summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/nvgpu/common/mm/gmmu.c
blob: ee160ae26cd66174087b813537ec2da52284e44b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
/*
 * Copyright (c) 2017-2020, NVIDIA CORPORATION.  All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <nvgpu/bug.h>
#include <nvgpu/log.h>
#include <nvgpu/list.h>
#include <nvgpu/dma.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/enabled.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/barrier.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/sizes.h>
#include <nvgpu/types.h>
#include <nvgpu/gk20a.h>

#include "gk20a/mm_gk20a.h"

#define __gmmu_dbg(g, attrs, fmt, args...)				\
	do {								\
		if (attrs->debug) {					\
			nvgpu_info(g, fmt, ##args);			\
		} else {						\
			nvgpu_log(g, gpu_dbg_map, fmt, ##args);		\
		}							\
	} while (0)

#define __gmmu_dbg_v(g, attrs, fmt, args...)				\
	do {								\
		if (attrs->debug) {					\
			nvgpu_info(g, fmt, ##args);			\
		} else {						\
			nvgpu_log(g, gpu_dbg_map_v, fmt, ##args);	\
		}							\
	} while (0)

static int pd_allocate(struct vm_gk20a *vm,
		       struct nvgpu_gmmu_pd *pd,
		       const struct gk20a_mmu_level *l,
		       struct nvgpu_gmmu_attrs *attrs);
static u32 pd_size(const struct gk20a_mmu_level *l,
		   struct nvgpu_gmmu_attrs *attrs);
/*
 * Core GMMU map function for the kernel to use. If @addr is 0 then the GPU
 * VA will be allocated for you. If addr is non-zero then the buffer will be
 * mapped at @addr.
 */
static u64 __nvgpu_gmmu_map(struct vm_gk20a *vm,
			    struct nvgpu_mem *mem,
			    u64 addr,
			    u64 size,
			    u32 flags,
			    enum gk20a_mem_rw_flag rw_flag,
			    bool priv,
			    enum nvgpu_aperture aperture)
{
	struct gk20a *g = gk20a_from_vm(vm);
	u64 vaddr;

	struct nvgpu_sgt *sgt = nvgpu_sgt_create_from_mem(g, mem);

	if (sgt == NULL) {
		return 0;
	}

	/*
	 * Later on, when we free this nvgpu_mem's GPU mapping, we are going to
	 * potentially have to free the GPU VA space. If the address passed in
	 * is non-zero then this API is not expected to manage the VA space and
	 * therefor we should not try and free it. But otherwise, if we do
	 * manage the VA alloc, we obviously must free it.
	 */
	if (addr != 0U) {
		mem->free_gpu_va = false;
	} else {
		mem->free_gpu_va = true;
	}

	nvgpu_mutex_acquire(&vm->update_gmmu_lock);
	vaddr = g->ops.mm.gmmu_map(vm, addr,
				   sgt,    /* sg list */
				   0,      /* sg offset */
				   size,
				   GMMU_PAGE_SIZE_KERNEL,
				   0,      /* kind */
				   0,      /* ctag_offset */
				   flags, rw_flag,
				   false,  /* clear_ctags */
				   false,  /* sparse */
				   priv,   /* priv */
				   NULL,   /* mapping_batch handle */
				   aperture);
	nvgpu_mutex_release(&vm->update_gmmu_lock);

	nvgpu_sgt_free(g, sgt);

	if (vaddr == 0ULL) {
		nvgpu_err(g, "failed to map buffer!");
		return 0;
	}

	return vaddr;
}

/*
 * Map a nvgpu_mem into the GMMU. This is for kernel space to use.
 */
u64 nvgpu_gmmu_map(struct vm_gk20a *vm,
		   struct nvgpu_mem *mem,
		   u64 size,
		   u32 flags,
		   enum gk20a_mem_rw_flag rw_flag,
		   bool priv,
		   enum nvgpu_aperture aperture)
{
	return __nvgpu_gmmu_map(vm, mem, 0, size, flags, rw_flag, priv,
			aperture);
}

