summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/nvgpu/common/mm/vm.c
blob: 4a7cc828537a4b6033718674b640caf22d3ab3ec (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
/*
 * Copyright (c) 2017-2019, NVIDIA CORPORATION.  All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <nvgpu/bug.h>
#include <nvgpu/log.h>
#include <nvgpu/log2.h>
#include <nvgpu/dma.h>
#include <nvgpu/vm.h>
#include <nvgpu/vm_area.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/lock.h>
#include <nvgpu/list.h>
#include <nvgpu/rbtree.h>
#include <nvgpu/semaphore.h>
#include <nvgpu/enabled.h>
#include <nvgpu/sizes.h>
#include <nvgpu/timers.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/vgpu/vm.h>

#include "gk20a/mm_gk20a.h"

struct nvgpu_ctag_buffer_info {
	u64			size;
	u32			pgsz_idx;
	u32			flags;

	s16			compr_kind;
	s16			incompr_kind;

	u32			ctag_lines;
};

static int nvgpu_vm_compute_compression(struct vm_gk20a *vm,
					struct nvgpu_ctag_buffer_info *binfo);

static void __nvgpu_vm_unmap(struct nvgpu_mapped_buf *mapped_buffer,
			     struct vm_gk20a_mapping_batch *batch);

int vm_aspace_id(struct vm_gk20a *vm)
{
	return (vm->as_share != NULL) ? vm->as_share->id : -1;
}

/*
 * Determine how many bits of the address space each last level PDE covers. For
 * example, for gp10b, with a last level address bit PDE range of 28 to 21 the
 * amount of memory each last level PDE addresses is 21 bits - i.e 2MB.
 */
int nvgpu_vm_pde_coverage_bit_count(struct vm_gk20a *vm)
{
	int final_pde_level = 0;

	/*
	 * Find the second to last level of the page table programming
	 * heirarchy: the last level is PTEs so we really want the level
	 * before that which is the last level of PDEs.
	 */
	while (vm->mmu_levels[final_pde_level + 2].update_entry) {
		final_pde_level++;
	}

	return vm->mmu_levels[final_pde_level].lo_bit[0];
}

static void __nvgpu_vm_free_entries(struct vm_gk20a *vm,
				    struct nvgpu_gmmu_pd *pd,
				    int level)
{
	int i;

	if (pd->mem) {
		nvgpu_pd_free(vm, pd);
		pd->mem = NULL;
	}

	if (pd->entries) {
		for (i = 0; i < pd->num_entries; i++) {
			__nvgpu_vm_free_entries(vm, &pd->entries[i],
					      level + 1);
		}
		nvgpu_vfree(vm->mm->g, pd->entries);
		pd->entries = NULL;
	}
}

static void nvgpu_vm_free_entries(struct vm_gk20a *vm,
				  struct nvgpu_gmmu_pd *pdb)
{
	struct gk20a *g = vm->mm->g;
	int i;

	nvgpu_pd_cache_free_direct(g, pdb);

	if (pdb->entries == NULL) {
		return;
	}

	for (i = 0; i < pdb->num_entries; i++) {
		__nvgpu_vm_free_entries(vm, &pdb->entries[i], 1);
	}

	nvgpu_vfree(g, pdb->entries);
	pdb->entries = NULL;
}

u64 __nvgpu_vm_alloc_va(struct vm_gk20a *vm, u64 size, u32 pgsz_idx)

{
	struct gk20a *g = vm->mm->g;
	struct nvgpu_allocator *vma = NULL;
	u64 addr;
	u64 page_size = vm->gmmu_page_sizes[pgsz_idx];

	vma = vm->vma[pgsz_idx];

	if (vm->guest_managed) {
		nvgpu_err(g, "Illegal GPU allocation on behalf of guest OS");
		return 0;
	}

	if (pgsz_idx >= GMMU_NR_PAGE_SIZES) {
		nvgpu_err(g, "(%s) invalid page size requested", vma->name);
		return 0;
	}

	if ((pgsz_idx == GMMU_PAGE_SIZE_BIG) && !vm->big_pages) {
		nvgpu_err(g, "(%s) unsupportd page size requested", vma->name);
		return 0;
	}

	/* Be certain we round up to page_size if needed */
	size = (size + ((u64)page_size - 1U)) & ~((u64)page_size - 1U);

	addr = nvgpu_alloc_pte(vma, size, page_size);
	if (addr == 0ULL) {
		nvgpu_err(g, "(%s) oom: sz=0x%llx", vma->name, size);
		return 0;
	}

	return addr;
}

int __nvgpu_vm_free_va(struct vm_gk20a *vm, u64 addr, u32 pgsz_idx)
{
	struct nvgpu_allocator *vma = vm->vma[pgsz_idx];

	nvgpu_free(vma, addr);

	return 0;
}

void nvgpu_vm_mapping_batch_start(struct vm_gk20a_mapping_batch *mapping_batch)
{
	memset(mapping_batch, 0, sizeof(*mapping_batch));
	mapping_batch->gpu_l2_flushed = false;
	mapping_batch->need_tlb_invalidate = false;
}

void nvgpu_vm_mapping_batch_finish_locked(
	struct vm_gk20a *vm, struct vm_gk20a_mapping_batch *mapping_batch)
{
	/* hanging kref_put batch pointer? */
	WARN_ON(vm->kref_put_batch == mapping_batch);

	if (mapping_batch->need_tlb_invalidate) {
		struct gk20a *g = gk20a_from_vm(vm);
		g->ops.fb.tlb_invalidate(g, vm->pdb.mem);
	}
}

void nvgpu_vm_mapping_batch_finish(struct vm_gk20a *vm,
				   struct vm_gk20a_mapping_batch *mapping_batch)
{
	nvgpu_mutex_acquire(&vm->update_gmmu_lock);
	nvgpu_vm_mapping_batch_finish_locked(vm, mapping_batch);
	nvgpu_mutex_release(&vm->update_gmmu_lock);
}

