel_abort(struct channel_gk20a *ch, bool channel_preempt)
{
	gk20a_dbg_fn("");

	if (gk20a_is_channel_marked_as_tsg(ch))
		return gk20a_fifo_abort_tsg(ch->g, ch->tsgid, channel_preempt);

	/* make sure new kickoffs are prevented */
	ch->has_timedout = true;

	ch->g->ops.fifo.disable_channel(ch);

	if (channel_preempt && ch->ch_ctx.gr_ctx)
		ch->g->ops.fifo.preempt_channel(ch->g, ch->chid);

	gk20a_channel_abort_clean_up(ch);
}

int gk20a_wait_channel_idle(struct channel_gk20a *ch)
{
	bool channel_idle = false;
	struct nvgpu_timeout timeout;

	nvgpu_timeout_init(ch->g, &timeout, gk20a_get_gr_idle_timeout(ch->g),
			   NVGPU_TIMER_CPU_TIMER);

	do {
		channel_gk20a_joblist_lock(ch);
		channel_idle = channel_gk20a_joblist_is_empty(ch);
		channel_gk20a_joblist_unlock(ch);
		if (channel_idle)
			break;

		nvgpu_usleep_range(1000, 3000);
	} while (!nvgpu_timeout_expired(&timeout));

	if (!channel_idle) {
		nvgpu_err(ch->g, "jobs not freed for channel %d",
				ch->chid);
		return -EBUSY;
	}

	return 0;
}

void gk20a_disable_channel(struct channel_gk20a *ch)
{
	gk20a_channel_abort(ch, true);
	channel_gk20a_update_runlist(ch, false);
}

int gk20a_channel_set_runlist_interleave(struct channel_gk20a *ch,
						u32 level)
{
	struct gk20a *g = ch->g;
	int ret;

	if (gk20a_is_channel_marked_as_tsg(ch)) {
		nvgpu_err(g, "invalid operation for TSG!");
		return -EINVAL;
	}

	switch (level) {
	case NVGPU_RUNLIST_INTERLEAVE_LEVEL_LOW:
	case NVGPU_RUNLIST_INTERLEAVE_LEVEL_MEDIUM:
	case NVGPU_RUNLIST_INTERLEAVE_LEVEL_HIGH:
		ret = g->ops.fifo.set_runlist_interleave(g, ch->chid,
							false, 0, level);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	gk20a_dbg(gpu_dbg_sched, "chid=%u interleave=%u", ch->chid, level);

	return ret ? ret : g->ops.fifo.update_runlist(g, ch->runlist_id, ~0, true, true);
}

/**
 * gk20a_set_error_notifier_locked()
 * Should be called with ch->error_notifier_mutex held
 */
void gk20a_set_error_notifier_locked(struct channel_gk20a *ch, __u32 error)
{
	if (ch->error_notifier_ref) {
		struct timespec time_data;
		u64 nsec;
		getnstimeofday(&time_data);
		nsec = ((u64)time_data.tv_sec) * 1000000000u +
				(u64)time_data.tv_nsec;
		ch->error_notifier->time_stamp.nanoseconds[0] =
				(u32)nsec;
		ch->error_notifier->time_stamp.nanoseconds[1] =
				(u32)(nsec >> 32);
		ch->error_notifier->info32 = error;
		ch->error_notifier->status = 0xffff;

		nvgpu_err(ch->g,
		    "error notifier set to %d for ch %d", error, ch->chid);
	}
}

void gk20a_set_error_notifier(struct channel_gk20a *ch, __u32 error)
{
	nvgpu_mutex_acquire(&ch->error_notifier_mutex);
	gk20a_set_error_notifier_locked(ch, error);
	nvgpu_mutex_release(&ch->error_notifier_mutex);
}

static void gk20a_wait_until_counter_is_N(
	struct channel_gk20a *ch, nvgpu_atomic_t *counter, int wait_value,
	struct nvgpu_cond *c, const char *caller, const char *counter_name)
{
	while (true) {
		if (NVGPU_COND_WAIT(
			    c,
			    nvgpu_atomic_read(counter) == wait_value,
			    5000) == 0)
			break;

		nvgpu_warn(ch->g,
			   "%s: channel %d, still waiting, %s left: %d, waiting for: %d",
			   caller, ch->chid, counter_name,
			   nvgpu_atomic_read(counter), wait_value);

		gk20a_channel_dump_ref_actions(ch);
	}
}

#if defined(CONFIG_GK20A_CYCLE_STATS)
void gk20a_channel_free_cycle_stats_buffer(struct channel_gk20a *ch)
{
	/* disable existing cyclestats buffer */
	nvgpu_mutex_acquire(&ch->cyclestate.cyclestate_buffer_mutex);
	if (ch->cyclestate.cyclestate_buffer_handler) {
		dma_buf_vunmap(ch->cyclestate.cyclestate_buffer_handler,
				ch->cyclestate.cyclestate_buffer);
		dma_buf_put(ch->cyclestate.cyclestate_buffer_handler);
		ch->cyclestate.cyclestate_buffer_handler = NULL;
		ch->cyclestate.cyclestate_buffer = NULL;
		ch->cyclestate.cyclestate_buffer_size = 0;
	}
	nvgpu_mutex_release(&ch->cyclestate.cyclestate_buffer_mutex);
}

int gk20a_channel_free_cycle_stats_snapshot(struct channel_gk20a *ch)
{
	int ret;

	nvgpu_mutex_acquire(&ch->cs_client_mutex);
	if (ch->cs_client) {
		ret = gr_gk20a_css_detach(ch, ch->cs_client);
		ch->cs_client = NULL;
	} else {
		ret = 0;
	}
	nvgpu_mutex_release(&ch->cs_client_mutex);

	return ret;
}

#endif

/* call ONLY when no references to the channel exist: after the last put */
static void gk20a_free_channel(struct channel_gk20a *ch, bool force)
{
	struct gk20a *g = ch->g;
	struct fifo_gk20a *f = &g->fifo;
	struct gr_gk20a *gr = &g->gr;
	struct vm_gk20a *ch_vm = ch->vm;
	unsigned long timeout = gk20a_get_gr_idle_timeout(g);
	struct dbg_session_gk20a *dbg_s;
	struct dbg_session_data *session_data, *tmp_s;
	struct dbg_session_channel_data *ch_data, *tmp;
	bool was_tsg = false;
	int err;

	gk20a_dbg_fn("");

	WARN_ON(ch->g == NULL);

	trace_gk20a_free_channel(ch->chid);

	/*
	 * Disable channel/TSG and unbind here. This should not be executed if
	 * HW access is not available during shutdown/removal path as it will
	 * trigger a timeout
	 */
	if (!nvgpu_is_enabled(g, NVGPU_DRIVER_IS_DYING)) {
		/* abort channel and remove from runlist */
		if (gk20a_is_channel_marked_as_tsg(ch)) {
			err = g->ops.fifo.tsg_unbind_channel(ch);
			if (err)
				nvgpu_err(g,
					"failed to unbind channel %d from TSG",
					ch->chid);
			/*
			 * Channel is not a part of TSG this point onwards
			 * So stash its status and use it whenever necessary
			 * e.g. while releasing gr_ctx in
			 * g->ops.gr.free_channel_ctx()
			 */
			was_tsg = true;
		} else {
			gk20a_disable_channel(ch);
		}
	}
	/* wait until there's only our ref to the channel */
	if (!force)
		gk20a_wait_until_counter_is_N(
			ch, &ch->ref_count, 1, &ch->ref_count_dec_wq,
			__func__, "references");

	/* wait until all pending interrupts for recently completed
	 * jobs are handled */
	nvgpu_wait_for_deferred_interrupts(g);

	/* prevent new refs */
	nvgpu_spinlock_acquire(&ch->ref_obtain_lock);
	if (!ch->referenceable) {
		nvgpu_spinlock_release(&ch->ref_obtain_lock);
		nvgpu_err(ch->g,
			  "Extra %s() called to channel %u",
			  __func__, ch->chid);
		return;
	}
	ch->referenceable = false;
	nvgpu_spinlock_release(&ch->ref_obtain_lock);

	/* matches with the initial reference in gk20a_open_new_channel() */
	nvgpu_atomic_dec(&ch->ref_count);

	/* wait until no more refs to the channel */
	if (!force)
		gk20a_wait_until_counter_is_N(
			ch, &ch->ref_count, 0, &ch->ref_count_dec_wq,
			__func__, "references");

	/* if engine reset was deferred, perform it now */
	nvgpu_mutex_acquire(&f->deferred_reset_mutex);
	if (g->fifo.deferred_reset_pending) {
		gk20a_dbg(gpu_dbg_intr | gpu_dbg_gpu_dbg, "engine reset was"
			   " deferred, running now");
		/* if lock is already taken, a reset is taking place
		so no need to repeat */
		if (nvgpu_mutex_tryacquire(&g->fifo.gr_reset_mutex)) {
			gk20a_fifo_deferred_reset(g, ch);
			nvgpu_mutex_release(&g->fifo.gr_reset_mutex);
		}
	}
	nvgpu_mutex_release(&f->deferred_reset_mutex);

	if (!gk20a_channel_as_bound(ch))
		goto unbind;

	gk20a_dbg_info("freeing bound channel context, timeout=%ld",
			timeout);

	if (g->ops.fecs_trace.unbind_channel && !ch->vpr)
		g->ops.fecs_trace.unbind_channel(g, ch);

	/* release channel ctx */
	g->ops.gr.free_channel_ctx(ch, was_tsg);

	gk20a_gr_flush_channel_tlb(gr);

	nvgpu_dma_unmap_free(ch_vm, &ch->gpfifo.mem);
	nvgpu_big_free(g, ch->gpfifo.pipe);
	memset(&ch->gpfifo, 0, sizeof(struct gpfifo_desc));

#if defined(CONFIG_GK20A_CYCLE_STATS)
	gk20a_channel_free_cycle_stats_buffer(ch);
	gk20a_channel_free_cycle_stats_snapshot(ch);
#endif

	channel_gk20a_free_priv_cmdbuf(ch);

	/* sync must be destroyed before releasing channel vm */
	nvgpu_mutex_acquire(&ch->sync_lock);
	if (ch->sync) {
		gk20a_channel_sync_destroy(ch->sync);
		ch->sync = NULL;
	}
	nvgpu_mutex_release(&ch->sync_lock);

	/*
	 * free the channel used semaphore index.
	 * we need to do this before releasing the address space,
	 * as the semaphore pool might get freed after that point.
	 */
	if (ch->hw_sema)
		nvgpu_semaphore_free_hw_sema(ch);

	/*
	 * When releasing the channel we unbind the VM - so release the ref.
	 */
	nvgpu_vm_put(ch_vm);

	nvgpu_spinlock_acquire(&ch->update_fn_lock);
	ch->update_fn = NULL;
	ch->update_fn_data = NULL;
	nvgpu_spinlock_release(&ch->update_fn_lock);
	cancel_work_sync(&ch->update_fn_work);

	/* make sure we don't have deferred interrupts pending that
	 * could still touch the channel */
	nvgpu_wait_for_deferred_interrupts(g);

unbind:
	g->ops.fifo.unbind_channel(ch);
	g->ops.fifo.free_inst(g, ch);

	/* put back the channel-wide submit ref from init */
	if (ch->deterministic) {
		down_read(&g->deterministic_busy);
		ch->deterministic = false;
		gk20a_idle(g);
		up_read(&g->deterministic_busy);
	}

	ch->vpr = false;
	ch->vm = NULL;

	WARN_ON(ch->sync);