/*
 * Like nvgpu_gmmu_map() except this can work on a fixed address.
 */
u64 nvgpu_gmmu_map_fixed(struct vm_gk20a *vm,
			 struct nvgpu_mem *mem,
			 u64 addr,
			 u64 size,
			 u32 flags,
			 enum gk20a_mem_rw_flag rw_flag,
			 bool priv,
			 enum nvgpu_aperture aperture)
{
	return __nvgpu_gmmu_map(vm, mem, addr, size, flags, rw_flag, priv,
			aperture);
}

void nvgpu_gmmu_unmap(struct vm_gk20a *vm, struct nvgpu_mem *mem, u64 gpu_va)
{
	struct gk20a *g = gk20a_from_vm(vm);

	nvgpu_mutex_acquire(&vm->update_gmmu_lock);
	g->ops.mm.gmmu_unmap(vm,
			     gpu_va,
			     mem->size,
			     GMMU_PAGE_SIZE_KERNEL,
			     mem->free_gpu_va,
			     gk20a_mem_flag_none,
			     false,
			     NULL);

	nvgpu_mutex_release(&vm->update_gmmu_lock);
}

int nvgpu_gmmu_init_page_table(struct vm_gk20a *vm)
{
	u32 pdb_size;
	int err;

	/*
	 * Need this just for page size. Everything else can be ignored. Also
	 * note that we can just use pgsz 0 (i.e small pages) since the number
	 * of bits present in the top level PDE are the same for small/large
	 * page VMs.
	 */
	struct nvgpu_gmmu_attrs attrs = {
		.pgsz = 0,
	};

	/*
	 * PDB size here must be one page so that its address is page size
	 * aligned. Although lower PDE tables can be aligned at 256B boundaries
	 * the main PDB must be page aligned.
	 */
	pdb_size = ALIGN(pd_size(&vm->mmu_levels[0], &attrs), PAGE_SIZE);

	err = nvgpu_pd_cache_alloc_direct(vm->mm->g, &vm->pdb, pdb_size);
	if (WARN_ON(err != 0)) {
		return err;
	}

	/*
	 * One nvgpu_mb() is done after all mapping operations. Don't need
	 * individual barriers for each PD write.
	 */
	vm->pdb.mem->skip_wmb = true;

	return 0;
}

/*
 * Return the _physical_ address of a page directory.
 */
static u64 nvgpu_pde_phys_addr(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
{
	u64 page_addr;

	if (nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) {
		page_addr = nvgpu_mem_get_phys_addr(g, pd->mem);
	} else {
		page_addr = nvgpu_mem_get_addr(g, pd->mem);
	}

	return page_addr + pd->mem_offs;
}

/*
 * Return the aligned length based on the page size in attrs.
 */
static u64 nvgpu_align_map_length(struct vm_gk20a *vm, u64 length,
				  struct nvgpu_gmmu_attrs *attrs)
{
	u64 page_size = vm->gmmu_page_sizes[attrs->pgsz];

	return ALIGN(length, page_size);
}

static u32 pd_entries(const struct gk20a_mmu_level *l,
		      struct nvgpu_gmmu_attrs *attrs)
{
	/*
	 * Number of entries in a PD is easy to compute from the number of bits
	 * used to index the page directory. That is simply 2 raised to the
	 * number of bits.
	 */
	return 1UL << (l->hi_bit[attrs->pgsz] - l->lo_bit[attrs->pgsz] + 1UL);
}

/*
 * Computes the size of a PD table.
 */
static u32 pd_size(const struct gk20a_mmu_level *l,
		   struct nvgpu_gmmu_attrs *attrs)
{
	return pd_entries(l, attrs) * l->entry_size;
}