/*
 * Determine if the passed address space can support big pages or not.
 */
bool nvgpu_big_pages_possible(struct vm_gk20a *vm, u64 base, u64 size)
{
	u64 mask = ((u64)vm->big_page_size << 10ULL) - 1ULL;
	u64 base_big_page = base & mask;
	u64 size_big_page = size & mask;

	if (base_big_page != 0ULL || size_big_page != 0ULL) {
		return false;
	}
	return true;
}

/*
 * Initialize a semaphore pool. Just return successfully if we do not need
 * semaphores (i.e when sync-pts are active).
 */
static int nvgpu_init_sema_pool(struct vm_gk20a *vm)
{
	struct nvgpu_semaphore_sea *sema_sea;
	struct mm_gk20a *mm = vm->mm;
	struct gk20a *g = mm->g;
	int err;

	/*
	 * Don't waste the memory on semaphores if we don't need them.
	 */
	if (nvgpu_has_syncpoints(g)) {
		return 0;
	}

	if (vm->sema_pool) {
		return 0;
	}

	sema_sea = nvgpu_semaphore_sea_create(g);
	if (sema_sea == NULL) {
		return -ENOMEM;
	}

	err = nvgpu_semaphore_pool_alloc(sema_sea, &vm->sema_pool);
	if (err != 0) {
		return err;
	}

	/*
	 * Allocate a chunk of GPU VA space for mapping the semaphores. We will
	 * do a fixed alloc in the kernel VM so that all channels have the same
	 * RO address range for the semaphores.
	 *
	 * !!! TODO: cleanup.
	 */
	sema_sea->gpu_va = nvgpu_alloc_fixed(&vm->kernel,
					     vm->va_limit -
					     mm->channel.kernel_size,
					     512U * PAGE_SIZE,
					     SZ_4K);
	if (sema_sea->gpu_va == 0ULL) {
		nvgpu_free(&vm->kernel, sema_sea->gpu_va);
		nvgpu_vm_put(vm);
		return -ENOMEM;
	}

	err = nvgpu_semaphore_pool_map(vm->sema_pool, vm);
	if (err) {
		nvgpu_semaphore_pool_unmap(vm->sema_pool, vm);
		nvgpu_free(vm->vma[GMMU_PAGE_SIZE_SMALL],
			   vm->sema_pool->gpu_va);
		return err;
	}

	return 0;
}

/*
 * Initialize a preallocated vm
 */
int __nvgpu_vm_init(struct mm_gk20a *mm,
			   struct vm_gk20a *vm,
			   u32 big_page_size,
			   u64 low_hole,
			   u64 kernel_reserved,
			   u64 aperture_size,
			   bool big_pages,
			   bool userspace_managed,
			   char *name)
{
	int err = 0;
	char alloc_name[32];
	u64 kernel_vma_flags;
	u64 user_vma_start, user_vma_limit;
	u64 user_lp_vma_start, user_lp_vma_limit;
	u64 kernel_vma_start, kernel_vma_limit;
	struct gk20a *g = gk20a_from_mm(mm);

	if (WARN_ON(kernel_reserved + low_hole > aperture_size)) {
		return -ENOMEM;
	}

	if (WARN_ON(vm->guest_managed && kernel_reserved != 0U)) {
		return -EINVAL;
	}

	nvgpu_log_info(g, "Init space for %s: valimit=0x%llx, "
		       "LP size=0x%x lowhole=0x%llx",
		       name, aperture_size,
		       (unsigned int)big_page_size, low_hole);

	vm->mm = mm;

	vm->gmmu_page_sizes[GMMU_PAGE_SIZE_SMALL]  = SZ_4K;
	vm->gmmu_page_sizes[GMMU_PAGE_SIZE_BIG]    = big_page_size;
	vm->gmmu_page_sizes[GMMU_PAGE_SIZE_KERNEL] = SZ_4K;

	/* Set up vma pointers. */
	vm->vma[GMMU_PAGE_SIZE_SMALL]  = &vm->user;
	vm->vma[GMMU_PAGE_SIZE_BIG]    = &vm->user;
	vm->vma[GMMU_PAGE_SIZE_KERNEL] = &vm->kernel;
	if (!nvgpu_is_enabled(g, NVGPU_MM_UNIFY_ADDRESS_SPACES)) {
		vm->vma[GMMU_PAGE_SIZE_BIG] = &vm->user_lp;
	}

	vm->va_start  = low_hole;
	vm->va_limit  = aperture_size;

	vm->big_page_size     = vm->gmmu_page_sizes[GMMU_PAGE_SIZE_BIG];
	vm->userspace_managed = userspace_managed;
	vm->mmu_levels        = g->ops.mm.get_mmu_levels(g, vm->big_page_size);