	/* unlink all debug sessions */
	nvgpu_mutex_acquire(&g->dbg_sessions_lock);

	list_for_each_entry_safe(session_data, tmp_s,
				&ch->dbg_s_list, dbg_s_entry) {
		dbg_s = session_data->dbg_s;
		nvgpu_mutex_acquire(&dbg_s->ch_list_lock);
		list_for_each_entry_safe(ch_data, tmp,
					&dbg_s->ch_list, ch_entry) {
			if (ch_data->chid == ch->chid)
				dbg_unbind_single_channel_gk20a(dbg_s, ch_data);
		}
		nvgpu_mutex_release(&dbg_s->ch_list_lock);
	}

	nvgpu_mutex_release(&g->dbg_sessions_lock);

	/* free pre-allocated resources, if applicable */
	if (channel_gk20a_is_prealloc_enabled(ch))
		channel_gk20a_free_prealloc_resources(ch);

#if GK20A_CHANNEL_REFCOUNT_TRACKING
	memset(ch->ref_actions, 0, sizeof(ch->ref_actions));
	ch->ref_actions_put = 0;
#endif

	/* make sure we catch accesses of unopened channels in case
	 * there's non-refcounted channel pointers hanging around */
	ch->g = NULL;
	nvgpu_smp_wmb();

	/* ALWAYS last */
	free_channel(f, ch);
}

static void gk20a_channel_dump_ref_actions(struct channel_gk20a *ch)
{
#if GK20A_CHANNEL_REFCOUNT_TRACKING
	size_t i, get;
	s64 now = nvgpu_current_time_ms();
	s64 prev = 0;
	struct device *dev = dev_from_gk20a(ch->g);

	nvgpu_spinlock_acquire(&ch->ref_actions_lock);

	dev_info(dev, "ch %d: refs %d. Actions, most recent last:\n",
			ch->chid, nvgpu_atomic_read(&ch->ref_count));

	/* start at the oldest possible entry. put is next insertion point */
	get = ch->ref_actions_put;

	/*
	 * If the buffer is not full, this will first loop to the oldest entry,
	 * skipping not-yet-initialized entries. There is no ref_actions_get.
	 */
	for (i = 0; i < GK20A_CHANNEL_REFCOUNT_TRACKING; i++) {
		struct channel_gk20a_ref_action *act = &ch->ref_actions[get];

		if (act->trace.nr_entries) {
			dev_info(dev, "%s ref %zu steps ago (age %d ms, diff %d ms)\n",
				act->type == channel_gk20a_ref_action_get
					? "GET" : "PUT",
				GK20A_CHANNEL_REFCOUNT_TRACKING - 1 - i,
				now - act->timestamp_ms,
				act->timestamp_ms - prev);

			print_stack_trace(&act->trace, 0);
			prev = act->timestamp_ms;
		}

		get = (get + 1) % GK20A_CHANNEL_REFCOUNT_TRACKING;
	}

	nvgpu_spinlock_release(&ch->ref_actions_lock);
#endif
}

static void gk20a_channel_save_ref_source(struct channel_gk20a *ch,
		enum channel_gk20a_ref_action_type type)
{
#if GK20A_CHANNEL_REFCOUNT_TRACKING
	struct channel_gk20a_ref_action *act;

	nvgpu_spinlock_acquire(&ch->ref_actions_lock);

	act = &ch->ref_actions[ch->ref_actions_put];
	act->type = type;
	act->trace.max_entries = GK20A_CHANNEL_REFCOUNT_TRACKING_STACKLEN;
	act->trace.nr_entries = 0;
	act->trace.skip = 3; /* onwards from the caller of this */
	act->trace.entries = act->trace_entries;
	save_stack_trace(&act->trace);
	act->timestamp_ms = nvgpu_current_time_ms();
	ch->ref_actions_put = (ch->ref_actions_put + 1) %
		GK20A_CHANNEL_REFCOUNT_TRACKING;

	nvgpu_spinlock_release(&ch->ref_actions_lock);
#endif
}

/* Try to get a reference to the channel. Return nonzero on success. If fails,
 * the channel is dead or being freed elsewhere and you must not touch it.
 *
 * Always when a channel_gk20a pointer is seen and about to be used, a
 * reference must be held to it - either by you or the caller, which should be
 * documented well or otherwise clearly seen. This usually boils down to the
 * file from ioctls directly, or an explicit get in exception handlers when the
 * channel is found by a chid.
 *
 * Most global functions in this file require a reference to be held by the
 * caller.
 */
struct channel_gk20a *_gk20a_channel_get(struct channel_gk20a *ch,
					 const char *caller) {
	struct channel_gk20a *ret;

	nvgpu_spinlock_acquire(&ch->ref_obtain_lock);

	if (likely(ch->referenceable)) {
		gk20a_channel_save_ref_source(ch, channel_gk20a_ref_action_get);
		nvgpu_atomic_inc(&ch->ref_count);
		ret = ch;
	} else
		ret = NULL;

	nvgpu_spinlock_release(&ch->ref_obtain_lock);

	if (ret)
		trace_gk20a_channel_get(ch->chid, caller);

	return ret;
}

void _gk20a_channel_put(struct channel_gk20a *ch, const char *caller)
{
	gk20a_channel_save_ref_source(ch, channel_gk20a_ref_action_put);
	trace_gk20a_channel_put(ch->chid, caller);
	nvgpu_atomic_dec(&ch->ref_count);
	nvgpu_cond_broadcast(&ch->ref_count_dec_wq);

	/* More puts than gets. Channel is probably going to get
	 * stuck. */
	WARN_ON(nvgpu_atomic_read(&ch->ref_count) < 0);

	/* Also, more puts than gets. ref_count can go to 0 only if
	 * the channel is closing. Channel is probably going to get
	 * stuck. */
	WARN_ON(nvgpu_atomic_read(&ch->ref_count) == 0 && ch->referenceable);
}

void gk20a_channel_close(struct channel_gk20a *ch)
{
	gk20a_free_channel(ch, false);
}

/*
 * Be careful with this - it is meant for terminating channels when we know the
 * driver is otherwise dying. Ref counts and the like are ignored by this
 * version of the cleanup.
 */
void __gk20a_channel_kill(struct channel_gk20a *ch)
{
	gk20a_free_channel(ch, true);
}

static void gk20a_channel_update_runcb_fn(struct work_struct *work)
{
	struct channel_gk20a *ch =
		container_of(work, struct channel_gk20a, update_fn_work);
	void (*update_fn)(struct channel_gk20a *, void *);
	void *update_fn_data;

	nvgpu_spinlock_acquire(&ch->update_fn_lock);
	update_fn = ch->update_fn;
	update_fn_data = ch->update_fn_data;
	nvgpu_spinlock_release(&ch->update_fn_lock);

	if (update_fn)
		update_fn(ch, update_fn_data);
}

struct channel_gk20a *gk20a_open_new_channel_with_cb(struct gk20a *g,
		void (*update_fn)(struct channel_gk20a *, void *),
		void *update_fn_data,
		int runlist_id,
		bool is_privileged_channel)
{
	struct channel_gk20a *ch = gk20a_open_new_channel(g, runlist_id, is_privileged_channel);

	if (ch) {
		nvgpu_spinlock_acquire(&ch->update_fn_lock);
		ch->update_fn = update_fn;
		ch->update_fn_data = update_fn_data;
		nvgpu_spinlock_release(&ch->update_fn_lock);
	}

	return ch;
}

struct channel_gk20a *gk20a_open_new_channel(struct gk20a *g,
		s32 runlist_id,
		bool is_privileged_channel)
{
	struct fifo_gk20a *f = &g->fifo;
	struct channel_gk20a *ch;
	struct gk20a_event_id_data *event_id_data, *event_id_data_temp;

	/* compatibility with existing code */
	if (!gk20a_fifo_is_valid_runlist_id(g, runlist_id)) {
		runlist_id = gk20a_fifo_get_gr_runlist_id(g);
	}

	gk20a_dbg_fn("");

	ch = allocate_channel(f);
	if (ch == NULL) {
		/* TBD: we want to make this virtualizable */
		nvgpu_err(g, "out of hw chids");
		return NULL;
	}

	trace_gk20a_open_new_channel(ch->chid);

	BUG_ON(ch->g);
	ch->g = g;

	/* Runlist for the channel */
	ch->runlist_id = runlist_id;

	/* Channel privilege level */
	ch->is_privileged_channel = is_privileged_channel;

	if (g->ops.fifo.alloc_inst(g, ch)) {
		ch->g = NULL;
		free_channel(f, ch);
		nvgpu_err(g,
			   "failed to open gk20a channel, out of inst mem");
		return NULL;
	}

	/* now the channel is in a limbo out of the free list but not marked as
	 * alive and used (i.e. get-able) yet */

	ch->pid = current->pid;
	ch->tgid = current->tgid;  /* process granularity for FECS traces */

	/* unhook all events created on this channel */
	nvgpu_mutex_acquire(&ch->event_id_list_lock);
	nvgpu_list_for_each_entry_safe(event_id_data, event_id_data_temp,
				&ch->event_id_list,
				gk20a_event_id_data,
				event_id_node) {
		nvgpu_list_del(&event_id_data->event_id_node);
	}
	nvgpu_mutex_release(&ch->event_id_list_lock);

	/* By default, channel is regular (non-TSG) channel */
	ch->tsgid = NVGPU_INVALID_TSG_ID;

	/* reset timeout counter and update timestamp */
	ch->timeout_accumulated_ms = 0;
	ch->timeout_gpfifo_get = 0;
	/* set gr host default timeout */
	ch->timeout_ms_max = gk20a_get_gr_idle_timeout(g);
	ch->timeout_debug_dump = true;
	ch->has_timedout = false;
	ch->wdt_enabled = true;
	ch->obj_class = 0;
	ch->interleave_level = NVGPU_RUNLIST_INTERLEAVE_LEVEL_LOW;
	ch->timeslice_us = g->timeslice_low_priority_us;
#ifdef CONFIG_TEGRA_19x_GPU
	memset(&ch->t19x, 0, sizeof(struct channel_t19x));
#endif


	/* The channel is *not* runnable at this point. It still needs to have
	 * an address space bound and allocate a gpfifo and grctx. */

	nvgpu_cond_init(&ch->notifier_wq);
	nvgpu_cond_init(&ch->semaphore_wq);

	ch->update_fn = NULL;
	ch->update_fn_data = NULL;
	nvgpu_spinlock_init(&ch->update_fn_lock);
	INIT_WORK(&ch->update_fn_work, gk20a_channel_update_runcb_fn);

	/* Mark the channel alive, get-able, with 1 initial use
	 * references. The initial reference will be decreased in
	 * gk20a_free_channel() */
	ch->referenceable = true;
	nvgpu_atomic_set(&ch->ref_count, 1);
	nvgpu_smp_wmb();

	return ch;
}

/* allocate private cmd buffer.
   used for inserting commands before/after user submitted buffers. */
static int channel_gk20a_alloc_priv_cmdbuf(struct channel_gk20a *c)
{
	struct gk20a *g = c->g;
	struct vm_gk20a *ch_vm = c->vm;
	struct priv_cmd_queue *q = &c->priv_cmd_q;
	u32 size;
	int err = 0;