/*
 * Allocate a physically contiguous region big enough for a gmmu page table
 * of the specified level and page size. The whole range is zeroed so that any
 * accesses will fault until proper values are programmed.
 */
static int pd_allocate(struct vm_gk20a *vm,
		       struct nvgpu_gmmu_pd *pd,
		       const struct gk20a_mmu_level *l,
		       struct nvgpu_gmmu_attrs *attrs)
{
	int err;

	if (pd->mem) {
		return 0;
	}

	err = nvgpu_pd_alloc(vm, pd, pd_size(l, attrs));
	if (err) {
		nvgpu_info(vm->mm->g, "error allocating page directory!");
		return err;
	}

	/*
	 * One nvgpu_mb() is done after all mapping operations. Don't need
	 * individual barriers for each PD write.
	 */
	pd->mem->skip_wmb = true;

	return 0;
}

/*
 * Compute what page directory index at the passed level the passed virtual
 * address corresponds to. @attrs is necessary for determining the page size
 * which is used to pick the right bit offsets for the GMMU level.
 */
static u32 pd_index(const struct gk20a_mmu_level *l, u64 virt,
		    struct nvgpu_gmmu_attrs *attrs)
{
	u64 pd_mask = (1ULL << ((u64)l->hi_bit[attrs->pgsz] + 1U)) - 1ULL;
	u32 pd_shift = (u64)l->lo_bit[attrs->pgsz];

	/*
	 * For convenience we don't bother computing the lower bound of the
	 * mask; it's easier to just shift it off.
	 */
	return (virt & pd_mask) >> pd_shift;
}

static int pd_allocate_children(struct vm_gk20a *vm,
				const struct gk20a_mmu_level *l,
				struct nvgpu_gmmu_pd *pd,
				struct nvgpu_gmmu_attrs *attrs)
{
	struct gk20a *g = gk20a_from_vm(vm);

	if (pd->entries) {
		return 0;
	}

	pd->num_entries = pd_entries(l, attrs);
	pd->entries = nvgpu_vzalloc(g, sizeof(struct nvgpu_gmmu_pd) *
				    pd->num_entries);
	if (pd->entries == NULL) {
		return -ENOMEM;
	}

	return 0;
}

/*
 * This function programs the GMMU based on two ranges: a physical range and a
 * GPU virtual range. The virtual is mapped to the physical. Physical in this
 * case can mean either a real physical sysmem address or a IO virtual address
 * (for instance when a system has an IOMMU running).
 *
 * The rest of the parameters are for describing the actual mapping itself.
 *
 * This function recursively calls itself for handling PDEs. At the final level
 * a PTE handler is called. The phys and virt ranges are adjusted for each
 * recursion so that each invocation of this function need only worry about the
 * range it is passed.
 *
 * phys_addr will always point to a contiguous range - the discontiguous nature
 * of DMA buffers is taken care of at the layer above this.
 */
static int __set_pd_level(struct vm_gk20a *vm,
			  struct nvgpu_gmmu_pd *pd,
			  int lvl,
			  u64 phys_addr,
			  u64 virt_addr, u64 length,
			  struct nvgpu_gmmu_attrs *attrs)
{
	int err = 0;
	u64 pde_range;
	struct gk20a *g = gk20a_from_vm(vm);
	struct nvgpu_gmmu_pd *next_pd = NULL;
	const struct gk20a_mmu_level *l      = &vm->mmu_levels[lvl];
	const struct gk20a_mmu_level *next_l = &vm->mmu_levels[lvl + 1];

	/*
	 * 5 levels for Pascal+. For pre-pascal we only have 2. This puts
	 * offsets into the page table debugging code which makes it easier to
	 * see what level prints are from.
	 */
	static const char *__lvl_debug[] = {
		"",          /* L=0 */
		"  ",        /* L=1 */
		"    ",      /* L=2 */
		"      ",    /* L=3 */
		"        ",  /* L=4 */
	};

	pde_range = 1ULL << (u64)l->lo_bit[attrs->pgsz];