#ifdef CONFIG_TEGRA_GR_VIRTUALIZATION
	if (g->is_virtual && userspace_managed) {
		nvgpu_err(g, "vGPU: no userspace managed addr space support");
		return -ENOSYS;
	}
	if (g->is_virtual && vgpu_vm_init(g, vm)) {
		nvgpu_err(g, "Failed to init vGPU VM!");
		return -ENOMEM;
	}
#endif

	/* Initialize the page table data structures. */
	strncpy(vm->name, name, min(strlen(name), sizeof(vm->name)));
	err = nvgpu_gmmu_init_page_table(vm);
	if (err) {
		goto clean_up_vgpu_vm;
	}

	/* Setup vma limits. */
	if (kernel_reserved + low_hole < aperture_size) {
		/*
		 * If big_pages are disabled for this VM then it only makes
		 * sense to make one VM, same as if the unified address flag
		 * is set.
		 */
		if (!big_pages ||
		    nvgpu_is_enabled(g, NVGPU_MM_UNIFY_ADDRESS_SPACES)) {
			user_vma_start = low_hole;
			user_vma_limit = vm->va_limit - kernel_reserved;
			user_lp_vma_start = user_vma_limit;
			user_lp_vma_limit = user_vma_limit;
		} else {
			user_vma_start = low_hole;
			user_vma_limit = nvgpu_gmmu_va_small_page_limit();
			user_lp_vma_start = nvgpu_gmmu_va_small_page_limit();
			user_lp_vma_limit = vm->va_limit - kernel_reserved;
		}
	} else {
		user_vma_start = 0;
		user_vma_limit = 0;
		user_lp_vma_start = 0;
		user_lp_vma_limit = 0;
	}
	kernel_vma_start = vm->va_limit - kernel_reserved;
	kernel_vma_limit = vm->va_limit;

	nvgpu_log_info(g, "user_vma     [0x%llx,0x%llx)",
		       user_vma_start, user_vma_limit);
	nvgpu_log_info(g, "user_lp_vma  [0x%llx,0x%llx)",
		       user_lp_vma_start, user_lp_vma_limit);
	nvgpu_log_info(g, "kernel_vma   [0x%llx,0x%llx)",
		       kernel_vma_start, kernel_vma_limit);

	if (WARN_ON(user_vma_start > user_vma_limit) ||
	    WARN_ON(user_lp_vma_start > user_lp_vma_limit) ||
		WARN_ON(!vm->guest_managed && kernel_vma_start >= kernel_vma_limit)) {
		err = -EINVAL;
		goto clean_up_page_tables;
	}

	kernel_vma_flags = (kernel_reserved + low_hole) == aperture_size ?
		0ULL : GPU_ALLOC_GVA_SPACE;

	/*
	 * A "user" area only makes sense for the GVA spaces. For VMs where
	 * there is no "user" area user_vma_start will be equal to
	 * user_vma_limit (i.e a 0 sized space). In such a situation the kernel
	 * area must be non-zero in length.
	 */
	if (user_vma_start >= user_vma_limit &&
	    kernel_vma_start >= kernel_vma_limit) {
		err = -EINVAL;
		goto clean_up_page_tables;
	}

	/*
	 * Determine if big pages are possible in this VM. If a split address
	 * space is used then check the user_lp vma instead of the user vma.
	 */
	if (nvgpu_is_enabled(g, NVGPU_MM_UNIFY_ADDRESS_SPACES)) {
		vm->big_pages = big_pages &&
			nvgpu_big_pages_possible(vm, user_vma_start,
					user_vma_limit - user_vma_start);
	} else {
		vm->big_pages = big_pages &&
			nvgpu_big_pages_possible(vm, user_lp_vma_start,
					user_lp_vma_limit - user_lp_vma_start);
	}

	/*
	 * User VMA.
	 */
	if (user_vma_start < user_vma_limit) {
		snprintf(alloc_name, sizeof(alloc_name), "gk20a_%s", name);
		err = nvgpu_buddy_allocator_init(g, &vm->user,
						 vm, alloc_name,
						 user_vma_start,
						 user_vma_limit -
						 user_vma_start,
						 SZ_4K,
						 GPU_BALLOC_MAX_ORDER,
						 GPU_ALLOC_GVA_SPACE);
		if (err) {
			goto clean_up_page_tables;
		}
	} else {
		/*
		 * Make these allocator pointers point to the kernel allocator
		 * since we still use the legacy notion of page size to choose
		 * the allocator.
		 */
		vm->vma[0] = &vm->kernel;
		vm->vma[1] = &vm->kernel;
	}

	/*
	 * User VMA for large pages when a split address range is used.
	 */
	if (user_lp_vma_start < user_lp_vma_limit) {
		snprintf(alloc_name, sizeof(alloc_name), "gk20a_%s_lp", name);
		err = nvgpu_buddy_allocator_init(g, &vm->user_lp,
						 vm, alloc_name,
						 user_lp_vma_start,
						 user_lp_vma_limit -
						 user_lp_vma_start,
						 vm->big_page_size,
						 GPU_BALLOC_MAX_ORDER,
						 GPU_ALLOC_GVA_SPACE);
		if (err) {
			goto clean_up_allocators;
		}
	}