	/*
	 * Compute the amount of priv_cmdbuf space we need. In general the worst
	 * case is the kernel inserts both a semaphore pre-fence and post-fence.
	 * Any sync-pt fences will take less memory so we can ignore them for
	 * now.
	 *
	 * A semaphore ACQ (fence-wait) is 8 dwords: semaphore_a, semaphore_b,
	 * semaphore_c, and semaphore_d. A semaphore INCR (fence-get) will be 10
	 * dwords: all the same as an ACQ plus a non-stalling intr which is
	 * another 2 dwords.
	 *
	 * Lastly the number of gpfifo entries per channel is fixed so at most
	 * we can use 2/3rds of the gpfifo entries (1 pre-fence entry, one
	 * userspace entry, and one post-fence entry). Thus the computation is:
	 *
	 *   (gpfifo entry number * (2 / 3) * (8 + 10) * 4 bytes.
	 */
	size = roundup_pow_of_two(c->gpfifo.entry_num *
				  2 * 18 * sizeof(u32) / 3);

	err = nvgpu_dma_alloc_map_sys(ch_vm, size, &q->mem);
	if (err) {
		nvgpu_err(g, "%s: memory allocation failed", __func__);
		goto clean_up;
	}

	q->size = q->mem.size / sizeof (u32);

	return 0;

clean_up:
	channel_gk20a_free_priv_cmdbuf(c);
	return err;
}

static void channel_gk20a_free_priv_cmdbuf(struct channel_gk20a *c)
{
	struct vm_gk20a *ch_vm = c->vm;
	struct priv_cmd_queue *q = &c->priv_cmd_q;

	if (q->size == 0)
		return;

	nvgpu_dma_unmap_free(ch_vm, &q->mem);

	memset(q, 0, sizeof(struct priv_cmd_queue));
}

/* allocate a cmd buffer with given size. size is number of u32 entries */
int gk20a_channel_alloc_priv_cmdbuf(struct channel_gk20a *c, u32 orig_size,
			     struct priv_cmd_entry *e)
{
	struct priv_cmd_queue *q = &c->priv_cmd_q;
	u32 free_count;
	u32 size = orig_size;

	gk20a_dbg_fn("size %d", orig_size);

	if (!e) {
		nvgpu_err(c->g,
			"ch %d: priv cmd entry is null",
			c->chid);
		return -EINVAL;
	}

	/* if free space in the end is less than requested, increase the size
	 * to make the real allocated space start from beginning. */
	if (q->put + size > q->size)
		size = orig_size + (q->size - q->put);

	gk20a_dbg_info("ch %d: priv cmd queue get:put %d:%d",
			c->chid, q->get, q->put);

	free_count = (q->size - (q->put - q->get) - 1) % q->size;

	if (size > free_count)
		return -EAGAIN;

	e->size = orig_size;
	e->mem = &q->mem;

	/* if we have increased size to skip free space in the end, set put
	   to beginning of cmd buffer (0) + size */
	if (size != orig_size) {
		e->off = 0;
		e->gva = q->mem.gpu_va;
		q->put = orig_size;
	} else {
		e->off = q->put;
		e->gva = q->mem.gpu_va + q->put * sizeof(u32);
		q->put = (q->put + orig_size) & (q->size - 1);
	}

	/* we already handled q->put + size > q->size so BUG_ON this */
	BUG_ON(q->put > q->size);

	/*
	 * commit the previous writes before making the entry valid.
	 * see the corresponding nvgpu_smp_rmb() in gk20a_free_priv_cmdbuf().
	 */
	nvgpu_smp_wmb();

	e->valid = true;
	gk20a_dbg_fn("done");

	return 0;
}

/* Don't call this to free an explict cmd entry.
 * It doesn't update priv_cmd_queue get/put */
static void free_priv_cmdbuf(struct channel_gk20a *c,
			     struct priv_cmd_entry *e)
{
	if (channel_gk20a_is_prealloc_enabled(c))
		memset(e, 0, sizeof(struct priv_cmd_entry));
	else
		nvgpu_kfree(c->g, e);
}

static int channel_gk20a_alloc_job(struct channel_gk20a *c,
		struct channel_gk20a_job **job_out)
{
	int err = 0;

	if (channel_gk20a_is_prealloc_enabled(c)) {
		int put = c->joblist.pre_alloc.put;
		int get = c->joblist.pre_alloc.get;

		/*
		 * ensure all subsequent reads happen after reading get.
		 * see corresponding nvgpu_smp_wmb in
		 * gk20a_channel_clean_up_jobs()
		 */
		nvgpu_smp_rmb();

		if (CIRC_SPACE(put, get, c->joblist.pre_alloc.length))
			*job_out = &c->joblist.pre_alloc.jobs[put];
		else {
			nvgpu_warn(c->g,
					"out of job ringbuffer space");
			err = -EAGAIN;
		}
	} else {
		*job_out = nvgpu_kzalloc(c->g,
					 sizeof(struct channel_gk20a_job));
		if (!*job_out)
			err = -ENOMEM;
	}

	return err;
}

static void channel_gk20a_free_job(struct channel_gk20a *c,
		struct channel_gk20a_job *job)
{
	/*
	 * In case of pre_allocated jobs, we need to clean out
	 * the job but maintain the pointers to the priv_cmd_entry,
	 * since they're inherently tied to the job node.
	 */
	if (channel_gk20a_is_prealloc_enabled(c)) {
		struct priv_cmd_entry *wait_cmd = job->wait_cmd;
		struct priv_cmd_entry *incr_cmd = job->incr_cmd;
		memset(job, 0, sizeof(*job));
		job->wait_cmd = wait_cmd;
		job->incr_cmd = incr_cmd;
	} else
		nvgpu_kfree(c->g, job);
}

void channel_gk20a_joblist_lock(struct channel_gk20a *c)
{
	if (channel_gk20a_is_prealloc_enabled(c))
		nvgpu_mutex_acquire(&c->joblist.pre_alloc.read_lock);
	else
		nvgpu_spinlock_acquire(&c->joblist.dynamic.lock);
}

void channel_gk20a_joblist_unlock(struct channel_gk20a *c)
{
	if (channel_gk20a_is_prealloc_enabled(c))
		nvgpu_mutex_release(&c->joblist.pre_alloc.read_lock);
	else
		nvgpu_spinlock_release(&c->joblist.dynamic.lock);
}

static struct channel_gk20a_job *channel_gk20a_joblist_peek(
		struct channel_gk20a *c)
{
	int get;
	struct channel_gk20a_job *job = NULL;

	if (channel_gk20a_is_prealloc_enabled(c)) {
		if (!channel_gk20a_joblist_is_empty(c)) {
			get = c->joblist.pre_alloc.get;
			job = &c->joblist.pre_alloc.jobs[get];
		}
	} else {
		if (!nvgpu_list_empty(&c->joblist.dynamic.jobs))
			job = nvgpu_list_first_entry(&c->joblist.dynamic.jobs,
				       channel_gk20a_job, list);
	}

	return job;
}

static void channel_gk20a_joblist_add(struct channel_gk20a *c,
		struct channel_gk20a_job *job)
{
	if (channel_gk20a_is_prealloc_enabled(c)) {
		c->joblist.pre_alloc.put = (c->joblist.pre_alloc.put + 1) %
				(c->joblist.pre_alloc.length);
	} else {
		nvgpu_list_add_tail(&job->list, &c->joblist.dynamic.jobs);
	}
}

static void channel_gk20a_joblist_delete(struct channel_gk20a *c,
		struct channel_gk20a_job *job)
{
	if (channel_gk20a_is_prealloc_enabled(c)) {
		c->joblist.pre_alloc.get = (c->joblist.pre_alloc.get + 1) %
				(c->joblist.pre_alloc.length);
	} else {
		nvgpu_list_del(&job->list);
	}
}

bool channel_gk20a_joblist_is_empty(struct channel_gk20a *c)
{
	if (channel_gk20a_is_prealloc_enabled(c)) {
		int get = c->joblist.pre_alloc.get;
		int put = c->joblist.pre_alloc.put;
		return !(CIRC_CNT(put, get, c->joblist.pre_alloc.length));
	}

	return nvgpu_list_empty(&c->joblist.dynamic.jobs);
}

bool channel_gk20a_is_prealloc_enabled(struct channel_gk20a *c)
{
	bool pre_alloc_enabled = c->joblist.pre_alloc.enabled;

	nvgpu_smp_rmb();
	return pre_alloc_enabled;
}

static int channel_gk20a_prealloc_resources(struct channel_gk20a *c,
	       unsigned int num_jobs)
{
	unsigned int i;
	int err;
	size_t size;
	struct priv_cmd_entry *entries = NULL;

	if (channel_gk20a_is_prealloc_enabled(c) || !num_jobs)
		return -EINVAL;

	/*
	 * pre-allocate the job list.
	 * since vmalloc take in an unsigned long, we need
	 * to make sure we don't hit an overflow condition
	 */
	size = sizeof(struct channel_gk20a_job);
	if (num_jobs <= ULONG_MAX / size)
		c->joblist.pre_alloc.jobs = nvgpu_vzalloc(c->g,
							  num_jobs * size);
	if (!c->joblist.pre_alloc.jobs) {
		err = -ENOMEM;
		goto clean_up;
	}

	/*
	 * pre-allocate 2x priv_cmd_entry for each job up front.
	 * since vmalloc take in an unsigned long, we need
	 * to make sure we don't hit an overflow condition
	 */
	size = sizeof(struct priv_cmd_entry);
	if (num_jobs <= ULONG_MAX / (size << 1))
		entries = nvgpu_vzalloc(c->g, (num_jobs << 1) * size);
	if (!entries) {
		err = -ENOMEM;
		goto clean_up_joblist;
	}

	for (i = 0; i < num_jobs; i++) {
		c->joblist.pre_alloc.jobs[i].wait_cmd = &entries[i];
		c->joblist.pre_alloc.jobs[i].incr_cmd =
			&entries[i + num_jobs];
	}

	/* pre-allocate a fence pool */
	err = gk20a_alloc_fence_pool(c, num_jobs);
	if (err)
		goto clean_up_priv_cmd;

	c->joblist.pre_alloc.length = num_jobs;

	/*
	 * commit the previous writes before setting the flag.
	 * see corresponding nvgpu_smp_rmb in
	 * channel_gk20a_is_prealloc_enabled()
	 */
	nvgpu_smp_wmb();
	c->joblist.pre_alloc.enabled = true;

	return 0;

clean_up_priv_cmd:
	nvgpu_vfree(c->g, entries);
clean_up_joblist:
	nvgpu_vfree(c->g, c->joblist.pre_alloc.jobs);
clean_up:
	memset(&c->joblist.pre_alloc, 0, sizeof(c->joblist.pre_alloc));
	return err;
}

static void channel_gk20a_free_prealloc_resources(struct channel_gk20a *c)
{
	nvgpu_vfree(c->g, c->joblist.pre_alloc.jobs[0].wait_cmd);
	nvgpu_vfree(c->g, c->joblist.pre_alloc.jobs);
	gk20a_free_fence_pool(c);