	__gmmu_dbg_v(g, attrs,
		     "L=%d   %sGPU virt %#-12llx +%#-9llx -> phys %#-12llx",
		     lvl,
		     __lvl_debug[lvl],
		     virt_addr,
		     length,
		     phys_addr);

	/*
	 * Iterate across the mapping in chunks the size of this level's PDE.
	 * For each of those chunks program our level's PDE and then, if there's
	 * a next level, program the next level's PDEs/PTEs.
	 */
	while (length) {
		u32 pd_idx = pd_index(l, virt_addr, attrs);
		u64 chunk_size;
		u64 target_addr;

		/*
		 * Truncate the pde_range when the virtual address does not
		 * start at a PDE boundary.
		 */
		chunk_size = min(length,
				 pde_range - (virt_addr & (pde_range - 1U)));

		/*
		 * If the next level has an update_entry function then we know
		 * that _this_ level points to PDEs (not PTEs). Thus we need to
		 * have a bunch of children PDs.
		 */
		if (next_l->update_entry) {
			if (pd_allocate_children(vm, l, pd, attrs)) {
				return -ENOMEM;
			}

			/*
			 * Get the next PD so that we know what to put in this
			 * current PD. If the next level is actually PTEs then
			 * we don't need this - we will just use the real
			 * physical target.
			 */
			next_pd = &pd->entries[pd_idx];

			/*
			 * Allocate the backing memory for next_pd.
			 */
			if (pd_allocate(vm, next_pd, next_l, attrs)) {
				return -ENOMEM;
			}
		}

		/*
		 * This is the address we want to program into the actual PDE/
		 * PTE. When the next level is PDEs we need the target address
		 * to be the table of PDEs. When the next level is PTEs the
		 * target addr is the real physical address we are aiming for.
		 */
		target_addr = (next_pd != NULL) ?
			nvgpu_pde_phys_addr(g, next_pd) :
			phys_addr;

		l->update_entry(vm, l,
				pd, pd_idx,
				virt_addr,
				target_addr,
				attrs);

		if (next_l->update_entry) {
			err = __set_pd_level(vm, next_pd,
					     lvl + 1,
					     phys_addr,
					     virt_addr,
					     chunk_size,
					     attrs);

			if (err) {
				return err;
			}
		}

		virt_addr += chunk_size;

		/*
		 * Only add to phys_addr if it's non-zero. A zero value implies
		 * we are unmapping as as a result we don't want to place
		 * non-zero phys addresses in the PTEs. A non-zero phys-addr
		 * would also confuse the lower level PTE programming code.
		 */
		if (phys_addr) {
			phys_addr += chunk_size;
		}
		length -= chunk_size;
	}

	__gmmu_dbg_v(g, attrs, "L=%d   %s%s", lvl, __lvl_debug[lvl], "ret!");

	return 0;
}

static int __nvgpu_gmmu_do_update_page_table(struct vm_gk20a *vm,
					     struct nvgpu_sgt *sgt,
					     u64 space_to_skip,
					     u64 virt_addr,
					     u64 length,
					     struct nvgpu_gmmu_attrs *attrs)
{
	struct gk20a *g = gk20a_from_vm(vm);
	struct nvgpu_sgl *sgl;
	int err = 0;

	if (sgt == NULL) {
		/*
		 * This is considered an unmap. Just pass in 0 as the physical
		 * address for the entire GPU range.
		 */
		err = __set_pd_level(vm, &vm->pdb,
				     0,
				     0,
				     virt_addr, length,
				     attrs);
		return err;
	}