	/*
	 * Kernel VMA. Must always exist for an address space.
	 */
	snprintf(alloc_name, sizeof(alloc_name), "gk20a_%s-sys", name);
	err = nvgpu_buddy_allocator_init(g, &vm->kernel,
					 vm, alloc_name,
					 kernel_vma_start,
					 kernel_vma_limit - kernel_vma_start,
					 SZ_4K,
					 GPU_BALLOC_MAX_ORDER,
					 kernel_vma_flags);
	if (err) {
		goto clean_up_allocators;
	}

	vm->mapped_buffers = NULL;

	err = nvgpu_mutex_init(&vm->syncpt_ro_map_lock);
	if (err != 0) {
		nvgpu_err(g,
			   "Error in syncpt_ro_map_lock mutex initialization");
		goto clean_up_allocators;
	}

	err = nvgpu_mutex_init(&vm->update_gmmu_lock);
	if (err != 0) {
		nvgpu_err(g, "Error in update_gmmu_lock mutex initialization");
		goto clean_up_ro_map_lock;
	}

	nvgpu_ref_init(&vm->ref);
	nvgpu_init_list_node(&vm->vm_area_list);

	/*
	 * This is only necessary for channel address spaces. The best way to
	 * distinguish channel address spaces from other address spaces is by
	 * size - if the address space is 4GB or less, it's not a channel.
	 */
	if (vm->va_limit > 4ULL * SZ_1G) {
		err = nvgpu_init_sema_pool(vm);
		if (err) {
			goto clean_up_gmmu_lock;
		}
	}

	return 0;

clean_up_gmmu_lock:
	nvgpu_mutex_destroy(&vm->update_gmmu_lock);
clean_up_ro_map_lock:
	nvgpu_mutex_destroy(&vm->syncpt_ro_map_lock);
clean_up_allocators:
	if (nvgpu_alloc_initialized(&vm->kernel)) {
		nvgpu_alloc_destroy(&vm->kernel);
	}
	if (nvgpu_alloc_initialized(&vm->user)) {
		nvgpu_alloc_destroy(&vm->user);
	}
	if (nvgpu_alloc_initialized(&vm->user_lp)) {
		nvgpu_alloc_destroy(&vm->user_lp);
	}
clean_up_page_tables:
	/* Cleans up nvgpu_gmmu_init_page_table() */
	nvgpu_pd_cache_free_direct(g, &vm->pdb);
clean_up_vgpu_vm:
#ifdef CONFIG_TEGRA_GR_VIRTUALIZATION
	if (g->is_virtual)
		vgpu_vm_remove(vm);
#endif
	return err;
}

/**
 * nvgpu_init_vm() - Initialize an address space.
 *
 * @mm - Parent MM.
 * @vm - The VM to init.
 * @big_page_size - Size of big pages associated with this VM.
 * @low_hole - The size of the low hole (unaddressable memory at the bottom of
 *	       the address space).
 * @kernel_reserved - Space reserved for kernel only allocations.
 * @aperture_size - Total size of the aperture.
 * @big_pages - If true then big pages are possible in the VM. Note this does
 *              not guarantee that big pages will be possible.
 * @name - Name of the address space.
 *
 * This function initializes an address space according to the following map:
 *
 *     +--+ 0x0
 *     |  |
 *     +--+ @low_hole
 *     |  |
 *     ~  ~   This is the "user" section.
 *     |  |
 *     +--+ @aperture_size - @kernel_reserved
 *     |  |
 *     ~  ~   This is the "kernel" section.
 *     |  |
 *     +--+ @aperture_size
 *
 * The user section is therefor what ever is left over after the @low_hole and
 * @kernel_reserved memory have been portioned out. The @kernel_reserved is
 * always persent at the top of the memory space and the @low_hole is always at
 * the bottom.
 *
 * For certain address spaces a "user" section makes no sense (bar1, etc) so in
 * such cases the @kernel_reserved and @low_hole should sum to exactly
 * @aperture_size.
 */
struct vm_gk20a *nvgpu_vm_init(struct gk20a *g,
			       u32 big_page_size,
			       u64 low_hole,
			       u64 kernel_reserved,
			       u64 aperture_size,
			       bool big_pages,
			       bool userspace_managed,
			       char *name)
{
	struct vm_gk20a *vm = nvgpu_kzalloc(g, sizeof(*vm));

	if (vm == NULL) {
		return NULL;
	}

	if (__nvgpu_vm_init(&g->mm, vm, big_page_size, low_hole,
			    kernel_reserved, aperture_size, big_pages,
			    userspace_managed, name)) {
		nvgpu_kfree(g, vm);
		return NULL;
	}

	return vm;
}

/*
 * Cleanup the VM!
 */
static void __nvgpu_vm_remove(struct vm_gk20a *vm)
{
	struct nvgpu_mapped_buf *mapped_buffer;
	struct nvgpu_vm_area *vm_area, *vm_area_tmp;
	struct nvgpu_rbtree_node *node = NULL;
	struct gk20a *g = vm->mm->g;

	/*
	 * Do this outside of the update_gmmu_lock since unmapping the semaphore
	 * pool involves unmapping a GMMU mapping which means aquiring the
	 * update_gmmu_lock.
	 */
	if (!nvgpu_has_syncpoints(g)) {
		if (vm->sema_pool) {
			nvgpu_semaphore_pool_unmap(vm->sema_pool, vm);
			nvgpu_semaphore_pool_put(vm->sema_pool);
		}
	}

	if (nvgpu_mem_is_valid(&g->syncpt_mem) &&
			vm->syncpt_ro_map_gpu_va != 0ULL) {
		nvgpu_gmmu_unmap(vm, &g->syncpt_mem,
				vm->syncpt_ro_map_gpu_va);
	}

	nvgpu_mutex_acquire(&vm->update_gmmu_lock);

	nvgpu_rbtree_enum_start(0, &node, vm->mapped_buffers);
	while (node) {
		mapped_buffer = mapped_buffer_from_rbtree_node(node);
		__nvgpu_vm_unmap(mapped_buffer, NULL);
		nvgpu_rbtree_enum_start(0, &node, vm->mapped_buffers);
	}