	/*
	 * commit the previous writes before disabling the flag.
	 * see corresponding nvgpu_smp_rmb in
	 * channel_gk20a_is_prealloc_enabled()
	 */
	nvgpu_smp_wmb();
	c->joblist.pre_alloc.enabled = false;
}

int gk20a_channel_alloc_gpfifo(struct channel_gk20a *c,
		unsigned int num_entries,
		unsigned int num_inflight_jobs,
		u32 flags)
{
	struct gk20a *g = c->g;
	struct vm_gk20a *ch_vm;
	u32 gpfifo_size;
	int err = 0;
	unsigned long acquire_timeout;

	gpfifo_size = num_entries;

	if (flags & NVGPU_ALLOC_GPFIFO_EX_FLAGS_VPR_ENABLED)
		c->vpr = true;

	if (flags & NVGPU_ALLOC_GPFIFO_EX_FLAGS_DETERMINISTIC) {
		down_read(&g->deterministic_busy);
		/*
		 * Railgating isn't deterministic; instead of disallowing
		 * railgating globally, take a power refcount for this
		 * channel's lifetime. The gk20a_idle() pair for this happens
		 * when the channel gets freed.
		 *
		 * Deterministic flag and this busy must be atomic within the
		 * busy lock.
		 */
		err = gk20a_busy(g);
		if (err) {
			up_read(&g->deterministic_busy);
			return err;
		}

		c->deterministic = true;
		up_read(&g->deterministic_busy);
	}

	/* an address space needs to have been bound at this point. */
	if (!gk20a_channel_as_bound(c)) {
		nvgpu_err(g,
			    "not bound to an address space at time of gpfifo"
			    " allocation.");
		err = -EINVAL;
		goto clean_up_idle;
	}
	ch_vm = c->vm;

	if (c->gpfifo.mem.size) {
		nvgpu_err(g, "channel %d :"
			   "gpfifo already allocated", c->chid);
		err = -EEXIST;
		goto clean_up_idle;
	}

	err = nvgpu_dma_alloc_map_sys(ch_vm,
			gpfifo_size * sizeof(struct nvgpu_gpfifo),
			&c->gpfifo.mem);
	if (err) {
		nvgpu_err(g, "%s: memory allocation failed", __func__);
		goto clean_up;
	}

	if (c->gpfifo.mem.aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
		c->gpfifo.pipe = nvgpu_big_malloc(g,
				gpfifo_size * sizeof(struct nvgpu_gpfifo));
		if (!c->gpfifo.pipe) {
			err = -ENOMEM;
			goto clean_up_unmap;
		}
	}

	c->gpfifo.entry_num = gpfifo_size;
	c->gpfifo.get = c->gpfifo.put = 0;

	gk20a_dbg_info("channel %d : gpfifo_base 0x%016llx, size %d",
		c->chid, c->gpfifo.mem.gpu_va, c->gpfifo.entry_num);

	g->ops.fifo.setup_userd(c);

	if (!g->aggressive_sync_destroy_thresh) {
		nvgpu_mutex_acquire(&c->sync_lock);
		c->sync = gk20a_channel_sync_create(c);
		if (!c->sync) {
			err = -ENOMEM;
			nvgpu_mutex_release(&c->sync_lock);
			goto clean_up_unmap;
		}
		nvgpu_mutex_release(&c->sync_lock);

		if (g->ops.fifo.resetup_ramfc) {
			err = g->ops.fifo.resetup_ramfc(c);
			if (err)
				goto clean_up_sync;
		}
	}

	if (!c->g->timeouts_enabled || !c->wdt_enabled)
		acquire_timeout = 0;
	else
		acquire_timeout = gk20a_get_channel_watchdog_timeout(c);

	err = g->ops.fifo.setup_ramfc(c, c->gpfifo.mem.gpu_va,
					c->gpfifo.entry_num,
					acquire_timeout, flags);
	if (err)
		goto clean_up_sync;

	/* TBD: setup engine contexts */

	if (num_inflight_jobs) {
		err = channel_gk20a_prealloc_resources(c,
				num_inflight_jobs);
		if (err)
			goto clean_up_sync;
	}

	err = channel_gk20a_alloc_priv_cmdbuf(c);
	if (err)
		goto clean_up_prealloc;

	err = channel_gk20a_update_runlist(c, true);
	if (err)
		goto clean_up_priv_cmd;

	g->ops.fifo.bind_channel(c);

	gk20a_dbg_fn("done");
	return 0;

clean_up_priv_cmd:
	channel_gk20a_free_priv_cmdbuf(c);
clean_up_prealloc:
	if (num_inflight_jobs)
		channel_gk20a_free_prealloc_resources(c);
clean_up_sync:
	if (c->sync) {
		gk20a_channel_sync_destroy(c->sync);
		c->sync = NULL;
	}
clean_up_unmap:
	nvgpu_big_free(g, c->gpfifo.pipe);
	nvgpu_dma_unmap_free(ch_vm, &c->gpfifo.mem);
clean_up:
	memset(&c->gpfifo, 0, sizeof(struct gpfifo_desc));
clean_up_idle:
	if (c->deterministic) {
		down_read(&g->deterministic_busy);
		gk20a_idle(g);
		c->deterministic = false;
		up_read(&g->deterministic_busy);
	}
	nvgpu_err(g, "fail");
	return err;
}

/* Update with this periodically to determine how the gpfifo is draining. */
static inline u32 update_gp_get(struct gk20a *g,
				struct channel_gk20a *c)
{
	u32 new_get = g->ops.fifo.userd_gp_get(g, c);

	if (new_get < c->gpfifo.get)
		c->gpfifo.wrap = !c->gpfifo.wrap;
	c->gpfifo.get = new_get;
	return new_get;
}

static inline u32 gp_free_count(struct channel_gk20a *c)
{
	return (c->gpfifo.entry_num - (c->gpfifo.put - c->gpfifo.get) - 1) %
		c->gpfifo.entry_num;
}

bool gk20a_channel_update_and_check_timeout(struct channel_gk20a *ch,
		u32 timeout_delta_ms, bool *progress)
{
	u32 gpfifo_get = update_gp_get(ch->g, ch);

	/* Count consequent timeout isr */
	if (gpfifo_get == ch->timeout_gpfifo_get) {
		/* we didn't advance since previous channel timeout check */
		ch->timeout_accumulated_ms += timeout_delta_ms;
		*progress = false;
	} else {
		/* first timeout isr encountered */
		ch->timeout_accumulated_ms = timeout_delta_ms;
		*progress = true;
	}

	ch->timeout_gpfifo_get = gpfifo_get;

	return ch->g->timeouts_enabled &&
		ch->timeout_accumulated_ms > ch->timeout_ms_max;
}

static u32 gk20a_get_channel_watchdog_timeout(struct channel_gk20a *ch)
{
	return ch->g->ch_wdt_timeout_ms;
}

static u32 get_gp_free_count(struct channel_gk20a *c)
{
	update_gp_get(c->g, c);
	return gp_free_count(c);
}

#ifdef CONFIG_DEBUG_FS
static void trace_write_pushbuffer(struct channel_gk20a *c,
				   struct nvgpu_gpfifo *g)
{
	void *mem = NULL;
	unsigned int words;
	u64 offset;
	struct dma_buf *dmabuf = NULL;

	if (gk20a_debug_trace_cmdbuf) {
		u64 gpu_va = (u64)g->entry0 |
			(u64)((u64)pbdma_gp_entry1_get_hi_v(g->entry1) << 32);
		int err;

		words = pbdma_gp_entry1_length_v(g->entry1);
		err = nvgpu_vm_find_buf(c->vm, gpu_va, &dmabuf, &offset);
		if (!err)
			mem = dma_buf_vmap(dmabuf);
	}

	if (mem) {
		u32 i;
		/*
		 * Write in batches of 128 as there seems to be a limit
		 * of how much you can output to ftrace at once.
		 */
		for (i = 0; i < words; i += 128U) {
			trace_gk20a_push_cmdbuf(
				c->g->name,
				0,
				min(words - i, 128U),
				offset + i * sizeof(u32),
				mem);
		}
		dma_buf_vunmap(dmabuf, mem);
	}
}
#endif

static void trace_write_pushbuffer_range(struct channel_gk20a *c,
					 struct nvgpu_gpfifo *g,
					 struct nvgpu_gpfifo __user *user_gpfifo,
					 int offset,
					 int count)
{
#ifdef CONFIG_DEBUG_FS
	u32 size;
	int i;
	struct nvgpu_gpfifo *gp;
	bool gpfifo_allocated = false;

	if (!gk20a_debug_trace_cmdbuf)
		return;

	if (!g && !user_gpfifo)
		return;

	if (!g) {
		size = count * sizeof(struct nvgpu_gpfifo);
		if (size) {
			g = nvgpu_big_malloc(c->g, size);
			if (!g)
				return;

			if (copy_from_user(g, user_gpfifo, size)) {
				nvgpu_big_free(c->g, g);
				return;
			}
		}
		gpfifo_allocated = true;
	}

	gp = g + offset;
	for (i = 0; i < count; i++, gp++)
		trace_write_pushbuffer(c, gp);

	if (gpfifo_allocated)
		nvgpu_big_free(c->g, g);
#endif
}

static void __gk20a_channel_timeout_start(struct channel_gk20a *ch)
{
	ch->timeout.gp_get = ch->g->ops.fifo.userd_gp_get(ch->g, ch);
	ch->timeout.pb_get = ch->g->ops.fifo.userd_pb_get(ch->g, ch);
	ch->timeout.running = true;
	nvgpu_timeout_init(ch->g, &ch->timeout.timer,
			gk20a_get_channel_watchdog_timeout(ch),
			NVGPU_TIMER_CPU_TIMER);
}

/**
 * Start a timeout counter (watchdog) on this channel.
 *
 * Trigger a watchdog to recover the channel after the per-platform timeout
 * duration (but strictly no earlier) if the channel hasn't advanced within
 * that time.
 *
 * If the timeout is already running, do nothing. This should be called when
 * new jobs are submitted. The timeout will stop when the last tracked job
 * finishes, making the channel idle.
 *
 * The channel's gpfifo read pointer will be used to determine if the job has
 * actually stuck at that time. After the timeout duration has expired, a
 * worker thread will consider the channel stuck and recover it if stuck.
 */
static void gk20a_channel_timeout_start(struct channel_gk20a *ch)
{
	if (!ch->g->timeouts_enabled || !gk20a_get_channel_watchdog_timeout(ch))
		return;

	if (!ch->wdt_enabled)
		return;

	nvgpu_raw_spinlock_acquire(&ch->timeout.lock);

	if (ch->timeout.running) {
		nvgpu_raw_spinlock_release(&ch->timeout.lock);
		return;
	}
	__gk20a_channel_timeout_start(ch);
	nvgpu_raw_spinlock_release(&ch->timeout.lock);
}

/**
 * Stop a running timeout counter (watchdog) on this channel.
 *
 * Make the watchdog consider the channel not running, so that it won't get
 * recovered even if no progress is detected. Progress is not tracked if the
 * watchdog is turned off.
 *
 * No guarantees are made about concurrent execution of the timeout handler.
 * (This should be called from an update handler running in the same thread
 * with the watchdog.)
 */
static bool gk20a_channel_timeout_stop(struct channel_gk20a *ch)
{
	bool was_running;

	nvgpu_raw_spinlock_acquire(&ch->timeout.lock);
	was_running = ch->timeout.running;
	ch->timeout.running = false;
	nvgpu_raw_spinlock_release(&ch->timeout.lock);
	return was_running;
}

/**
 * Continue a previously stopped timeout
 *
 * Enable the timeout again but don't reinitialize its timer.
 *
 * No guarantees are made about concurrent execution of the timeout handler.
 * (This should be called from an update handler running in the same thread
 * with the watchdog.)
 */
static void gk20a_channel_timeout_continue(struct channel_gk20a *ch)
{
	nvgpu_raw_spinlock_acquire(&ch->timeout.lock);
	ch->timeout.running = true;
	nvgpu_raw_spinlock_release(&ch->timeout.lock);
}