	/*
	 * At this point we have a scatter-gather list pointing to some number
	 * of discontiguous chunks of memory. We must iterate over that list and
	 * generate a GMMU map call for each chunk. There are several
	 * possibilities:
	 *
	 *  1. IOMMU enabled, IOMMU addressing (typical iGPU)
	 *  2. IOMMU enabled, IOMMU bypass     (NVLINK bypasses SMMU)
	 *  3. IOMMU disabled                  (less common but still supported)
	 *  4. VIDMEM
	 *
	 * For (1) we can assume that there's really only one actual SG chunk
	 * since the IOMMU gives us a single contiguous address range. However,
	 * for (2), (3) and (4) we have to actually go through each SG entry and
	 * map each chunk individually.
	 */
	if (nvgpu_aperture_is_sysmem(attrs->aperture) &&
	    nvgpu_iommuable(g) &&
	    nvgpu_sgt_iommuable(g, sgt)) {
		u64 io_addr = nvgpu_sgt_get_gpu_addr(g, sgt, sgt->sgl, attrs);

		io_addr += space_to_skip;

		err = __set_pd_level(vm, &vm->pdb,
				     0,
				     io_addr,
				     virt_addr,
				     length,
				     attrs);

		return err;
	}

	/*
	 * Handle cases (2), (3), and (4): do the no-IOMMU mapping. In this case
	 * we really are mapping physical pages directly.
	 */
	nvgpu_sgt_for_each_sgl(sgl, sgt) {
		u64 phys_addr;
		u64 chunk_length;

		/*
		 * Cut out sgl ents for space_to_skip.
		 */
		if (space_to_skip != 0ULL &&
		    space_to_skip >= nvgpu_sgt_get_length(sgt, sgl)) {
			space_to_skip -= nvgpu_sgt_get_length(sgt, sgl);
			continue;
		}

		phys_addr = g->ops.mm.gpu_phys_addr(g, attrs,
			    nvgpu_sgt_get_phys(g, sgt, sgl)) + space_to_skip;
		chunk_length = min(length,
			nvgpu_sgt_get_length(sgt, sgl) - space_to_skip);

		err = __set_pd_level(vm, &vm->pdb,
				     0,
				     phys_addr,
				     virt_addr,
				     chunk_length,
				     attrs);
		if (err) {
			break;
		}

		/* Space has been skipped so zero this for future chunks. */
		space_to_skip = 0;

		/*
		 * Update the map pointer and the remaining length.
		 */
		virt_addr += chunk_length;
		length    -= chunk_length;

		if (length == 0U) {
			break;
		}
	}

	return err;
}

/*
 * This is the true top level GMMU mapping logic. This breaks down the incoming
 * scatter gather table and does actual programming of GPU virtual address to
 * physical* address.
 *
 * The update of each level of the page tables is farmed out to chip specific
 * implementations. But the logic around that is generic to all chips. Every
 * chip has some number of PDE levels and then a PTE level.
 *
 * Each chunk of the incoming SGL is sent to the chip specific implementation
 * of page table update.
 *
 * [*] Note: the "physical" address may actually be an IO virtual address in the
 *     case of SMMU usage.
 */
static int __nvgpu_gmmu_update_page_table(struct vm_gk20a *vm,
					  struct nvgpu_sgt *sgt,
					  u64 space_to_skip,
					  u64 virt_addr,
					  u64 length,
					  struct nvgpu_gmmu_attrs *attrs)
{
	struct gk20a *g = gk20a_from_vm(vm);
	u32 page_size;
	int err;

	/* note: here we need to map kernel to small, since the
	 * low-level mmu code assumes 0 is small and 1 is big pages */
	if (attrs->pgsz == GMMU_PAGE_SIZE_KERNEL) {
		attrs->pgsz = GMMU_PAGE_SIZE_SMALL;
	}

	page_size = vm->gmmu_page_sizes[attrs->pgsz];

	if (space_to_skip & (page_size - 1U)) {
		return -EINVAL;
	}

	/*
	 * Update length to be aligned to the passed page size.
	 */
	length = nvgpu_align_map_length(vm, length, attrs);