	/* destroy remaining reserved memory areas */
	nvgpu_list_for_each_entry_safe(vm_area, vm_area_tmp,
			&vm->vm_area_list,
			nvgpu_vm_area, vm_area_list) {
		nvgpu_list_del(&vm_area->vm_area_list);
		nvgpu_kfree(vm->mm->g, vm_area);
	}

	if (nvgpu_alloc_initialized(&vm->kernel)) {
		nvgpu_alloc_destroy(&vm->kernel);
	}
	if (nvgpu_alloc_initialized(&vm->user)) {
		nvgpu_alloc_destroy(&vm->user);
	}
	if (nvgpu_alloc_initialized(&vm->user_lp)) {
		nvgpu_alloc_destroy(&vm->user_lp);
	}

	nvgpu_vm_free_entries(vm, &vm->pdb);

#ifdef CONFIG_TEGRA_GR_VIRTUALIZATION
	if (g->is_virtual)
		vgpu_vm_remove(vm);
#endif

	nvgpu_mutex_release(&vm->update_gmmu_lock);

	nvgpu_mutex_destroy(&vm->syncpt_ro_map_lock);
	nvgpu_kfree(g, vm);
}

static void __nvgpu_vm_remove_ref(struct nvgpu_ref *ref)
{
	struct vm_gk20a *vm = container_of(ref, struct vm_gk20a, ref);

	__nvgpu_vm_remove(vm);
}

void nvgpu_vm_get(struct vm_gk20a *vm)
{
	nvgpu_ref_get(&vm->ref);
}

void nvgpu_vm_put(struct vm_gk20a *vm)
{
	nvgpu_ref_put(&vm->ref, __nvgpu_vm_remove_ref);
}

int nvgpu_insert_mapped_buf(struct vm_gk20a *vm,
			    struct nvgpu_mapped_buf *mapped_buffer)
{
	mapped_buffer->node.key_start = mapped_buffer->addr;
	mapped_buffer->node.key_end = mapped_buffer->addr + mapped_buffer->size;

	nvgpu_rbtree_insert(&mapped_buffer->node, &vm->mapped_buffers);

	return 0;
}

void nvgpu_remove_mapped_buf(struct vm_gk20a *vm,
			     struct nvgpu_mapped_buf *mapped_buffer)
{
	nvgpu_rbtree_unlink(&mapped_buffer->node, &vm->mapped_buffers);
}

struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf(
	struct vm_gk20a *vm, u64 addr)
{
	struct nvgpu_rbtree_node *node = NULL;
	struct nvgpu_rbtree_node *root = vm->mapped_buffers;

	nvgpu_rbtree_search(addr, &node, root);
	if (node == NULL) {
		return NULL;
	}

	return mapped_buffer_from_rbtree_node(node);
}

struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf_range(
	struct vm_gk20a *vm, u64 addr)
{
	struct nvgpu_rbtree_node *node = NULL;
	struct nvgpu_rbtree_node *root = vm->mapped_buffers;

	nvgpu_rbtree_range_search(addr, &node, root);
	if (node == NULL) {
		return NULL;
	}

	return mapped_buffer_from_rbtree_node(node);
}

struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf_less_than(
	struct vm_gk20a *vm, u64 addr)
{
	struct nvgpu_rbtree_node *node = NULL;
	struct nvgpu_rbtree_node *root = vm->mapped_buffers;

	nvgpu_rbtree_less_than_search(addr, &node, root);
	if (node == NULL) {
		return NULL;
	}

	return mapped_buffer_from_rbtree_node(node);
}

int nvgpu_vm_get_buffers(struct vm_gk20a *vm,
			 struct nvgpu_mapped_buf ***mapped_buffers,
			 int *num_buffers)
{
	struct nvgpu_mapped_buf *mapped_buffer;
	struct nvgpu_mapped_buf **buffer_list;
	struct nvgpu_rbtree_node *node = NULL;
	int i = 0;

	if (vm->userspace_managed) {
		*mapped_buffers = NULL;
		*num_buffers = 0;
		return 0;
	}

	nvgpu_mutex_acquire(&vm->update_gmmu_lock);

	if (vm->num_user_mapped_buffers == 0) {
		nvgpu_mutex_release(&vm->update_gmmu_lock);
		return 0;
	}

	buffer_list = nvgpu_big_zalloc(vm->mm->g, sizeof(*buffer_list) *
				       vm->num_user_mapped_buffers);
	if (buffer_list == NULL) {
		nvgpu_mutex_release(&vm->update_gmmu_lock);
		return -ENOMEM;
	}

	nvgpu_rbtree_enum_start(0, &node, vm->mapped_buffers);
	while (node) {
		mapped_buffer = mapped_buffer_from_rbtree_node(node);
		buffer_list[i] = mapped_buffer;
		nvgpu_ref_get(&mapped_buffer->ref);
		i++;
		nvgpu_rbtree_enum_next(&node, node);
	}

	BUG_ON(i != vm->num_user_mapped_buffers);