/**
 * Rewind the timeout on each non-dormant channel.
 *
 * Reschedule the timeout of each active channel for which timeouts are running
 * as if something was happened on each channel right now. This should be
 * called when a global hang is detected that could cause a false positive on
 * other innocent channels.
 */
void gk20a_channel_timeout_restart_all_channels(struct gk20a *g)
{
	struct fifo_gk20a *f = &g->fifo;
	u32 chid;

	for (chid = 0; chid < f->num_channels; chid++) {
		struct channel_gk20a *ch = &f->channel[chid];

		if (!gk20a_channel_get(ch))
			continue;

		nvgpu_raw_spinlock_acquire(&ch->timeout.lock);
		if (ch->timeout.running)
			__gk20a_channel_timeout_start(ch);
		nvgpu_raw_spinlock_release(&ch->timeout.lock);

		gk20a_channel_put(ch);
	}
}

/**
 * Check if a timed out channel has hung and recover it if it has.
 *
 * Test if this channel has really got stuck at this point (should be called
 * when the watchdog timer has expired) by checking if its gp_get has advanced
 * or not. If no gp_get action happened since when the watchdog was started,
 * force-reset the channel.
 *
 * The gpu is implicitly on at this point, because the watchdog can only run on
 * channels that have submitted jobs pending for cleanup.
 */
static void gk20a_channel_timeout_handler(struct channel_gk20a *ch)
{
	struct gk20a *g = ch->g;
	u32 gp_get;
	u32 new_gp_get;
	u64 pb_get;
	u64 new_pb_get;

	gk20a_dbg_fn("");

	/* Get status and clear the timer */
	nvgpu_raw_spinlock_acquire(&ch->timeout.lock);
	gp_get = ch->timeout.gp_get;
	pb_get = ch->timeout.pb_get;
	ch->timeout.running = false;
	nvgpu_raw_spinlock_release(&ch->timeout.lock);

	new_gp_get = g->ops.fifo.userd_gp_get(ch->g, ch);
	new_pb_get = g->ops.fifo.userd_pb_get(ch->g, ch);

	if (new_gp_get != gp_get || new_pb_get != pb_get) {
		/* Channel has advanced, reschedule */
		gk20a_channel_timeout_start(ch);
		return;
	}

	nvgpu_err(g, "Job on channel %d timed out",
		  ch->chid);

	gk20a_debug_dump(g);
	gk20a_gr_debug_dump(g);

	g->ops.fifo.force_reset_ch(ch,
		NVGPU_CHANNEL_FIFO_ERROR_IDLE_TIMEOUT, true);
}

/**
 * Test if the per-channel timeout is expired and handle the timeout in that case.
 *
 * Each channel has an expiration time based watchdog. The timer is
 * (re)initialized in two situations: when a new job is submitted on an idle
 * channel and when the timeout is checked but progress is detected.
 *
 * Watchdog timeout does not yet necessarily mean a stuck channel so this may
 * or may not cause recovery.
 *
 * The timeout is stopped (disabled) after the last job in a row finishes
 * making the channel idle.
 */
static void gk20a_channel_timeout_check(struct channel_gk20a *ch)
{
	bool timed_out;

	nvgpu_raw_spinlock_acquire(&ch->timeout.lock);
	timed_out = ch->timeout.running &&
		nvgpu_timeout_peek_expired(&ch->timeout.timer);
	nvgpu_raw_spinlock_release(&ch->timeout.lock);

	if (timed_out)
		gk20a_channel_timeout_handler(ch);
}

/**
 * Loop every living channel, check timeouts and handle stuck channels.
 */
static void gk20a_channel_poll_timeouts(struct gk20a *g)
{
	unsigned int chid;


	for (chid = 0; chid < g->fifo.num_channels; chid++) {
		struct channel_gk20a *ch = &g->fifo.channel[chid];

		if (gk20a_channel_get(ch)) {
			gk20a_channel_timeout_check(ch);
			gk20a_channel_put(ch);
		}
	}
}

/*
 * Process one scheduled work item for this channel. Currently, the only thing
 * the worker does is job cleanup handling.
 */
static void gk20a_channel_worker_process_ch(struct channel_gk20a *ch)
{
	gk20a_dbg_fn("");

	gk20a_channel_clean_up_jobs(ch, true);

	/* ref taken when enqueued */
	gk20a_channel_put(ch);
}

/**
 * Tell the worker that one more work needs to be done.
 *
 * Increase the work counter to synchronize the worker with the new work. Wake
 * up the worker. If the worker was already running, it will handle this work
 * before going to sleep.
 */
static int __gk20a_channel_worker_wakeup(struct gk20a *g)
{
	int put;

	gk20a_dbg_fn("");

	/*
	 * Currently, the only work type is associated with a lock, which deals
	 * with any necessary barriers. If a work type with no locking were
	 * added, a nvgpu_smp_wmb() would be needed here. See
	 * ..worker_pending() for a pair.
	 */

	put = nvgpu_atomic_inc_return(&g->channel_worker.put);
	nvgpu_cond_signal(&g->channel_worker.wq);

	return put;
}

/**
 * Test if there is some work pending.
 *
 * This is a pair for __gk20a_channel_worker_wakeup to be called from the
 * worker. The worker has an internal work counter which is incremented once
 * per finished work item. This is compared with the number of queued jobs,
 * which may be channels on the items list or any other types of work.
 */
static bool __gk20a_channel_worker_pending(struct gk20a *g, int get)
{
	bool pending = nvgpu_atomic_read(&g->channel_worker.put) != get;

	/*
	 * This would be the place for a nvgpu_smp_rmb() pairing
	 * a nvgpu_smp_wmb() for a wakeup if we had any work with
	 * no implicit barriers caused by locking.
	 */

	return pending;
}

/**
 * Process the queued works for the worker thread serially.
 *
 * Flush all the work items in the queue one by one. This may block timeout
 * handling for a short while, as these are serialized.
 */
static void gk20a_channel_worker_process(struct gk20a *g, int *get)
{

	while (__gk20a_channel_worker_pending(g, *get)) {
		struct channel_gk20a *ch = NULL;

		/*
		 * If a channel is on the list, it's guaranteed to be handled
		 * eventually just once. However, the opposite is not true. A
		 * channel may be being processed if it's on the list or not.
		 *
		 * With this, processing channel works should be conservative
		 * as follows: it's always safe to look at a channel found in
		 * the list, and if someone enqueues the channel, it will be
		 * handled eventually, even if it's being handled at the same
		 * time. A channel is on the list only once; multiple calls to
		 * enqueue are harmless.
		 */
		nvgpu_spinlock_acquire(&g->channel_worker.items_lock);
		if (!nvgpu_list_empty(&g->channel_worker.items)) {
			ch = nvgpu_list_first_entry(&g->channel_worker.items,
				channel_gk20a,
				worker_item);
			nvgpu_list_del(&ch->worker_item);
		}
		nvgpu_spinlock_release(&g->channel_worker.items_lock);

		if (!ch) {
			/*
			 * Woke up for some other reason, but there are no
			 * other reasons than a channel added in the items list
			 * currently, so warn and ack the message.
			 */
			nvgpu_warn(g, "Spurious worker event!");
			++*get;
			break;
		}

		gk20a_channel_worker_process_ch(ch);
		++*get;
	}
}

/*
 * Look at channel states periodically, until canceled. Abort timed out
 * channels serially. Process all work items found in the queue.
 */
static int gk20a_channel_poll_worker(void *arg)
{
	struct gk20a *g = (struct gk20a *)arg;
	struct gk20a_channel_worker *worker = &g->channel_worker;
	unsigned long watchdog_interval = 100; /* milliseconds */
	struct nvgpu_timeout timeout;
	int get = 0;

	gk20a_dbg_fn("");

	nvgpu_timeout_init(g, &timeout, watchdog_interval,
			NVGPU_TIMER_CPU_TIMER);
	while (!nvgpu_thread_should_stop(&worker->poll_task)) {
		int ret;

		ret = NVGPU_COND_WAIT(
				&worker->wq,
				__gk20a_channel_worker_pending(g, get),
				watchdog_interval) > 0;

		if (ret == 0)
			gk20a_channel_worker_process(g, &get);

		if (nvgpu_timeout_peek_expired(&timeout)) {
			gk20a_channel_poll_timeouts(g);
			nvgpu_timeout_init(g, &timeout, watchdog_interval,
					NVGPU_TIMER_CPU_TIMER);
		}
	}
	return 0;
}

static int __nvgpu_channel_worker_start(struct gk20a *g)
{
	char thread_name[64];
	int err = 0;

	if (nvgpu_thread_is_running(&g->channel_worker.poll_task))
		return err;

	nvgpu_mutex_acquire(&g->channel_worker.start_lock);

	/*
	 * We don't want to grab a mutex on every channel update so we check
	 * again if the worker has been initialized before creating a new thread
	 */

	/*
	 * Mutexes have implicit barriers, so there is no risk of a thread
	 * having a stale copy of the poll_task variable as the call to
	 * thread_is_running is volatile
	 */

	if (nvgpu_thread_is_running(&g->channel_worker.poll_task)) {
		nvgpu_mutex_release(&g->channel_worker.start_lock);
		return err;
	}

	snprintf(thread_name, sizeof(thread_name),
			"nvgpu_channel_poll_%s", g->name);

	err = nvgpu_thread_create(&g->channel_worker.poll_task, g,
			gk20a_channel_poll_worker, thread_name);

	nvgpu_mutex_release(&g->channel_worker.start_lock);
	return err;
}
/**
 * Initialize the channel worker's metadata and start the background thread.
 */
int nvgpu_channel_worker_init(struct gk20a *g)
{
	int err;

	nvgpu_atomic_set(&g->channel_worker.put, 0);
	nvgpu_cond_init(&g->channel_worker.wq);
	nvgpu_init_list_node(&g->channel_worker.items);
	nvgpu_spinlock_init(&g->channel_worker.items_lock);
	err = nvgpu_mutex_init(&g->channel_worker.start_lock);
	if (err)
		goto error_check;

	err = __nvgpu_channel_worker_start(g);
error_check:
	if (err) {
		nvgpu_err(g, "failed to start channel poller thread");
		return err;
	}
	return 0;
}

void nvgpu_channel_worker_deinit(struct gk20a *g)
{
	nvgpu_mutex_acquire(&g->channel_worker.start_lock);
	nvgpu_thread_stop(&g->channel_worker.poll_task);
	nvgpu_mutex_release(&g->channel_worker.start_lock);
}

/**
 * Append a channel to the worker's list, if not there already.
 *
 * The worker thread processes work items (channels in its work list) and polls
 * for other things. This adds @ch to the end of the list and wakes the worker
 * up immediately. If the channel already existed in the list, it's not added,
 * because in that case it has been scheduled already but has not yet been
 * processed.
 */
static void gk20a_channel_worker_enqueue(struct channel_gk20a *ch)
{
	struct gk20a *g = ch->g;

	gk20a_dbg_fn("");

	/*
	 * Warn if worker thread cannot run
	 */
	if (WARN_ON(__nvgpu_channel_worker_start(g))) {
		nvgpu_warn(g, "channel worker cannot run!");
		return;
	}

	/*
	 * Ref released when this item gets processed. The caller should hold
	 * one ref already, so normally shouldn't fail, but the channel could
	 * end up being freed between the time the caller got its reference and
	 * the time we end up here (e.g., if the client got killed); if so, just
	 * return.
	 */
	if (!gk20a_channel_get(ch)) {
		nvgpu_info(g, "cannot get ch ref for worker!");
		return;
	}

	nvgpu_spinlock_acquire(&g->channel_worker.items_lock);
	if (!nvgpu_list_empty(&ch->worker_item)) {
		/*
		 * Already queued, so will get processed eventually.
		 * The worker is probably awake already.
		 */
		nvgpu_spinlock_release(&g->channel_worker.items_lock);
		gk20a_channel_put(ch);
		return;
	}
	nvgpu_list_add_tail(&ch->worker_item, &g->channel_worker.items);
	nvgpu_spinlock_release(&g->channel_worker.items_lock);