	__gmmu_dbg(g, attrs,
		   "vm=%s "
		   "%-5s GPU virt %#-12llx +%#-9llx    phys %#-12llx "
		   "phys offset: %#-4llx;  pgsz: %3dkb perm=%-2s | "
		   "kind=%#02x APT=%-6s %c%c%c%c%c%c",
		   vm->name,
		   (sgt != NULL) ? "MAP" : "UNMAP",
		   virt_addr,
		   length,
		   (sgt != NULL) ? nvgpu_sgt_get_phys(g, sgt, sgt->sgl) : 0,
		   space_to_skip,
		   page_size >> 10,
		   nvgpu_gmmu_perm_str(attrs->rw_flag),
		   attrs->kind_v,
		   nvgpu_aperture_str(g, attrs->aperture),
		   attrs->cacheable ? 'C' : '-',
		   attrs->sparse    ? 'S' : '-',
		   attrs->priv      ? 'P' : '-',
		   attrs->coherent  ? 'I' : '-',
		   attrs->valid     ? 'V' : '-',
		   attrs->platform_atomic ? 'A' : '-');

	err = __nvgpu_gmmu_do_update_page_table(vm,
						sgt,
						space_to_skip,
						virt_addr,
						length,
						attrs);

	nvgpu_mb();

	__gmmu_dbg(g, attrs, "%-5s Done!",
				(sgt != NULL) ? "MAP" : "UNMAP");

	return err;
}

/**
 * gk20a_locked_gmmu_map - Map a buffer into the GMMU
 *
 * This is for non-vGPU chips. It's part of the HAL at the moment but really
 * should not be. Chip specific stuff is handled at the PTE/PDE programming
 * layer. The rest of the logic is essentially generic for all chips.
 *
 * To call this function you must have locked the VM lock: vm->update_gmmu_lock.
 * However, note: this function is not called directly. It's used through the
 * mm.gmmu_lock() HAL. So before calling the mm.gmmu_lock() HAL make sure you
 * have the update_gmmu_lock aquired.
 */
u64 gk20a_locked_gmmu_map(struct vm_gk20a *vm,
			  u64 vaddr,
			  struct nvgpu_sgt *sgt,
			  u64 buffer_offset,
			  u64 size,
			  u32 pgsz_idx,
			  u8 kind_v,
			  u32 ctag_offset,
			  u32 flags,
			  enum gk20a_mem_rw_flag rw_flag,
			  bool clear_ctags,
			  bool sparse,
			  bool priv,
			  struct vm_gk20a_mapping_batch *batch,
			  enum nvgpu_aperture aperture)
{
	struct gk20a *g = gk20a_from_vm(vm);
	int err = 0;
	bool allocated = false;
	int ctag_granularity = g->ops.fb.compression_page_size(g);
	struct nvgpu_gmmu_attrs attrs = {
		.pgsz      = pgsz_idx,
		.kind_v    = kind_v,
		.ctag      = (u64)ctag_offset * (u64)ctag_granularity,
		.cacheable = flags & NVGPU_VM_MAP_CACHEABLE,
		.rw_flag   = rw_flag,
		.sparse    = sparse,
		.priv      = priv,
		.coherent  = flags & NVGPU_VM_MAP_IO_COHERENT,
		.valid     = (flags & NVGPU_VM_MAP_UNMAPPED_PTE) == 0U,
		.aperture  = aperture,
		.platform_atomic = (flags & NVGPU_VM_MAP_PLATFORM_ATOMIC) != 0U
	};

	/*
	 * We need to add the buffer_offset within compression_page_size so that
	 * the programmed ctagline gets increased at compression_page_size
	 * boundaries.
	 */
	if (attrs.ctag) {
		attrs.ctag += buffer_offset & (ctag_granularity - 1U);
	}

	attrs.l3_alloc = (bool)(flags & NVGPU_VM_MAP_L3_ALLOC);