	*num_buffers = vm->num_user_mapped_buffers;
	*mapped_buffers = buffer_list;

	nvgpu_mutex_release(&vm->update_gmmu_lock);

	return 0;
}

void nvgpu_vm_put_buffers(struct vm_gk20a *vm,
				 struct nvgpu_mapped_buf **mapped_buffers,
				 int num_buffers)
{
	int i;
	struct vm_gk20a_mapping_batch batch;

	if (num_buffers == 0) {
		return;
	}

	nvgpu_mutex_acquire(&vm->update_gmmu_lock);
	nvgpu_vm_mapping_batch_start(&batch);
	vm->kref_put_batch = &batch;

	for (i = 0; i < num_buffers; ++i) {
		nvgpu_ref_put(&mapped_buffers[i]->ref, __nvgpu_vm_unmap_ref);
	}

	vm->kref_put_batch = NULL;
	nvgpu_vm_mapping_batch_finish_locked(vm, &batch);
	nvgpu_mutex_release(&vm->update_gmmu_lock);

	nvgpu_big_free(vm->mm->g, mapped_buffers);
}

struct nvgpu_mapped_buf *nvgpu_vm_map(struct vm_gk20a *vm,
				      struct nvgpu_os_buffer *os_buf,
				      struct nvgpu_sgt *sgt,
				      u64 map_addr,
				      u64 map_size,
				      u64 phys_offset,
				      int rw,
				      u32 flags,
				      s16 compr_kind,
				      s16 incompr_kind,
				      struct vm_gk20a_mapping_batch *batch,
				      enum nvgpu_aperture aperture)
{
	struct gk20a *g = gk20a_from_vm(vm);
	struct nvgpu_mapped_buf *mapped_buffer = NULL;
	struct nvgpu_ctag_buffer_info binfo = { 0 };
	struct nvgpu_vm_area *vm_area = NULL;
	int err = 0;
	u64 align;
	u32 ctag_offset = 0;
	bool clear_ctags = false;
	bool va_allocated = true;

	/*
	 * The kind used as part of the key for map caching. HW may
	 * actually be programmed with the fallback kind in case the
	 * key kind is compressible but we're out of comptags.
	 */
	s16 map_key_kind;

	/*
	 * The actual GMMU PTE kind
	 */
	u8 pte_kind;

	if (vm->userspace_managed &&
	    (flags & NVGPU_VM_MAP_FIXED_OFFSET) == 0U) {
		nvgpu_err(g,
			  "non-fixed-offset mapping not available on "
			  "userspace managed address spaces");
		return ERR_PTR(-EINVAL);
	}

	binfo.flags = flags;
	binfo.size = nvgpu_os_buf_get_size(os_buf);
	binfo.compr_kind =
		(vm->enable_ctag && compr_kind != NVGPU_KIND_INVALID ?
		 compr_kind : NVGPU_KIND_INVALID);
	binfo.incompr_kind = incompr_kind;

	if (compr_kind != NVGPU_KIND_INVALID) {
		map_key_kind = compr_kind;
	} else {
		map_key_kind = incompr_kind;
	}

	/*
	 * Check if this buffer is already mapped.
	 */
	if (!vm->userspace_managed) {
		nvgpu_mutex_acquire(&vm->update_gmmu_lock);
		mapped_buffer = nvgpu_vm_find_mapping(vm,
						      os_buf,
						      map_addr,
						      flags,
						      map_key_kind);

		if (mapped_buffer) {
			nvgpu_ref_get(&mapped_buffer->ref);
			nvgpu_mutex_release(&vm->update_gmmu_lock);
			return mapped_buffer;
		}
		nvgpu_mutex_release(&vm->update_gmmu_lock);
	}

	/*
	 * Generate a new mapping!
	 */
	mapped_buffer = nvgpu_kzalloc(g, sizeof(*mapped_buffer));
	if (mapped_buffer == NULL) {
		nvgpu_warn(g, "oom allocating tracking buffer");
		return ERR_PTR(-ENOMEM);
	}

	align = nvgpu_sgt_alignment(g, sgt);
	if (g->mm.disable_bigpage) {
		binfo.pgsz_idx = GMMU_PAGE_SIZE_SMALL;
	} else {
		binfo.pgsz_idx = nvgpu_vm_get_pte_size(vm, map_addr,
						min_t(u64, binfo.size, align));
	}
	map_size = (map_size != 0ULL) ? map_size : binfo.size;
	map_size = ALIGN(map_size, SZ_4K);

	if ((map_size > binfo.size) ||
	    (phys_offset > (binfo.size - map_size))) {
		err = -EINVAL;
		goto clean_up_nolock;
	}

	nvgpu_mutex_acquire(&vm->update_gmmu_lock);

	/*
	 * Check if we should use a fixed offset for mapping this buffer.
	 */
	if (flags & NVGPU_VM_MAP_FIXED_OFFSET)  {
		err = nvgpu_vm_area_validate_buffer(vm,
						    map_addr,
						    map_size,
						    binfo.pgsz_idx,
						    &vm_area);
		if (err) {
			goto clean_up;
		}

		va_allocated = false;
	}

	err = nvgpu_vm_compute_compression(vm, &binfo);
	if (err) {
		nvgpu_err(g, "failure setting up compression");
		goto clean_up;
	}

	if ((binfo.compr_kind != NVGPU_KIND_INVALID) &&
	    ((flags & NVGPU_VM_MAP_FIXED_OFFSET) != 0U)) {
		/*
		 * Fixed-address compressible mapping is
		 * requested. Make sure we're respecting the alignment
		 * requirement for virtual addresses and buffer
		 * offsets.
		 *
		 * This check must be done before we may fall back to
		 * the incompressible kind.
		 */

		const u64 offset_mask = g->ops.fb.compression_align_mask(g);

		if ((map_addr & offset_mask) != (phys_offset & offset_mask)) {
			nvgpu_log(g, gpu_dbg_map,
				  "Misaligned compressible-kind fixed-address "
				  "mapping");
			err = -EINVAL;
			goto clean_up;
		}
	}

	if (binfo.compr_kind != NVGPU_KIND_INVALID) {
		struct gk20a_comptags comptags = { 0 };