	__gk20a_channel_worker_wakeup(g);
}

int gk20a_free_priv_cmdbuf(struct channel_gk20a *c, struct priv_cmd_entry *e)
{
	struct priv_cmd_queue *q = &c->priv_cmd_q;
	struct gk20a *g = c->g;

	if (!e)
		return 0;

	if (e->valid) {
		/* read the entry's valid flag before reading its contents */
		nvgpu_smp_rmb();
		if ((q->get != e->off) && e->off != 0)
			nvgpu_err(g, "requests out-of-order, ch=%d",
				  c->chid);
		q->get = e->off + e->size;
	}

	free_priv_cmdbuf(c, e);

	return 0;
}

static int gk20a_channel_add_job(struct channel_gk20a *c,
				 struct channel_gk20a_job *job,
				 bool skip_buffer_refcounting)
{
	struct vm_gk20a *vm = c->vm;
	struct nvgpu_mapped_buf **mapped_buffers = NULL;
	int err = 0, num_mapped_buffers = 0;
	bool pre_alloc_enabled = channel_gk20a_is_prealloc_enabled(c);

	if (!skip_buffer_refcounting) {
		err = nvgpu_vm_get_buffers(vm, &mapped_buffers,
					&num_mapped_buffers);
		if (err)
			return err;
	}

	/*
	 * Ref to hold the channel open during the job lifetime. This is
	 * released by job cleanup launched via syncpt or sema interrupt.
	 */
	c = gk20a_channel_get(c);

	if (c) {
		job->num_mapped_buffers = num_mapped_buffers;
		job->mapped_buffers = mapped_buffers;

		gk20a_channel_timeout_start(c);

		if (!pre_alloc_enabled)
			channel_gk20a_joblist_lock(c);

		/*
		 * ensure all pending write complete before adding to the list.
		 * see corresponding nvgpu_smp_rmb in
		 * gk20a_channel_clean_up_jobs() &
		 * gk20a_channel_abort_clean_up()
		 */
		nvgpu_smp_wmb();
		channel_gk20a_joblist_add(c, job);

		if (!pre_alloc_enabled)
			channel_gk20a_joblist_unlock(c);
	} else {
		err = -ETIMEDOUT;
		goto err_put_buffers;
	}

	return 0;

err_put_buffers:
	nvgpu_vm_put_buffers(vm, mapped_buffers, num_mapped_buffers);

	return err;
}

/**
 * Clean up job resources for further jobs to use.
 * @clean_all: If true, process as many jobs as possible, otherwise just one.
 *
 * Loop all jobs from the joblist until a pending job is found, or just one if
 * clean_all is not set. Pending jobs are detected from the job's post fence,
 * so this is only done for jobs that have job tracking resources. Free all
 * per-job memory for completed jobs; in case of preallocated resources, this
 * opens up slots for new jobs to be submitted.
 */
static void gk20a_channel_clean_up_jobs(struct channel_gk20a *c,
					bool clean_all)
{
	struct vm_gk20a *vm;
	struct channel_gk20a_job *job;
	struct gk20a *g;
	int job_finished = 0;
	bool watchdog_on = false;

	c = gk20a_channel_get(c);
	if (!c)
		return;

	if (!c->g->power_on) { /* shutdown case */
		gk20a_channel_put(c);
		return;
	}

	vm = c->vm;
	g = c->g;

	/*
	 * If !clean_all, we're in a condition where watchdog isn't supported
	 * anyway (this would be a no-op).
	 */
	if (clean_all)
		watchdog_on = gk20a_channel_timeout_stop(c);

	/* Synchronize with abort cleanup that needs the jobs. */
	nvgpu_mutex_acquire(&c->joblist.cleanup_lock);

	while (1) {
		bool completed;

		channel_gk20a_joblist_lock(c);
		if (channel_gk20a_joblist_is_empty(c)) {
			/*
			 * No jobs in flight, timeout will remain stopped until
			 * new jobs are submitted.
			 */
			channel_gk20a_joblist_unlock(c);
			break;
		}

		/*
		 * ensure that all subsequent reads occur after checking
		 * that we have a valid node. see corresponding nvgpu_smp_wmb in
		 * gk20a_channel_add_job().
		 */
		nvgpu_smp_rmb();
		job = channel_gk20a_joblist_peek(c);
		channel_gk20a_joblist_unlock(c);

		completed = gk20a_fence_is_expired(job->post_fence);
		if (!completed) {
			/*
			 * The watchdog eventually sees an updated gp_get if
			 * something happened in this loop. A new job can have
			 * been submitted between the above call to stop and
			 * this - in that case, this is a no-op and the new
			 * later timeout is still used.
			 */
			if (clean_all && watchdog_on)
				gk20a_channel_timeout_continue(c);
			break;
		}

		WARN_ON(!c->sync);

		if (c->sync) {
			c->sync->signal_timeline(c->sync);

			if (g->aggressive_sync_destroy_thresh) {
				nvgpu_mutex_acquire(&c->sync_lock);
				if (nvgpu_atomic_dec_and_test(
					&c->sync->refcount) &&
						g->aggressive_sync_destroy) {
					gk20a_channel_sync_destroy(c->sync);
					c->sync = NULL;
				}
				nvgpu_mutex_release(&c->sync_lock);
			}
		}

		if (job->num_mapped_buffers)
			nvgpu_vm_put_buffers(vm, job->mapped_buffers,
				job->num_mapped_buffers);

		/* Remove job from channel's job list before we close the
		 * fences, to prevent other callers (gk20a_channel_abort) from
		 * trying to dereference post_fence when it no longer exists.
		 */
		channel_gk20a_joblist_lock(c);
		channel_gk20a_joblist_delete(c, job);
		channel_gk20a_joblist_unlock(c);

		/* Close the fences (this will unref the semaphores and release
		 * them to the pool). */
		gk20a_fence_put(job->pre_fence);
		gk20a_fence_put(job->post_fence);

		/* Free the private command buffers (wait_cmd first and
		 * then incr_cmd i.e. order of allocation) */
		gk20a_free_priv_cmdbuf(c, job->wait_cmd);
		gk20a_free_priv_cmdbuf(c, job->incr_cmd);

		/* another bookkeeping taken in add_job. caller must hold a ref
		 * so this wouldn't get freed here. */
		gk20a_channel_put(c);

		/*
		 * ensure all pending writes complete before freeing up the job.
		 * see corresponding nvgpu_smp_rmb in channel_gk20a_alloc_job().
		 */
		nvgpu_smp_wmb();

		channel_gk20a_free_job(c, job);
		job_finished = 1;

		/*
		 * Deterministic channels have a channel-wide power reference;
		 * for others, there's one per submit.
		 */
		if (!c->deterministic)
			gk20a_idle(g);

		if (!clean_all) {
			/* Timeout isn't supported here so don't touch it. */
			break;
		}
	}

	nvgpu_mutex_release(&c->joblist.cleanup_lock);

	if (job_finished && c->update_fn)
		schedule_work(&c->update_fn_work);

	gk20a_channel_put(c);
}

/**
 * Schedule a job cleanup work on this channel to free resources and to signal
 * about completion.
 *
 * Call this when there has been an interrupt about finished jobs, or when job
 * cleanup needs to be performed, e.g., when closing a channel. This is always
 * safe to call even if there is nothing to clean up. Any visible actions on
 * jobs just before calling this are guaranteed to be processed.
 */
void gk20a_channel_update(struct channel_gk20a *c)
{
	if (!c->g->power_on) { /* shutdown case */
		return;
	}

	trace_gk20a_channel_update(c->chid);
	/* A queued channel is always checked for job cleanup. */
	gk20a_channel_worker_enqueue(c);
}

static void gk20a_submit_append_priv_cmdbuf(struct channel_gk20a *c,
		struct priv_cmd_entry *cmd)
{
	struct gk20a *g = c->g;
	struct nvgpu_mem *gpfifo_mem = &c->gpfifo.mem;
	struct nvgpu_gpfifo x = {
		.entry0 = u64_lo32(cmd->gva),
		.entry1 = u64_hi32(cmd->gva) |
			pbdma_gp_entry1_length_f(cmd->size)
	};

	nvgpu_mem_wr_n(g, gpfifo_mem, c->gpfifo.put * sizeof(x),
			&x, sizeof(x));

	if (cmd->mem->aperture == APERTURE_SYSMEM)
		trace_gk20a_push_cmdbuf(g->name, 0, cmd->size, 0,
				cmd->mem->cpu_va + cmd->off * sizeof(u32));

	c->gpfifo.put = (c->gpfifo.put + 1) & (c->gpfifo.entry_num - 1);
}

/*
 * Copy source gpfifo entries into the gpfifo ring buffer, potentially
 * splitting into two memcpys to handle wrap-around.
 */
static int gk20a_submit_append_gpfifo(struct channel_gk20a *c,
		struct nvgpu_gpfifo *kern_gpfifo,
		struct nvgpu_gpfifo __user *user_gpfifo,
		u32 num_entries)
{
	/* byte offsets */
	u32 gpfifo_size = c->gpfifo.entry_num * sizeof(struct nvgpu_gpfifo);
	u32 len = num_entries * sizeof(struct nvgpu_gpfifo);
	u32 start = c->gpfifo.put * sizeof(struct nvgpu_gpfifo);
	u32 end = start + len; /* exclusive */
	struct nvgpu_mem *gpfifo_mem = &c->gpfifo.mem;
	struct nvgpu_gpfifo *cpu_src;
	int err;

	if (user_gpfifo && !c->gpfifo.pipe) {
		/*
		 * This path (from userspace to sysmem) is special in order to
		 * avoid two copies unnecessarily (from user to pipe, then from
		 * pipe to gpu sysmem buffer).
		 *
		 * As a special case, the pipe buffer exists if PRAMIN writes
		 * are forced, although the buffers may not be in vidmem in
		 * that case.
		 */
		if (end > gpfifo_size) {
			/* wrap-around */
			int length0 = gpfifo_size - start;
			int length1 = len - length0;
			void __user *user2 = (u8 __user *)user_gpfifo + length0;

			err = copy_from_user(gpfifo_mem->cpu_va + start,
					user_gpfifo, length0);
			if (err)
				return err;

			err = copy_from_user(gpfifo_mem->cpu_va,
					user2, length1);
			if (err)
				return err;
		} else {
			err = copy_from_user(gpfifo_mem->cpu_va + start,
					user_gpfifo, len);
			if (err)
				return err;
		}

		trace_write_pushbuffer_range(c, NULL, user_gpfifo,
				0, num_entries);
		goto out;
	} else if (user_gpfifo) {
		/* from userspace to vidmem or sysmem when pramin forced, use
		 * the common copy path below */
		err = copy_from_user(c->gpfifo.pipe, user_gpfifo, len);
		if (err)
			return err;

		cpu_src = c->gpfifo.pipe;
	} else {
		/* from kernel to either sysmem or vidmem, don't need
		 * copy_from_user so use the common path below */
		cpu_src = kern_gpfifo;
	}

	if (end > gpfifo_size) {
		/* wrap-around */
		int length0 = gpfifo_size - start;
		int length1 = len - length0;
		void *src2 = (u8 *)cpu_src + length0;

		nvgpu_mem_wr_n(c->g, gpfifo_mem, start, cpu_src, length0);
		nvgpu_mem_wr_n(c->g, gpfifo_mem, 0, src2, length1);
	} else {
		nvgpu_mem_wr_n(c->g, gpfifo_mem, start, cpu_src, len);