	/*
	 * Handle the IO coherency aperture: make sure the .aperture field is
	 * correct based on the IO coherency flag.
	 */
	if (attrs.coherent && attrs.aperture == APERTURE_SYSMEM) {
		attrs.aperture = APERTURE_SYSMEM_COH;
	}

	/*
	 * Only allocate a new GPU VA range if we haven't already been passed a
	 * GPU VA range. This facilitates fixed mappings.
	 */
	if (vaddr == 0ULL) {
		vaddr = __nvgpu_vm_alloc_va(vm, size, pgsz_idx);
		if (vaddr == 0ULL) {
			nvgpu_err(g, "failed to allocate va space");
			err = -ENOMEM;
			goto fail_alloc;
		}
		allocated = true;
	}

	err = __nvgpu_gmmu_update_page_table(vm, sgt, buffer_offset,
					     vaddr, size, &attrs);
	if (err) {
		nvgpu_err(g, "failed to update ptes on map");
		goto fail_validate;
	}

	if (batch == NULL) {
		g->ops.fb.tlb_invalidate(g, vm->pdb.mem);
	} else {
		batch->need_tlb_invalidate = true;
	}

	return vaddr;

fail_validate:
	if (allocated) {
		__nvgpu_vm_free_va(vm, vaddr, pgsz_idx);
	}
fail_alloc:
	nvgpu_err(g, "%s: failed with err=%d", __func__, err);
	return 0;
}

void gk20a_locked_gmmu_unmap(struct vm_gk20a *vm,
			     u64 vaddr,
			     u64 size,
			     u32 pgsz_idx,
			     bool va_allocated,
			     enum gk20a_mem_rw_flag rw_flag,
			     bool sparse,
			     struct vm_gk20a_mapping_batch *batch)
{
	int err = 0;
	struct gk20a *g = gk20a_from_vm(vm);
	struct nvgpu_gmmu_attrs attrs = {
		.pgsz      = pgsz_idx,
		.kind_v    = 0,
		.ctag      = 0,
		.cacheable = 0,
		.rw_flag   = rw_flag,
		.sparse    = sparse,
		.priv      = 0,
		.coherent  = 0,
		.valid     = 0,
		.aperture  = APERTURE_INVALID,
	};

	if (va_allocated) {
		err = __nvgpu_vm_free_va(vm, vaddr, pgsz_idx);
		if (err) {
			nvgpu_err(g, "failed to free va");
			return;
		}
	}

	/* unmap here needs to know the page size we assigned at mapping */
	err = __nvgpu_gmmu_update_page_table(vm, NULL, 0,
					     vaddr, size, &attrs);
	if (err) {
		nvgpu_err(g, "failed to update gmmu ptes on unmap");
	}

	if (batch == NULL) {
		gk20a_mm_l2_flush(g, true);
		g->ops.fb.tlb_invalidate(g, vm->pdb.mem);
	} else {
		if (!batch->gpu_l2_flushed) {
			gk20a_mm_l2_flush(g, true);
			batch->gpu_l2_flushed = true;
		}
		batch->need_tlb_invalidate = true;
	}
}

u32 __nvgpu_pte_words(struct gk20a *g)
{
	const struct gk20a_mmu_level *l = g->ops.mm.get_mmu_levels(g, SZ_64K);
	const struct gk20a_mmu_level *next_l;