		/*
		 * Get the comptags state, alloc if necessary
		 */
		err = gk20a_alloc_or_get_comptags(g, os_buf,
						  &g->gr.comp_tags,
						  &comptags);
		if (err) {
			/*
			 * This is an irrecoverable failure and we need to
			 * abort. In particular, it is not safe to proceed with
			 * the incompressible fallback, since we cannot not mark
			 * our alloc failure anywere. Later we would retry
			 * allocation and break compressible map aliasing.
			 */
			nvgpu_err(g, "Error %d setting up comptags", err);
			goto clean_up;
		}

		/*
		 * Newly allocated comptags needs to be cleared
		 */
		if (comptags.needs_clear) {
			if (g->ops.ltc.cbc_ctrl) {
				if (gk20a_comptags_start_clear(os_buf)) {
					err = g->ops.ltc.cbc_ctrl(
						g, gk20a_cbc_op_clear,
						comptags.offset,
						(comptags.offset +
						 comptags.lines - 1U));
					gk20a_comptags_finish_clear(
						os_buf, err == 0);
					if (err) {
						goto clean_up;
					}
				}
			} else {
				/*
				 * Cleared as part of gmmu map
				 */
				clear_ctags = true;
			}
		}

		/*
		 * Store the ctag offset for later use if we got the comptags
		 */
		if (comptags.lines) {
			ctag_offset = comptags.offset;
		}
	}

	/*
	 * Figure out the kind and ctag offset for the GMMU page tables
	 */
	if (binfo.compr_kind != NVGPU_KIND_INVALID && ctag_offset != 0U) {
		/*
		 * Adjust the ctag_offset as per the buffer map offset
		 */
		ctag_offset += phys_offset >>
			ilog2(g->ops.fb.compression_page_size(g));
		pte_kind = binfo.compr_kind;
	} else if (binfo.incompr_kind != NVGPU_KIND_INVALID) {
		/*
		 * Incompressible kind, ctag offset will not be programmed
		 */
		ctag_offset = 0;
		pte_kind = binfo.incompr_kind;
	} else {
		/*
		 * Caller required compression, but we cannot provide it
		 */
		nvgpu_err(g, "No comptags and no incompressible fallback kind");
		err = -ENOMEM;
		goto clean_up;
	}

	if (clear_ctags) {
		clear_ctags = gk20a_comptags_start_clear(os_buf);
	}

	map_addr = g->ops.mm.gmmu_map(vm,
				      map_addr,
				      sgt,
				      phys_offset,
				      map_size,
				      binfo.pgsz_idx,
				      pte_kind,
				      ctag_offset,
				      flags,
				      rw,
				      clear_ctags,
				      false,
				      false,
				      batch,
				      aperture);

	if (clear_ctags) {
		gk20a_comptags_finish_clear(os_buf, map_addr != 0U);
	}

	if (map_addr == 0ULL) {
		err = -ENOMEM;
		goto clean_up;
	}

	nvgpu_init_list_node(&mapped_buffer->buffer_list);
	nvgpu_ref_init(&mapped_buffer->ref);
	mapped_buffer->addr         = map_addr;
	mapped_buffer->size         = map_size;
	mapped_buffer->pgsz_idx     = binfo.pgsz_idx;
	mapped_buffer->vm           = vm;
	mapped_buffer->flags        = flags;
	mapped_buffer->kind         = map_key_kind;
	mapped_buffer->va_allocated = va_allocated;
	mapped_buffer->vm_area      = vm_area;

	err = nvgpu_insert_mapped_buf(vm, mapped_buffer);
	if (err) {
		nvgpu_err(g, "failed to insert into mapped buffer tree");
		goto clean_up;
	}

	vm->num_user_mapped_buffers++;

	if (vm_area) {
		nvgpu_list_add_tail(&mapped_buffer->buffer_list,
			      &vm_area->buffer_list_head);
		mapped_buffer->vm_area = vm_area;
	}

	nvgpu_mutex_release(&vm->update_gmmu_lock);

	return mapped_buffer;

clean_up:
	if (mapped_buffer->addr) {
		g->ops.mm.gmmu_unmap(vm,
				     mapped_buffer->addr,
				     mapped_buffer->size,
				     mapped_buffer->pgsz_idx,
				     mapped_buffer->va_allocated,
				     gk20a_mem_flag_none,
				     (mapped_buffer->vm_area != NULL) ?
				     mapped_buffer->vm_area->sparse : false,
				     NULL);
	}
	nvgpu_mutex_release(&vm->update_gmmu_lock);
clean_up_nolock:
	nvgpu_kfree(g, mapped_buffer);

	return ERR_PTR(err);
}

/*
 * Really unmap. This does the real GMMU unmap and removes the mapping from the
 * VM map tracking tree (and vm_area list if necessary).
 */
static void __nvgpu_vm_unmap(struct nvgpu_mapped_buf *mapped_buffer,
			     struct vm_gk20a_mapping_batch *batch)
{
	struct vm_gk20a *vm = mapped_buffer->vm;
	struct gk20a *g = vm->mm->g;

	vm->num_user_mapped_buffers--;

	g->ops.mm.gmmu_unmap(vm,
			     mapped_buffer->addr,
			     mapped_buffer->size,
			     mapped_buffer->pgsz_idx,
			     mapped_buffer->va_allocated,
			     gk20a_mem_flag_none,
			     (mapped_buffer->vm_area != NULL) ?
			     mapped_buffer->vm_area->sparse : false,
			     batch);