	}

	trace_write_pushbuffer_range(c, cpu_src, NULL, 0, num_entries);

out:
	c->gpfifo.put = (c->gpfifo.put + num_entries) &
		(c->gpfifo.entry_num - 1);

	return 0;
}

/*
 * Handle the submit synchronization - pre-fences and post-fences.
 */
static int gk20a_submit_prepare_syncs(struct channel_gk20a *c,
				      struct nvgpu_fence *fence,
				      struct channel_gk20a_job *job,
				      struct priv_cmd_entry **wait_cmd,
				      struct priv_cmd_entry **incr_cmd,
				      struct gk20a_fence **pre_fence,
				      struct gk20a_fence **post_fence,
				      bool force_need_sync_fence,
				      bool register_irq,
				      u32 flags)
{
	struct gk20a *g = c->g;
	bool need_sync_fence = false;
	bool new_sync_created = false;
	int wait_fence_fd = -1;
	int err = 0;
	bool need_wfi = !(flags & NVGPU_SUBMIT_GPFIFO_FLAGS_SUPPRESS_WFI);
	bool pre_alloc_enabled = channel_gk20a_is_prealloc_enabled(c);

	/*
	 * If user wants to always allocate sync_fence_fds then respect that;
	 * otherwise, allocate sync_fence_fd based on user flags.
	 */
	if (force_need_sync_fence)
		need_sync_fence = true;

	if (g->aggressive_sync_destroy_thresh) {
		nvgpu_mutex_acquire(&c->sync_lock);
		if (!c->sync) {
			c->sync = gk20a_channel_sync_create(c);
			if (!c->sync) {
				err = -ENOMEM;
				nvgpu_mutex_release(&c->sync_lock);
				goto fail;
			}
			new_sync_created = true;
		}
		nvgpu_atomic_inc(&c->sync->refcount);
		nvgpu_mutex_release(&c->sync_lock);
	}

	if (g->ops.fifo.resetup_ramfc && new_sync_created) {
		err = g->ops.fifo.resetup_ramfc(c);
		if (err)
			goto fail;
	}

	/*
	 * Optionally insert syncpt wait in the beginning of gpfifo submission
	 * when user requested and the wait hasn't expired. Validate that the id
	 * makes sense, elide if not. The only reason this isn't being
	 * unceremoniously killed is to keep running some tests which trigger
	 * this condition.
	 */
	if (flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_WAIT) {
		job->pre_fence = gk20a_alloc_fence(c);
		if (!job->pre_fence) {
			err = -ENOMEM;
			goto fail;
		}

		if (!pre_alloc_enabled)
			job->wait_cmd = nvgpu_kzalloc(g,
				sizeof(struct priv_cmd_entry));

		if (!job->wait_cmd) {
			err = -ENOMEM;
			goto clean_up_pre_fence;
		}

		if (flags & NVGPU_SUBMIT_GPFIFO_FLAGS_SYNC_FENCE) {
			wait_fence_fd = fence->id;
			err = c->sync->wait_fd(c->sync, wait_fence_fd,
					       job->wait_cmd, job->pre_fence);
		} else {
			err = c->sync->wait_syncpt(c->sync, fence->id,
						   fence->value, job->wait_cmd,
						   job->pre_fence);
		}

		if (!err) {
			if (job->wait_cmd->valid)
				*wait_cmd = job->wait_cmd;
			*pre_fence = job->pre_fence;
		} else
			goto clean_up_wait_cmd;
	}

	if ((flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET) &&
	    (flags & NVGPU_SUBMIT_GPFIFO_FLAGS_SYNC_FENCE))
		need_sync_fence = true;

	/*
	 * Always generate an increment at the end of a GPFIFO submission. This
	 * is used to keep track of method completion for idle railgating. The
	 * sync_pt/semaphore PB is added to the GPFIFO later on in submit.
	 */
	job->post_fence = gk20a_alloc_fence(c);
	if (!job->post_fence) {
		err = -ENOMEM;
		goto clean_up_wait_cmd;
	}
	if (!pre_alloc_enabled)
		job->incr_cmd = nvgpu_kzalloc(g, sizeof(struct priv_cmd_entry));

	if (!job->incr_cmd) {
		err = -ENOMEM;
		goto clean_up_post_fence;
	}

	if (flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET)
		err = c->sync->incr_user(c->sync, wait_fence_fd, job->incr_cmd,
				 job->post_fence, need_wfi, need_sync_fence,
				 register_irq);
	else
		err = c->sync->incr(c->sync, job->incr_cmd,
				    job->post_fence, need_sync_fence,
				    register_irq);
	if (!err) {
		*incr_cmd = job->incr_cmd;
		*post_fence = job->post_fence;
	} else
		goto clean_up_incr_cmd;

	return 0;

clean_up_incr_cmd:
	free_priv_cmdbuf(c, job->incr_cmd);
	if (!pre_alloc_enabled)
		job->incr_cmd = NULL;
clean_up_post_fence:
	gk20a_fence_put(job->post_fence);
	job->post_fence = NULL;
clean_up_wait_cmd:
	free_priv_cmdbuf(c, job->wait_cmd);
	if (!pre_alloc_enabled)
		job->wait_cmd = NULL;
clean_up_pre_fence:
	gk20a_fence_put(job->pre_fence);
	job->pre_fence = NULL;
fail:
	*wait_cmd = NULL;
	*pre_fence = NULL;
	return err;
}

int gk20a_submit_channel_gpfifo(struct channel_gk20a *c,
				struct nvgpu_gpfifo *gpfifo,
				struct nvgpu_submit_gpfifo_args *args,
				u32 num_entries,
				u32 flags,
				struct nvgpu_fence *fence,
				struct gk20a_fence **fence_out,
				bool force_need_sync_fence,
				struct fifo_profile_gk20a *profile)
{
	struct gk20a *g = c->g;
	struct priv_cmd_entry *wait_cmd = NULL;
	struct priv_cmd_entry *incr_cmd = NULL;
	struct gk20a_fence *pre_fence = NULL;
	struct gk20a_fence *post_fence = NULL;
	struct channel_gk20a_job *job = NULL;
	/* we might need two extra gpfifo entries - one for pre fence
	 * and one for post fence. */
	const int extra_entries = 2;
	bool skip_buffer_refcounting = (flags &
			NVGPU_SUBMIT_GPFIFO_FLAGS_SKIP_BUFFER_REFCOUNTING);
	int err = 0;
	bool need_job_tracking;
	bool need_deferred_cleanup = false;
	struct nvgpu_gpfifo __user *user_gpfifo = args ?
		(struct nvgpu_gpfifo __user *)(uintptr_t)args->gpfifo : NULL;

	if (nvgpu_is_enabled(g, NVGPU_DRIVER_IS_DYING))
		return -ENODEV;

	if (c->has_timedout)
		return -ETIMEDOUT;

	/* fifo not large enough for request. Return error immediately.
	 * Kernel can insert gpfifo entries before and after user gpfifos.
	 * So, add extra_entries in user request. Also, HW with fifo size N
	 * can accept only N-1 entreis and so the below condition */
	if (c->gpfifo.entry_num - 1 < num_entries + extra_entries) {
		nvgpu_err(g, "not enough gpfifo space allocated");
		return -ENOMEM;
	}

	if (!gpfifo && !args)
		return -EINVAL;

	if ((flags & (NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_WAIT |
		      NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET)) &&
	    !fence)
		return -EINVAL;

	/* an address space needs to have been bound at this point. */
	if (!gk20a_channel_as_bound(c)) {
		nvgpu_err(g,
			    "not bound to an address space at time of gpfifo"
			    " submission.");
		return -EINVAL;
	}

	if (profile)
		profile->timestamp[PROFILE_ENTRY] = sched_clock();

	/* update debug settings */
	nvgpu_ltc_sync_enabled(g);

	gk20a_dbg_info("channel %d", c->chid);

	/*
	 * Job tracking is necessary for any of the following conditions:
	 *  - pre- or post-fence functionality
	 *  - channel wdt
	 *  - GPU rail-gating with non-deterministic channels
	 *  - buffer refcounting
	 *
	 * If none of the conditions are met, then job tracking is not
	 * required and a fast submit can be done (ie. only need to write
	 * out userspace GPFIFO entries and update GP_PUT).
	 */
	need_job_tracking = (flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_WAIT) ||
			(flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET) ||
			c->wdt_enabled ||
			(g->can_railgate && !c->deterministic) ||
			!skip_buffer_refcounting;

	if (need_job_tracking) {
		bool need_sync_framework = false;

		/*
		 * If the channel is to have deterministic latency and
		 * job tracking is required, the channel must have
		 * pre-allocated resources. Otherwise, we fail the submit here
		 */
		if (c->deterministic && !channel_gk20a_is_prealloc_enabled(c))
			return -EINVAL;

		need_sync_framework = force_need_sync_fence ||
			gk20a_channel_sync_needs_sync_framework(g) ||
			(flags & NVGPU_SUBMIT_GPFIFO_FLAGS_SYNC_FENCE &&
			(flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_WAIT ||
			 flags & NVGPU_SUBMIT_GPFIFO_FLAGS_FENCE_GET));

		/*
		 * Deferred clean-up is necessary for any of the following
		 * conditions:
		 * - channel's deterministic flag is not set
		 * - dependency on sync framework, which could make the
		 *   behavior of the clean-up operation non-deterministic
		 *   (should not be performed in the submit path)
		 * - channel wdt
		 * - GPU rail-gating with non-deterministic channels
		 * - buffer refcounting
		 *
		 * If none of the conditions are met, then deferred clean-up
		 * is not required, and we clean-up one job-tracking
		 * resource in the submit path.
		 */
		need_deferred_cleanup = !c->deterministic ||
					need_sync_framework ||
					c->wdt_enabled ||
					(g->can_railgate &&
					 !c->deterministic) ||
					!skip_buffer_refcounting;

		/*
		 * For deterministic channels, we don't allow deferred clean_up
		 * processing to occur. In cases we hit this, we fail the submit
		 */
		if (c->deterministic && need_deferred_cleanup)
			return -EINVAL;

		if (!c->deterministic) {
			/*
			 * Get a power ref unless this is a deterministic
			 * channel that holds them during the channel lifetime.
			 * This one is released by gk20a_channel_clean_up_jobs,
			 * via syncpt or sema interrupt, whichever is used.
			 */
			err = gk20a_busy(g);
			if (err) {
				nvgpu_err(g,
					"failed to host gk20a to submit gpfifo, process %s",
					current->comm);
				return err;
			}
		}

		if (!need_deferred_cleanup) {
			/* clean up a single job */
			gk20a_channel_clean_up_jobs(c, false);
		}
	}


	/* Grab access to HW to deal with do_idle */
	if (c->deterministic)
		down_read(&g->deterministic_busy);

	trace_gk20a_channel_submit_gpfifo(g->name,
					  c->chid,
					  num_entries,
					  flags,
					  fence ? fence->id : 0,
					  fence ? fence->value : 0);

	gk20a_dbg_info("pre-submit put %d, get %d, size %d",
		c->gpfifo.put, c->gpfifo.get, c->gpfifo.entry_num);