	/*
	 * Iterate to the bottom GMMU level - the PTE level. The levels array
	 * is always NULL terminated (by the update_entry function).
	 */
	do {
		next_l = l + 1;
		if (next_l->update_entry == NULL) {
			break;
		}

		l++;
	} while (true);

	return (u32)(l->entry_size / sizeof(u32));
}

/*
 * Recursively walk the pages tables to find the PTE.
 */
static int __nvgpu_locate_pte(struct gk20a *g, struct vm_gk20a *vm,
			      struct nvgpu_gmmu_pd *pd,
			      u64 vaddr, int lvl,
			      struct nvgpu_gmmu_attrs *attrs,
			      u32 *data,
			      struct nvgpu_gmmu_pd **pd_out, u32 *pd_idx_out,
			      u32 *pd_offs_out)
{
	const struct gk20a_mmu_level *l      = &vm->mmu_levels[lvl];
	const struct gk20a_mmu_level *next_l = &vm->mmu_levels[lvl + 1];
	u32 pd_idx = pd_index(l, vaddr, attrs);
	u32 pte_base;
	u32 pte_size;
	u32 i;

	/*
	 * If this isn't the final level (i.e there's a valid next level)
	 * then find the next level PD and recurse.
	 */
	if (next_l->update_entry) {
		struct nvgpu_gmmu_pd *pd_next = pd->entries + pd_idx;

		/* Invalid entry! */
		if (pd_next->mem == NULL) {
			return -EINVAL;
		}

		attrs->pgsz = l->get_pgsz(g, l, pd, pd_idx);

		if (attrs->pgsz >= GMMU_NR_PAGE_SIZES) {
			return -EINVAL;
		}

		return __nvgpu_locate_pte(g, vm, pd_next,
					  vaddr, lvl + 1, attrs,
					  data, pd_out, pd_idx_out,
					  pd_offs_out);
	}

	if (pd->mem == NULL) {
		return -EINVAL;
	}

	/*
	 * Take into account the real offset into the nvgpu_mem since the PD
	 * may be located at an offset other than 0 (due to PD packing).
	 */
	pte_base = (pd->mem_offs / sizeof(u32)) +
		pd_offset_from_index(l, pd_idx);
	pte_size = (u32)(l->entry_size / sizeof(u32));

	if (data) {
		for (i = 0; i < pte_size; i++) {
			data[i] = nvgpu_mem_rd32(g, pd->mem, pte_base + i);
		}
	}

	if (pd_out) {
		*pd_out = pd;
	}

	if (pd_idx_out) {
		*pd_idx_out = pd_idx;
	}

	if (pd_offs_out) {
		*pd_offs_out = pd_offset_from_index(l, pd_idx);
	}

	return 0;
}

int __nvgpu_get_pte(struct gk20a *g, struct vm_gk20a *vm, u64 vaddr, u32 *pte)
{
	struct nvgpu_gmmu_attrs attrs = {
		.pgsz = 0,
	};

	return __nvgpu_locate_pte(g, vm, &vm->pdb,
				  vaddr, 0, &attrs,
				  pte, NULL, NULL, NULL);
}

int __nvgpu_set_pte(struct gk20a *g, struct vm_gk20a *vm, u64 vaddr, u32 *pte)
{
	struct nvgpu_gmmu_pd *pd;
	u32 pd_idx, pd_offs, pte_size, i;
	int err;
	struct nvgpu_gmmu_attrs attrs = {
		.pgsz = 0,
	};
	struct nvgpu_gmmu_attrs *attrs_ptr = &attrs;

	err = __nvgpu_locate_pte(g, vm, &vm->pdb,
				 vaddr, 0, &attrs,
				 NULL, &pd, &pd_idx, &pd_offs);
	if (err) {
		return err;
	}

	pte_size = __nvgpu_pte_words(g);

	for (i = 0; i < pte_size; i++) {
		pd_write(g, pd, pd_offs + i, pte[i]);
		pte_dbg(g, attrs_ptr,
			"PTE: idx=%-4u (%d) 0x%08x", pd_idx, i, pte[i]);
	}

	/*
	 * Ensures the pd_write()s are done. The pd_write() does not do this
	 * since generally there's lots of pd_write()s called one after another.
	 * There probably also needs to be a TLB invalidate as well but we leave
	 * that to the caller of this function.
	 */
	nvgpu_wmb();

	return 0;
}