	/*
	 * Remove from mapped buffer tree. Then delete the buffer from the
	 * linked list of mapped buffers; though note: not all mapped buffers
	 * are part of a vm_area.
	 */
	nvgpu_remove_mapped_buf(vm, mapped_buffer);
	nvgpu_list_del(&mapped_buffer->buffer_list);

	/*
	 * OS specific freeing. This is after the generic freeing incase the
	 * generic freeing relies on some component of the OS specific
	 * nvgpu_mapped_buf in some abstraction or the like.
	 */
	nvgpu_vm_unmap_system(mapped_buffer);

	nvgpu_kfree(g, mapped_buffer);
}

/*
 * Note: the update_gmmu_lock of the VM that owns this buffer must be locked
 * before calling nvgpu_ref_put() with this function as the unref function
 * argument since this can modify the tree of maps.
 */
void __nvgpu_vm_unmap_ref(struct nvgpu_ref *ref)
{
	struct nvgpu_mapped_buf *mapped_buffer =
		container_of(ref, struct nvgpu_mapped_buf, ref);

	__nvgpu_vm_unmap(mapped_buffer, mapped_buffer->vm->kref_put_batch);
}

/*
 * For fixed-offset buffers we must sync the buffer. That means we wait for the
 * buffer to hit a ref-count of 1 before proceeding.
 *
 * Note: this requires the update_gmmu_lock to be held since we release it and
 * re-aquire it in this function.
 */
static int nvgpu_vm_unmap_sync_buffer(struct vm_gk20a *vm,
				      struct nvgpu_mapped_buf *mapped_buffer)
{
	struct nvgpu_timeout timeout;
	int ret = 0;
	bool done = false;

	nvgpu_mutex_release(&vm->update_gmmu_lock);

	/*
	 * 100ms timer.
	 */
	nvgpu_timeout_init(vm->mm->g, &timeout, 100, NVGPU_TIMER_CPU_TIMER);

	do {
		if (nvgpu_atomic_read(&mapped_buffer->ref.refcount) <= 1) {
			done = true;
		} else if (nvgpu_timeout_expired_msg(&timeout,
			    "sync-unmap failed on 0x%llx",
			    mapped_buffer->addr) != 0) {
			done = true;
		} else {
			nvgpu_msleep(10);
		}
	} while (!done);

	if (nvgpu_atomic_read(&mapped_buffer->ref.refcount) > 1) {
		ret = -ETIMEDOUT;
	}

	nvgpu_mutex_acquire(&vm->update_gmmu_lock);

	return ret;
}

void nvgpu_vm_unmap(struct vm_gk20a *vm, u64 offset,
		    struct vm_gk20a_mapping_batch *batch)
{
	struct nvgpu_mapped_buf *mapped_buffer;

	nvgpu_mutex_acquire(&vm->update_gmmu_lock);

	mapped_buffer = __nvgpu_vm_find_mapped_buf(vm, offset);
	if (mapped_buffer == NULL) {
		goto done;
	}

	if (mapped_buffer->flags & NVGPU_VM_MAP_FIXED_OFFSET) {
		if (nvgpu_vm_unmap_sync_buffer(vm, mapped_buffer)) {
			nvgpu_warn(vm->mm->g, "%d references remaining on 0x%llx",
				nvgpu_atomic_read(&mapped_buffer->ref.refcount),
				mapped_buffer->addr);
		}
	}

	/*
	 * Make sure we have access to the batch if we end up calling through to
	 * the unmap_ref function.
	 */
	vm->kref_put_batch = batch;
	nvgpu_ref_put(&mapped_buffer->ref, __nvgpu_vm_unmap_ref);
	vm->kref_put_batch = NULL;

done:
	nvgpu_mutex_release(&vm->update_gmmu_lock);
	return;
}

static int nvgpu_vm_compute_compression(struct vm_gk20a *vm,
					struct nvgpu_ctag_buffer_info *binfo)
{
	bool kind_compressible = (binfo->compr_kind != NVGPU_KIND_INVALID);
	struct gk20a *g = gk20a_from_vm(vm);

	if (kind_compressible &&
	    vm->gmmu_page_sizes[binfo->pgsz_idx] <
	    g->ops.fb.compressible_page_size(g)) {
		/*
		 * Let's double check that there is a fallback kind
		 */
		if (binfo->incompr_kind == NVGPU_KIND_INVALID) {
			nvgpu_err(g,
				  "Unsupported page size for compressible "
				  "kind, but no fallback kind");
			return -EINVAL;
		} else {
			nvgpu_log(g, gpu_dbg_map,
				  "Unsupported page size for compressible "
				  "kind, demoting to incompressible");
			binfo->compr_kind = NVGPU_KIND_INVALID;
			kind_compressible = false;
		}
	}

	return 0;
}