	/*
	 * Make sure we have enough space for gpfifo entries. Check cached
	 * values first and then read from HW. If no space, return EAGAIN
	 * and let userpace decide to re-try request or not.
	 */
	if (gp_free_count(c) < num_entries + extra_entries) {
		if (get_gp_free_count(c) < num_entries + extra_entries) {
			err = -EAGAIN;
			goto clean_up;
		}
	}

	if (c->has_timedout) {
		err = -ETIMEDOUT;
		goto clean_up;
	}

	if (need_job_tracking) {
		err = channel_gk20a_alloc_job(c, &job);
		if (err)
			goto clean_up;

		err = gk20a_submit_prepare_syncs(c, fence, job,
						 &wait_cmd, &incr_cmd,
						 &pre_fence, &post_fence,
						 force_need_sync_fence,
						 need_deferred_cleanup,
						 flags);
		if (err)
			goto clean_up_job;
	}

	if (profile)
		profile->timestamp[PROFILE_JOB_TRACKING] = sched_clock();

	if (wait_cmd)
		gk20a_submit_append_priv_cmdbuf(c, wait_cmd);

	if (gpfifo || user_gpfifo)
		err = gk20a_submit_append_gpfifo(c, gpfifo, user_gpfifo,
				num_entries);
	if (err)
		goto clean_up_job;

	/*
	 * And here's where we add the incr_cmd we generated earlier. It should
	 * always run!
	 */
	if (incr_cmd)
		gk20a_submit_append_priv_cmdbuf(c, incr_cmd);

	if (fence_out)
		*fence_out = gk20a_fence_get(post_fence);

	if (need_job_tracking)
		/* TODO! Check for errors... */
		gk20a_channel_add_job(c, job, skip_buffer_refcounting);
	if (profile)
		profile->timestamp[PROFILE_APPEND] = sched_clock();

	g->ops.fifo.userd_gp_put(g, c);

	if ((NVGPU_SUBMIT_GPFIFO_FLAGS_RESCHEDULE_RUNLIST & flags) &&
		g->ops.fifo.reschedule_runlist)
		g->ops.fifo.reschedule_runlist(g, c->runlist_id);

	/* No hw access beyond this point */
	if (c->deterministic)
		up_read(&g->deterministic_busy);

	trace_gk20a_channel_submitted_gpfifo(g->name,
				c->chid,
				num_entries,
				flags,
				post_fence ? post_fence->syncpt_id : 0,
				post_fence ? post_fence->syncpt_value : 0);

	gk20a_dbg_info("post-submit put %d, get %d, size %d",
		c->gpfifo.put, c->gpfifo.get, c->gpfifo.entry_num);

	if (profile)
		profile->timestamp[PROFILE_END] = sched_clock();
	gk20a_dbg_fn("done");
	return err;

clean_up_job:
	channel_gk20a_free_job(c, job);
clean_up:
	gk20a_dbg_fn("fail");
	gk20a_fence_put(pre_fence);
	gk20a_fence_put(post_fence);
	if (c->deterministic)
		up_read(&g->deterministic_busy);
	else if (need_deferred_cleanup)
		gk20a_idle(g);

	return err;
}

/*
 * Stop deterministic channel activity for do_idle() when power needs to go off
 * momentarily but deterministic channels keep power refs for potentially a
 * long time.
 *
 * Takes write access on g->deterministic_busy.
 *
 * Must be paired with gk20a_channel_deterministic_unidle().
 */
void gk20a_channel_deterministic_idle(struct gk20a *g)
{
	struct fifo_gk20a *f = &g->fifo;
	u32 chid;

	/* Grab exclusive access to the hw to block new submits */
	down_write(&g->deterministic_busy);

	for (chid = 0; chid < f->num_channels; chid++) {
		struct channel_gk20a *ch = &f->channel[chid];

		if (!gk20a_channel_get(ch))
			continue;

		if (ch->deterministic) {
			/*
			 * Drop the power ref taken when setting deterministic
			 * flag. deterministic_unidle will put this and the
			 * channel ref back.
			 *
			 * Hold the channel ref: it must not get freed in
			 * between. A race could otherwise result in lost
			 * gk20a_busy() via unidle, and in unbalanced
			 * gk20a_idle() via closing the channel.
			 */
			gk20a_idle(g);
		} else {
			/* Not interesting, carry on. */
			gk20a_channel_put(ch);
		}
	}
}

/*
 * Allow deterministic channel activity again for do_unidle().
 *
 * This releases write access on g->deterministic_busy.
 */
void gk20a_channel_deterministic_unidle(struct gk20a *g)
{
	struct fifo_gk20a *f = &g->fifo;
	u32 chid;

	for (chid = 0; chid < f->num_channels; chid++) {
		struct channel_gk20a *ch = &f->channel[chid];

		if (!gk20a_channel_get(ch))
			continue;

		/*
		 * Deterministic state changes inside deterministic_busy lock,
		 * which we took in deterministic_idle.
		 */
		if (ch->deterministic) {
			if (gk20a_busy(g))
				nvgpu_err(g, "cannot busy() again!");
			/* Took this in idle() */
			gk20a_channel_put(ch);
		}

		gk20a_channel_put(ch);
	}

	/* Release submits, new deterministic channels and frees */
	up_write(&g->deterministic_busy);
}

int gk20a_init_channel_support(struct gk20a *g, u32 chid)
{
	struct channel_gk20a *c = g->fifo.channel+chid;
	int err;

	c->g = NULL;
	c->chid = chid;
	nvgpu_atomic_set(&c->bound, false);
	nvgpu_spinlock_init(&c->ref_obtain_lock);
	nvgpu_atomic_set(&c->ref_count, 0);
	c->referenceable = false;
	nvgpu_cond_init(&c->ref_count_dec_wq);

#if GK20A_CHANNEL_REFCOUNT_TRACKING
	nvgpu_spinlock_init(&c->ref_actions_lock);
#endif
	nvgpu_spinlock_init(&c->joblist.dynamic.lock);
	nvgpu_raw_spinlock_init(&c->timeout.lock);

	nvgpu_init_list_node(&c->joblist.dynamic.jobs);
	nvgpu_init_list_node(&c->dbg_s_list);
	nvgpu_init_list_node(&c->event_id_list);
	nvgpu_init_list_node(&c->worker_item);

	err = nvgpu_mutex_init(&c->ioctl_lock);
	if (err)
		return err;
	err = nvgpu_mutex_init(&c->error_notifier_mutex);
	if (err)
		goto fail_1;
	err = nvgpu_mutex_init(&c->joblist.cleanup_lock);
	if (err)
		goto fail_2;
	err = nvgpu_mutex_init(&c->joblist.pre_alloc.read_lock);
	if (err)
		goto fail_3;
	err = nvgpu_mutex_init(&c->sync_lock);
	if (err)
		goto fail_4;
#if defined(CONFIG_GK20A_CYCLE_STATS)
	err = nvgpu_mutex_init(&c->cyclestate.cyclestate_buffer_mutex);
	if (err)
		goto fail_5;
	err = nvgpu_mutex_init(&c->cs_client_mutex);
	if (err)
		goto fail_6;
#endif
	err = nvgpu_mutex_init(&c->event_id_list_lock);
	if (err)
		goto fail_7;
	err = nvgpu_mutex_init(&c->dbg_s_lock);
	if (err)
		goto fail_8;

	nvgpu_list_add(&c->free_chs, &g->fifo.free_chs);

	return 0;

fail_8:
	nvgpu_mutex_destroy(&c->event_id_list_lock);
fail_7:
#if defined(CONFIG_GK20A_CYCLE_STATS)
	nvgpu_mutex_destroy(&c->cs_client_mutex);
fail_6:
	nvgpu_mutex_destroy(&c->cyclestate.cyclestate_buffer_mutex);
fail_5:
#endif
	nvgpu_mutex_destroy(&c->sync_lock);
fail_4:
	nvgpu_mutex_destroy(&c->joblist.pre_alloc.read_lock);
fail_3:
	nvgpu_mutex_destroy(&c->joblist.cleanup_lock);
fail_2:
	nvgpu_mutex_destroy(&c->error_notifier_mutex);
fail_1:
	nvgpu_mutex_destroy(&c->ioctl_lock);

	return err;
}

/* in this context the "channel" is the host1x channel which
 * maps to *all* gk20a channels */
int gk20a_channel_suspend(struct gk20a *g)
{
	struct fifo_gk20a *f = &g->fifo;
	u32 chid;
	bool channels_in_use = false;
	u32 active_runlist_ids = 0;

	gk20a_dbg_fn("");

	for (chid = 0; chid < f->num_channels; chid++) {
		struct channel_gk20a *ch = &f->channel[chid];
		if (gk20a_channel_get(ch)) {
			gk20a_dbg_info("suspend channel %d", chid);
			/* disable channel */
			gk20a_disable_channel_tsg(g, ch);
			/* preempt the channel */
			gk20a_fifo_preempt(g, ch);
			/* wait for channel update notifiers */
			if (ch->update_fn)
				cancel_work_sync(&ch->update_fn_work);

			channels_in_use = true;

			active_runlist_ids |= BIT(ch->runlist_id);

			gk20a_channel_put(ch);
		}
	}

	if (channels_in_use) {
		gk20a_fifo_update_runlist_ids(g, active_runlist_ids, ~0, false, true);

		for (chid = 0; chid < f->num_channels; chid++) {
			if (gk20a_channel_get(&f->channel[chid])) {
				g->ops.fifo.unbind_channel(&f->channel[chid]);
				gk20a_channel_put(&f->channel[chid]);
			}
		}
	}

	gk20a_dbg_fn("done");
	return 0;
}

int gk20a_channel_resume(struct gk20a *g)
{
	struct fifo_gk20a *f = &g->fifo;
	u32 chid;
	bool channels_in_use = false;
	u32 active_runlist_ids = 0;

	gk20a_dbg_fn("");

	for (chid = 0; chid < f->num_channels; chid++) {
		if (gk20a_channel_get(&f->channel[chid])) {
			gk20a_dbg_info("resume channel %d", chid);
			g->ops.fifo.bind_channel(&f->channel[chid]);
			channels_in_use = true;
			active_runlist_ids |= BIT(f->channel[chid].runlist_id);
			gk20a_channel_put(&f->channel[chid]);
		}
	}

	if (channels_in_use)
		gk20a_fifo_update_runlist_ids(g, active_runlist_ids, ~0, true, true);

	gk20a_dbg_fn("done");
	return 0;
}

void gk20a_channel_semaphore_wakeup(struct gk20a *g, bool post_events)
{
	struct fifo_gk20a *f = &g->fifo;
	u32 chid;

	gk20a_dbg_fn("");

	/*
	 * Ensure that all pending writes are actually done  before trying to
	 * read semaphore values from DRAM.
	 */
	g->ops.mm.fb_flush(g);

	for (chid = 0; chid < f->num_channels; chid++) {
		struct channel_gk20a *c = g->fifo.channel+chid;
		if (gk20a_channel_get(c)) {
			if (nvgpu_atomic_read(&c->bound)) {
				nvgpu_cond_broadcast_interruptible(
						&c->semaphore_wq);
				if (post_events) {
					if (gk20a_is_channel_marked_as_tsg(c)) {
						struct tsg_gk20a *tsg =
							&g->fifo.tsg[c->tsgid];

						gk20a_tsg_event_id_post_event(tsg,
						    NVGPU_IOCTL_CHANNEL_EVENT_ID_BLOCKING_SYNC);
					} else {
						gk20a_channel_event_id_post_event(c,
						    NVGPU_IOCTL_CHANNEL_EVENT_ID_BLOCKING_SYNC);
					}
				}
				/*
				 * Only non-deterministic channels get the
				 * channel_update callback. We don't allow
				 * semaphore-backed syncs for these channels
				 * anyways, since they have a dependency on
				 * the sync framework.
				 * If deterministic channels are receiving a
				 * semaphore wakeup, it must be for a
				 * user-space managed
				 * semaphore.
				 */
				if (!c->deterministic)
					gk20a_channel_update(c);
			}
			gk20a_channel_put(c);
		}
	}
}